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Abstract
Background: One challenge in understanding complex diseases lies in revealing the interactions
between susceptibility factors, such as genetic polymorphisms and environmental exposures. There
is thus a need to examine such interactions explicitly. A corollary is the need for an accessible
method of measuring both the size and the significance of interactions, which can be used by non-
statisticians and with summarised, e.g. published data. The lack of such a readily available method
has contributed to confusion in the field.

Findings: The synergy factor (SF) allows assessment of binary interactions in case-control studies.
In this paper we describe its properties and its novel characteristics, e.g. in calculating the power
to detect a synergistic effect and in its application to meta-analyses. We illustrate these functions
with real examples in Alzheimer's disease, e.g. a meta-analysis of the potential interaction between
a BACE1 polymorphism and APOE4: SF = 2.5, 95% confidence interval: 1.5–4.2; p = 0.0001.

Conclusion: Synergy factors are easy to use and clear to interpret. Calculations may be performed
through the Excel programmes provided within this article. Unlike logistic regression analysis, the
method can be applied to datasets of any size, however small. It can be applied to primary or
summarised data, e.g. published data. It can be used with any type of susceptibility factor, provided
the data are dichotomised. Novel features include power estimation and meta-analysis.

Background
The need
The remarkable progress made in the understanding of
single-cause diseases has not yet been matched in the
study of complex conditions. One problem is that suscep-
tibility factors, e.g. genetic and environmental, all contrib-

ute risk that is to varying extents contingent on the
presence of other factors [1-4]. Complex diseases cannot
therefore be simply seen as due to the accumulation of
many small independent effects. Rather, their very com-
plexity lies in the interactions between contingent effects.
Important effects may thus be missed if only single factors
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are independently examined (Discussion). The study of
interactions between risk factors is thus central to the
study of complex diseases.

Yet, unravelling interactions has proved confusing (Dis-
cussion). There is a need for a readily accessible method
of measuring their strength, available to non-statisticians
and applicable to summarised data and to datasets of any
size. Methods are also needed to calculate the power to
detect an interaction and to perform meta-analyses of
interactions from published data; these two functions
have not so far been readily available. There is a particular
need for an accessible method for referees; untested
claims of synergy are regularly published. Here we present
a statistic, the synergy factor (SF), derived from logistic
regression models, which aims to address these needs.

Modelling interactions in case-control studies
This paper is about statistical interactions; thus, drawing
inferences about biological causality is beyond its scope.
In general, a statistical interaction arises "when the effect
of one explanatory variable depends on the particular
level or value of another explanatory variable" [5]. Inter-
actions may correspond to deviations from additive or
multiplicative models for the joint effects of two risk fac-
tors. This has been thoroughly explored by Berrington de
González and Cox [6,7], with two procedures, one for
each model.

Some epidemiologists, e.g. Rothman and Greenland [8],
argue that assessment of interaction should be based on addi-
tive rate or risk models. These models are the norm in cohort
studies. However, to assess interaction as departure from addi-
tive risks in case-control studies, three surrogate measure-
ments of interaction based on the parameters of logistic
regression models have been proposed [9,10]: the relative
excess risk due to interaction, the attributable proportion due
to interaction and the synergy index. Skrondal has shown [11]
that only the synergy index may be validly used for this pur-
pose and only after fitting a linear odds model.

In case-control studies, the parameter which is both esti-
mable and interpretable as a relative risk is the odds ratio
(OR) [11]. In such studies, the predicted joint effect of two
genetic or other factors may be defined as the product of
the effects of each factor alone. We therefore propose a
single statistic, the synergy factor (SF), which depends on
a multiplicative definition of the null hypothesis.

Methods
A full description of the methodology for significance
tests based on the SF appears in Additional file 1. We
show there that ln(SF) is equivalent to the interaction
term defined by two binary factors in a logistic regression
model. We test the hypothesis of no interaction, using a
Normal approximation for the statistic ln(SF)/

stderr(ln(SF)), where the standard error of ln(SF) is easily
obtained via the delta method [12]. This approximation is
adequate even for relatively small sample sizes. We dis-
cuss a modification of the SF to cope with empty cells and
propose two bootstrap approximations and a Bayesian
inferential procedure that can be used as alternatives to
the Normal approximation. We also propose methodol-
ogy to calculate the power of significance tests and to per-
form meta-analyses based on the SF.

Results
The synergy factor (SF)
Let us assume we wish to estimate from a case-control
study whether there is an interaction between any two
(binary) factors, x1 and x2, in the risk of a certain (binary)
condition. Taking subjects with neither factor as reference,
we first estimate the ORs for factor x1 alone (OR1), factor
x2 alone (OR2) and both factors combined (OR12). The SF
is then defined as: SF = OR12/(OR1 × OR2) and is the ratio
of the observed OR for both factors combined, to the pre-
dicted OR assuming independent effects of each factor.
Susceptibility factors may be associated with increased or
reduced risk, i.e. risk or protective factors, respectively (we
make no assumptions about causality). In either case,
interactions may be positive (synergy) or negative (antag-
onism). Thus, if SF > 1 (< 1), then there is a positive (neg-
ative) interaction between two risk factors. The opposite
applies to protective factors.

To obtain the statistical significance of SF, construct a 4 ×
2 table of the numbers of cases and controls in each of the
4 possible combinations of the two factors (e.g. Table 1).
Then if n1, n2....n8 are the values of the 8 cells, application

of the delta method [12] yields an asymptotic normal
approximation to the standard error of ln(SF) as:

. Since the null

value is 0, the statistic Z = ln(SF)/stderr(ln(SF)) has
asymptotically a standard normal distribution under the
null hypothesis of no interaction.

stderr( ln( ))SF n n n= + + +1 1 11 2 8L

Table 1: Odds ratios of Alzheimer's disease, taking subjects with 
the BACE1 rs638405 C allele and without APOE4 as reference

BACE1 APOE4 Controls Cases OR

C+ - 125 80 Reference
GG - 80 38 0.742
C+ + 48 74 2.409
GG + 19 60 4.934

Totals 272 252

Data from Nowotny et al 2001 [13].APOE4 = the ε4 allele of 
apolipoprotein E; BACE1 = the β-site APP-cleaving enzyme; C+ and 
GG refer to BACE1 exon 5 C/G (rs638405) genotypes; APOE4+ and 
BACE1 C+ pool homozygotes and heterozygotes of the respective 
alleles; OR = odds ratio
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Synergy between risk factors
Let us take the potential interaction in risk of Alzheimer's
disease (AD) between the ε4 allele of apolipoprotein E
(APOE4) and the GG genotype of the C/G polymorphism
(rs638405) in exon 5 of the β-site APP-cleaving enzyme
(BACE1) [13] (Table 1). Taking subjects with neither
BACE1 GG nor APOE4 as reference, the OR for BACE1 GG
alone was 0.742 and that for APOE4 alone was 2.409.
That gave a predicted OR of 1.788 (= 0.742 × 2.409) for
the combination, compared with an observed OR of
4.934. Hence: SF = 2.76 (= 4.934/1.788), 95% confidence
interval (CI): 1.25–6.09, ln(SF) = 1.015, stderr(ln(SF)) =
0.404, Z = 2.25 and p = 0.012. Thus the null hypothesis of
no interaction was rejected and significant synergy was
found. The observed joint effect of the two variants was
nearly three times greater than the predicted joint effect.

Using the data of Table 1, we also calculated a bootstrap
approximation (see Methods) to the null distribution of
ln(SF), based on 10,000 simulated samples. This approxi-
mation does not depend on an asymptotic argument and
gave p = 0.006. Figure 1 shows both the normal and the

bootstrap approximations. The left-hand plot shows the
density estimate for the bootstrap approximation and the
normal density, with mean and standard deviation given
by the observed ln(SF) and the standard error:

; the right-hand

plot compares the sample quantiles of the bootstrap values
of ln(SF) with those of a standard normal distribution,
shown as a straight line. Both graphs confirm the adequacy
of the normal approximation, which we also tested for-
mally using the Kolmogorov-Smirnov test (p = 0.66).

The above example is of synergy between risk factors.
Examples of antagonism and of protective factors are
given in Additional file 2. SF calculations may be per-
formed using the Excel programme in Additional file 3; an
R function is available (from MCB) to compute the boot-
strap approximation.

Power
Figure 2 shows power functions for different total sample
sizes based on the control exposure frequencies presented

stderr( ln( ))SF n n n= + + +1 1 11 2 8L

Normal (N) and bootstrap (BS) approximations to the null distribution of ln(SF)Figure 1
Normal (N) and bootstrap (BS) approximations to the null distribution of ln(SF). These are based on the data in 
Table 1. On the right is the normal Quantile-Quantile plot for the values obtained by the bootstrap procedure.
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in Table 1, i.e. 36% and 25% for BACE1 GG and APOE4,
respectively. The total sample size of that study [13] was
524, and we also calculated the power functions corre-
sponding to total sample sizes of 200, 1000, 2000, and
4000. When the SF equals 1, the power is 0.05, which is
the significance level used. In this example, 488 cases and
488 controls will be needed to have 80% power to detect
an SF of 2. Power calculations may be performed on R,
using a function available from MCB.

Meta-analyses
Table 2 shows the data from 4 studies of the interaction
between APOE4 and the BACE1 exon 5 GG genotype in
the risk of AD [13-16]. These 4 studies are the only studies
in Caucasians currently providing data to examine this
interaction. Taking subjects with neither BACE1 GG nor
APOE4 as reference, the pooled SF obtained using the ran-
dom effects model [17] was 2.51, with 95% CI: 1.50–4.19
and p = 0.0001. The heterogeneity statistic based on three
degrees of freedom was 1.88 (p = 0.76); the estimated ran-
dom effects variance was 0. The results appear in Figure 3.

Meta-analyses may be performed using the Excel pro-
gramme in Additional file 4.

Discussion
The need
The real examples in Tables 1 and 2 and Table S1–S3
[Additional file 2] show the dangers of neglecting interac-
tions. In all these examples, the effects of one or both var-
iants were completely masked by the interacting factor.
For instance, in the meta-analysis of four BACE1 studies
(Table 2 and Figure 3), the effect of the BACE1 exon 5 GG
was hidden in the absence of APOE4 [pooled OR = 0.8
(95% CI: 0.6–1.1; p = 0.17), random effects model [17]],
but revealed in its presence [1.9 (1.3–2.9; 0.0015)]. Tables
S1–S3 [Additional file 2] give further examples of such
masking.

There is a common view that interactions, e.g. between
genes (epistasis), should only be examined between risk
factors that have already shown a significant main effect.
But in many cases, such as most of the above, the associa-

Power curves for various sample sizes based on the control exposure frequencies in Table 1Figure 2
Power curves for various sample sizes based on the control exposure frequencies in Table 1. The example with 
262 cases and 262 controls is equivalent to that of Table 1 with 252 cases and 272 controls.
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tion would be missed by the traditional single-factor
approach [1-3]. Indeed, this was so in most of the exam-
ples of significant epistasis uncovered in our recent survey
of sporadic AD [18]. Out of 36 such examples, 34 with SFs
≥ 2, the main effects of the gene variants other than
APOE4 were generally very weak. The ORs were ≤ 1.2 in 20
out of 36 cases and were only significant in 5 cases. Thus,
preliminary screening for main effects will miss many,
possibly most cases of epistasis.

On the other hand, synergy can be too easily claimed. A
common misconception is that a high combined OR nec-
essarily implies synergy. A single OR by itself says nothing
about synergy; it is the relation between the three relevant

ORs that matters. For instance, let us assume that two risk
factors are associated with ORs of 3 and 5 alone and of 15
when combined. Although the combined value is impres-
sive, there is no synergy: SF = 15/(3 × 5) = 1. Claims of
synergy are frequently published on the basis of such
invalid evidence. Indeed, we have noted at least 20 claims
of interactions, in the field of AD genetics alone, that were
published in leading journals in recent years, but which
may be clearly refuted by SF analysis. There is thus a need
for a readily accessible method of testing such claims.

Limitations of the SF method
We suggest that SF analysis, being based on logistic regres-
sion analysis, is best used for assessing binary interactions

Meta-analysis of the interaction between BACE1 GG and APOE4Figure 3
Meta-analysis of the interaction between BACE1 GG and APOE4. This is based on a random effects model [17].

Table 2: Data for an SF meta-analysis of the interaction between BACE1 rs638405 GG and APOE4

Study APOE4-positive,
BACE1 GG

APOE4-positive,
BACE1 C+

APOE4-negative,
BACE1 GG

APOE4-negative,
BACE1 C+

Controls Cases Controls Cases Controls Cases Controls Cases

Nowotny et al 2001 [13] 19 60 48 74 80 38 125 80
Gold et al 2003 [15] 3 14 16 16 41 16 90 46
Clarimon et al 2003 [14] 4 40 10 40 21 18 52 38
Kirschling et al 2003 [16] 22 48 40 62 63 22 112 50

APOE4 = the ε4 allele of apolipoprotein E; BACE1 = the β-site APP-cleaving enzyme; GG and C+ refer to BACE1 exon 5 C/G (rs638405) genotypes; 
APOE4-positive and BACE1 C+ pool homozygotes and heterozygotes of the respective alleles
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[2]. Various methods have been devised to examine
higher order interactions [19,20]. However, some have
only limited value for purposes of interpretation. Moreo-
ver, nearly all case-control sample-sets currently used for
association studies lack the power for the proper study of
higher order interactions [18]. Where a third interacting
factor is suspected and a sufficiently large dataset is avail-
able, SF analysis may be performed twice, after stratifica-
tion by the third factor, e.g. gender.

Where the relevant data are available, logistic regression
analysis is the appropriate method for adjusting for cov-
ariates, while SF analysis should be the preferred method
for stratification by covariates. Stratification can produce
very small subsets, even of zero, which logistic regression
analysis cannot handle. In contrast, SF analysis produces
a realistic p value in each subgroup, if one adds 0.5 to each
cell in any 4 × 2 table with at least one zero cell [21,22].

Advantages of the SF method
SF analysis is simple to perform, through the Excel pro-
grammes in Additional files 3 and 4. It is a matter of a few
minutes to perform the analysis, e.g. to check a claim of
synergy in a published paper. The value of the method
may be seen in the study of Combarros et al 2008 [18], in
which SF analysis was used to examine each of the 89
studies of interactions cited in that review. The method
measures both the size and significance of a binary inter-
action, using either primary or summarised data. Unlike
logistic regression analysis, it can be applied to datasets of
any size, however small, even with zero cells (above). The
method can be used with all types of susceptibility factors,
both risk and protective, for instance, age, gender, diet,
medication or genetic polymorphisms, provided the data
are dichotomised, e.g. age ± 75 years. It can be applied
both to synergistic and to antagonistic interactions. Novel
features include power estimation (through an R function
available from MCB) and meta-analysis, an increasingly
important application (through the Excel programme in
Additional file 4). Neither function has been readily avail-
able before.
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