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Abstract
Background: The BRICHOS domain has been found in 8 protein families with a wide range of
functions and a variety of disease associations, such as respiratory distress syndrome, dementia and
cancer. The domain itself is thought to have a chaperone function, and indeed three of the families
are associated with amyloid formation, but its structure and many of its functional properties are
still unknown.

Findings: The proteins in the BRICHOS superfamily have four regions with distinct properties.
We have analysed the BRICHOS proteins focusing on sequence conservation, amino acid residue
properties, native disorder and secondary structure predictions. Residue conservation shows large
variations between the regions, and the spread of residue conservation between different families
can vary greatly within the regions. The secondary structure predictions for the BRICHOS proteins
show remarkable coherence even where sequence conservation is low, and there seems to be little
native disorder.

Conclusions: The greatly variant rates of conservation indicates different functional constraints
among the regions and among the families. We present three previously unknown BRICHOS
families; group A, which may be ancestral to the ITM2 families; group B, which is a close relative to
the gastrokine families, and group C, which appears to be a truly novel, disjoint BRICHOS family.
The C-terminal region of group C has nearly identical sequences in all species ranging from fish to
man and is seemingly unique to this family, indicating critical functional or structural properties.

Findings
The BRICHOS domain has been found in proteins with a
wide range of functions and disease associations [1].
There are 8 known families; the cancer associated GKN1,
GKN2 and LECT1, the three dementia associated ITM2
families, the respiratory disease associated proSP-C, and
TNMD. There is little sequence identity between the fam-

ilies, the proteins are generally cleaved to produce their
active forms, and there are no structures even for remote
homologues in the PDB database.

Searching UniProtKB [2] and GenomeLKPG (translated
public domain genomes, personal communication with
Anders Bresell, Linköping University) revealed 309 BRI-
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CHOS proteins. These clearly separate into 12 groups; the
8 previously known families, 3 novel families, and one
divergent group of only two sequences (cf Fig. 1).

Group A is a novel family that clusters closely with the
ITM2 families, albeit with low bootstrap values. The posi-
tion in the dendrogram indicates that group A with its pri-
marily insect and Caenorhabditis sequences may be
ancestral to the ITM2 families.

The divergent group branches off before group A, and its
echinoderm and amphioxus sequences are compatible
with an ancestral nature.

GKN1, GKN2 and group B are closely related families that
are also colocalised in the genome, suggesting that group
B may be a third type of gastrokine. Group B is found only
in mouse, rat, cow and dolphin, while GKN1 and GKN2
are found in a wide range of mammals (also frog and
chicken, respectively).

LECT1 and TNMD are widespread in vertebrates, from
fish through armadillo and elephant to human, though
TNMD has so far not been reported in frog.

Group C is another novel family. Neither this nor proSP-
C clusters strongly with any other family, but both are
present in tetrapods. While group C is found in fish but
not frog, the opposite is true for proSP-C which is consist-
ent with its role as a pulmonary surfactant constituent.

BRICHOS proteins have four regions; hydrophobic,
linker, BRICHOS and C-terminal (length distributions
shown in Table 1). The hydrophobic region is most often
a transmembrane segment (predictions and [3]) but may
be a signal peptide in GKN1 and GKN2 [4]. In proSP-C it
functions as both [5].

All families except GKN1 and GKN2 have an additional
N-terminal region that is poorly conserved, highly varia-
ble in length and likely separated from the other regions
by a membrane. This region is not further investigated in
this study.

All statements regarding the C-terminal region exclude
proSP-C since it is absent from this family.

Conservation and secondary structure
As shown in Table 2, 3, 4 and 5, residue conservation dif-
fers considerably among the regions. The spread in ID
(average pairwise percent identities) for the hydrophobic
region is wide, from 26% in group A to 96% in proSP-C,
indicating drastically different functional constraints.
Conversely for the BRICHOS region, all families have 51-
83% ID, indicating similar functions among the families.

The remaining regions show wide ID spreads. The GC val-
ues (group conservation, Table 2, 3, 4 and 5) show the
largest spread for the hydrophobic region, with highest
values for proSP-C and ITM2A. The linker region shows
the lowest GC values (8-46%). Despite high numbers for
cscore and ID, the LECT1 linker region shows an extremely
low GC value (8%) compared to its other regions (37-
48%). The three ITM2 families show similar values in all
regions except the hydrophobic one, whose 36-86% GC
might indicate differering structural constraints. The
regional conservation differ considerably between fami-
lies (cf Fig. 2). proSP-C has its highest cscore in the hydro-
phobic region (96%) while for group C it is highest in the
C-terminal region (76%). The hydrophobic region is the
most conserved in ITM2A while it is the least conserved in
group C.

Fig. 3 shows alignments for each region. Remarkably,
although the degree of conservation is high in individual
families, only three residues are completely conserved in
the superfamily; D144, C160 and C219 (human ITM2A
numbering), all in the BRICHOS region. The correspond-
ing cysteines in proSP-C form an internal disulphide
bridge [6] which could be the case for all families. C244
and C261 in the C-terminal region are strictly conserved
in all families, except in group A where they are absent
from all sequences, and in TNMD where one stickleback
sequence has tyrosine replacing the latter cysteine. How-
ever since the stickleback genome project is still ongoing,
this might represent a sequencing error. Thus, these
cysteines might also form a disulphide bridge.

The structure is still unknown for the BRICHOS proteins.
However while the degree of conservation across the
superfamily is low there is remarkable coherence in sec-
ondary structure, not only in the BRICHOS domain. Also,
the few natively disordered regions are with few excep-
tions found N-terminally of the hydrophobic region, indi-
cating that the proteins may have otherwise well defined
tertiary structures.

Hydrophobic region
The hydrophobic region is strongly predicted to be helical
(Fig. 3a). Notable exceptions are GKN1 and GKN2 where
the first 6 residues of the predicted signal peptide show
strand tendencies. The proSP-C prediction surprisingly
shows strand tendencies, disagreeing with experimental
evidence of a helical structure [7].

The remarkably high conservation in ITM2A, ITM2B and
proSP-C (Fig. 2), and the high number of strictly con-
served valines in proSP-C, are unusual for a transmem-
brane segment, indicating possible additional roles (e.g.
protein interactions). The high degree of conservation in
proSP-C is expected since it corresponds to mature SP-C
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Dendrogram of the BRICHOS superfamilyFigure 1
Dendrogram of the BRICHOS superfamily. 12 groups are clearly distinguished; proSP-C (pulmonary surfactant protein 
C precursor), group C, GKN2 and GKN1 (gastrokine-2 and -1), group B, LECT1 (chondromodulin-1), TNMD (tenomodulin), 
the divergent group, group A, and ITM2A, ITM2C and ITM2B (integral membrane protein 2 A, C and B). UniProtKB sequences 
are denoted by accession number and identifier, e.g: O43736|ITM2A_HUMAN. GenomeLKPG sequences are denoted by their 
external identifier (Ensembl or NCBI) prepended with the organism's NCBI Taxonomic identifier, e.g. 
13618.ENSMODP00000005214. Red circles highlight the bootstrap numbers for each family. Only sequences with less than 
90% sequence identities are shown.
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[5,8]. No interactions with other proteins have been
described for mature helical SP-C, except for possible
homodimerisation [9].

Linker region
The linker region (Fig. 3b) favours coil and strand confor-
mations and shows a lower degree of conservation, except
in proSP-C where the high degree of conservation in the
hydrophobic region extends into this region.

BRICHOS region
The BRICHOS region shows the highest degree of conser-
vation near the strictly conserved aspartic acid and first
cysteine residues, but is less conserved in the C-terminal
half (Fig. 3c). The initial section is predicted to form three
short strands interspersed with short coils. The remainder
is dominated by two helices that are conserved in all fam-
ilies, separated by a coil-strand-coil region. Surprisingly,
proSP-C instead shows slight helical tendencies here.

The BRICHOS domain of ITM2 has a conserved net nega-
tive charge correlated with a conserved net positive charge
in the C-terminal region, being most extreme for ITM2A
with net charges -5 and +6 in the different regions (Fig. 4).
This characteristic is shared by group A, but less pro-
nounced. Furthermore, group A lacks the remarkably high
number of conserved hydrophobic residues in the ITM2
BRICHOS domains. It is more similar to the other families
in this respect, in accordance with group A being ancestral
to ITM2.

LECT1 and TNMD are similar in many aspects but have
drastically different conserved net charges, especially in
the BRICHOS domain and C-terminal region.

GKN1, GKN2 and group B may have a central natively dis-
ordered segment coinciding with a strongly predicted
coiled segment (cf Fig. 3c, group B not shown). This is sur-
prising since this characteristic is not shared by the other
families.

C-terminal region
The C-terminal region is extremely well conserved in
group C (Fig. 5) with nearly identical sequences in all spe-

Table 1: Length distributions for different regions of BRICHOS 
proteins

Length

Region min max median stddev

Hydrophobic 12 33 26 4.7
Linker 24 105 42 14.5
BRICHOS 83 104 93 2.5
C-terminal 29 149 38 35.2

Numbers give minima, maxima, medians and standard deviations for 
the region lengths. The C-terminal region is absent from the proSP-C 
family, and consequently the length characteristics for this region are 
shown excluding proSP-C.

Table 2: Conservation measures in the hydrophobic region

Family n cscore ID GC

ITM2A 8 92 82 86
ITM2B 13 93 80 64
ITM2C 16 79 50 36

Group A 9 66 26 28
GKN1 11 69 38 25
GKN2 8 77 42 26
TNMD 5 72 44 41
LECT1 13 84 74 49
group C 11 70 50 17
proSP-C 12 96 96 91

Conservation the hydrophobic region for the different BRICHOS 
families, shown in percent. cscore denotes average conservation score. 
ID denotes median pairwise sequence identity. GC denotes the 
proportion of positions conserved either strictly or within the groups 
of highly similar residues {DE}, {KR}, {FILMV} or {ST}. n denotes the 
number of sequences present in the underlying set. GC is a stricter 
measure of functional conservation, but may be more sensitive to 
atypical sequences.

Table 3: Conservation measures in the linker region

Family cscore ID GC

ITM2A 70 58 42
ITM2B 71 53 30
ITM2C 77 56 36

Group A 42 23 26
GKN1 78 57 30
GKN2 81 62 29
TNMD 79 71 37
LECT1 82 63 8

group C 72 54 20
proSP-C 82 78 46

Conservation the linker region for the different BRICHOS families, 
shown in percent. Column headings as explained in Table 2.

Table 4: Conservation measures in the BRICHOS region

Family cscore ID GC

ITM2A 83 67 58
ITM2B 89 83 71
ITM2C 89 82 71

Group A 66 57 39
GKN1 79 53 35
GKN2 82 74 50
TNMD 77 70 55
LECT1 78 64 37

group C 75 51 29
proSP-C 67 67 30

Conservation the BRICHOS region for the different BRICHOS 
families, shown in percent. Column headings as explained in Table 2.
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cies ranging from fish to man. However, three sequences
have a poorly conserved insertion of 30-odd residues
whose boundaries correlate with splice sites for surround-
ing exons, potentially stemming from spliceoforms or

incorrect exon predictions. Excluding these increases the
average cscore to from 52% to 94%.

GKN1 and GKN2 show a low degree of conservation in
this region, as does group A, which is surprising given its
similarity to the well conserved ITM2 families.

The C-terminal region is well conserved in ITM2, TNMD
and LECT1, although LECT1 and TNMD have a long and
less conserved insertion (Fig. 3d). These insertions may be
largely natively disordered, however while most of these
segments are likely coiled, the initial parts of the segments
are ascribed a moderate probability of being helical.
Group A also shows signs of native disorder in this seg-
ment, contrarily to ITM2.

Transmembrane predictors ascribe a moderate probability
for group C to have a transmembrane helix here, which
would be unexpected considering its predicted strand
structure and extreme conservation.

Table 5: Conservation measures in the C-terminal region

Family cscore ID GC

ITM2A 79 55 52
ITM2B 85 71 62
ITM2C 81 67 51

Group A 45 30 26
GKN1 58 26 16
GKN2 81 60 23
TNMD 69 32 32
LECT1 67 48 42
group C 94 87 76

Conservation the C-terminal region for the different BRICHOS 
families, shown in percent. Column headings as explained in Table 2. 
The numbers for group C are presented excluding the insertions 
shown in Fig. 5.

Conservation profiles of BRICHOS proteinsFigure 2
Conservation profiles of BRICHOS proteins. Each row describes one BRICHOS family and each column describes one 
region. The vertical axis in each plot shows cscores from 0% to 100%, and the horizontal axes span the length of the corre-
sponding family and region.
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Conservation, secondary structure and native disorderFigure 3
Conservation, secondary structure and native disorder. The upper half of each figure shows GC positions within each 
family in blue (strictly conserved in dark blue). The lower half shows secondary structure predictions for the representative 
sequences in colored letters (red H for helix, green E for strand, black C for coil) while the background shading indicates pre-
diction reliability (the stronger the better). Red rectangles indicate native disorder. The alignment is an excerpt from a full 
alignment of the superfamily, showing only one human representative from each family, and a Caenorhabditis sequence for 
group A, suppressing any resulting fully gapped positions.
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Ranked residue conservationFigure 4
Ranked residue conservation. Conserved residues and groups of residues in BRICHOS families by region, ordered by 
descending number of observations. The observations for GC groups are aggregated, showing the number of strictly conserved 
residues under the totals, in the corresponding order.
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Surprisingly, conservation in LECT1, TNMD and group C
increases near the C-terminus (Fig. 2). The decrease for
TNMD stems from a truncated stickleback sequence. This
part contains four strictly conserved cysteines which could
potentially form disulphide bridges or coordinate metal
ions.

The C-terminal regions of the BRICHOS proteins have no
detectable homologues in UniProtKB, making the well
conserved C-terminal regions of group C, LECT1 and
TNMD unique to this superfamily and especially interest-
ing for further studies.

Disease-related mutations
Several mutations in the proSP-C BRICHOS region corre-
late with lung disease. Notably, N138T and N186S
increase susceptibility to perinatal RDS [10] while substi-
tuting asparagine for the residue type that is most frequent
in orthologues. Three substitutions are associated with
SMDP2. A116D affects a strictly conserved position
(except one arginine in frog). R167Q is a naturally occur-
ring polymorphism and affects a non-conserved position.
L188Q affects a strictly conserved position and is found in
association with familial interstitial lung disease [11].
Also, mutant proSP-C L188Q does not function as a chap-
erone for unfolded SP-C [8].

The linker regions also has disease related substitutions.
E66L is associated with abnormal targeting to early endo-
somes and likely toxic gain of function [12], and affects a
strictly conserved position. I73T causes abnormal traffick-
ing and accumulation of aberrantly processed proSPC
within alveoli [12]. Orthologues hold isoleucine, methio-
nine and leucine, however positions 71-72 are strictly
conserved, suggesting importance of this segment. Nota-
bly, protein sorting predictions [13-16] are unchanged
following the substitution, and thus disagree with experi-
mental results.

In ITM2B, two stop codon disruptions associated with
dementia yield amyloidogenic proteins elongated by 11
residues; duplication of 10 nucleotides between the
penultimate and final translated codons in FDD [17], and
a single base substitution in FBD [18].

In the BRICHOS region of GKN1, E104T is associated
with breast cancer [19] and is conserved to lysine in all
other species (except asparagine in cow, and glutamine in
mouse and rat).

Methods
Sequences were collected using HMMER [20], both with
the BRICHOS model from PfamA [21] and a custom
HMMER model with equal specificity and slightly higher
sensitivity. Partial sequences were manually removed.
MSAs were made using dialign-t [22] and mafft L-INS-i
[23]. Neighbour joining dendrograms were built using
ClustalX [24]. Transmembrane topology was predicted
using Phobius [25] and TMHMM [26]. Secondary struc-
ture elements were predicted using Prof [27], PredictPro-
tein [28] and Psipred [29]. DISOPRED2 was used for
native disorder prediction [30]. Due to its small size,
group B was excluded from quantitative conservation
comparisons.

Conservation scoring
The cscore is similar to the ClustalX qscore (see source
code), being a diminishing function of the average eucli-
dean distance to the centroid for the substitution score
vectors for the symbols in the MSA. However, this algo-
rithm uses a linear distance-to-score transform and penal-
ises partially gapped positions less severely than does the
ClustalX variant.

In the cscore algorithm, the centroid Ci is calculated using
the expression

Multiple sequence alignment of the C-terminal region of group CFigure 5
Multiple sequence alignment of the C-terminal region of group C. Asterisks denote positions with at most one diver-
gent residue. Sequence labels follow the same format as in Fig. 1.
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N denotes the number of sequences, Mi, j the symbol in
sequence j at position i, Sx the score vector for residue type
x, σ the set of n symbols described by S, and Nu the
number of symbols in the position that are not described
by S. Thus, unlike ClustalX, gaps and other symbols not in
σ do not contribute to the placement of the centroid.
Rather, when calculating the average euclidean distance di
to the centroid, these symbols are assigned the penalty
distance

where dλ is half the maximum distance between any two
vectors in S. The transform from distance to cscore ci is not
exponential as in ClustalX, but rather a partially linear
function of di

du is defined so that ci = 0 for positions where only one res-
idue is in σ. Consequently, di can be greater than dλ in
exceptional cases (e.g. fully gapped positions), and the
nonlinearity in equation 3 will assign ci = 0 to such posi-
tions.

Conclusions
We have characterised the BRICHOS superfamily and its
four regions with distinct properties. We find large varia-
tion in conservation in both regions and families, which
implies differences in functional constraints. Secondary
structure elements are seemingly well conserved even in
regions with low residue conservation. This coupled with
the apparent low degree of predicted native disorder indi-
cates that tertiary structure may be similarly conserved.

We show that most of the known disease related muta-
tions are in highly conserved positions, and that in two
cases related to proSP-C and RDS, it is the substitution
from the atypical human asparagines to the otherwise
strictly conserved threonine and serine that are associated
with disease.

We have identified three novel BRICHOS families; group
A, which may be ancestral to the ITM2 families; group B,
which is a close relative to the GKN families, and group C,
which appears to be a truly novel, disjoint BRICHOS fam-

ily. The C-terminal region of group C is unique to this
family, with nearly identical sequences in all species rang-
ing from fish to man, indicating critical functional or
structural properties.

Abbreviations
BRICHOS families: GKN: Gastrokine, two families
(GKN1 and GKN2); ITM: Integral transmembrane pro-
tein, three families (ITM2A, ITM2B and ITM2C); LECT1:
Chondromodulin-1 precursor; proSP-C: Pulmonary sur-
factant protein C precursor; TNMD: Tenomodulin-1.
Other: FBD: Familial British dementia; FDD: Familial
Danish dementia; GC: Group conservation, proportion of
positions conserved strictly or within groups of highly
similar residues; ID: Average percent pairwise sequence
identities; MSA: Multiple sequence alignment; RDS: Res-
piratory distress syndrome; SMDP2: Surfactant metabo-
lism dysfunction, pulmonary.
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