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Abstract

Background: Landmark based geometric morphometrics (GM) allows the quantitative comparison of organismal
shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional
morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost
candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one
set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which
produce these shape variables could be used for data exchange, however they contain measurement error. The
latter may represent a significant obstacle when the objective is to distinguish very similar species.

Results: We show here that a single user derived dataset produces much less classification error than a multiple
one. The question then becomes how to circumvent the lack of exchangeability of shape variables while
preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and
inexpensive systematic tool adapted for the recognition of cryptic species.

Conclusions: To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to
create a free access bank of reference images from which one can produce raw coordinates and use them for
comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates
2-D data gathering and analyzes.

Findings
Morphometric techniques measure size, shape and the
relation between size and shape (allometry). In practice,
size and shape refer to a measurable part of the organ-
ism under study. A few anatomical landmarks (LM)
available on a wing (or any measurable part of the body)
do not completely describe the shape. However, pro-
vided there is operational homology [1] among indivi-
dual LM, only a partial capture of shape is needed to
allow valid comparisons among species

Anatomical landmarks (LM)
Shape is described by new variables derived from raw
coordinates of LM after Procrustes superimposition.
These variables describing the shape of each specimen
depend on the composition of the group under study.
If other specimens (i.e. coordinates) are added to the
analysis, shape variables must be recomputed accord-
ingly [2,3].

Size
To avoid the problem of multidimensionality, traditional
systematists often select one single dimension to repre-
sent body size. For an insect, the length of the wing
along its largest axis is frequently used as an estimator
of body size [4-6]. Such relationship is often assumed
rather than demonstrated [5].
Size variable: the centroid size
The centroid size (CS) is the square root of the sum of
the squared distances from the centroid to each LM
(see Gower, 1971 in [7]). It is a global size estimator
informing about size changes in various directions. It is
expressed in pixels, i.e. units relative to the resolution of
the viewing device (most often a computer display). As
a scalar it is less sensible to small digitization errors,
and can be shared among systematists provided the pix-
els can be converted into absolute length units (inches,
centimeters, millimeters, etc.).

Shape
Not only in entomology, but also in many fields where
morphometrics is applied, shape has been traditionally
described as the ratio of one dimension to another.
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Although intuitively the ratio may appear capable of
scaling for size, it often does not [8-11]. Moreover, the
ratios introduce some well-known statistical drawbacks
[9]. Angles also do not improve the situation since they
are another kind of ratio [10].
Shape variables: the Procrustes residuals, the partial warps,
the relative warps
In geometric morphometrics (GM), the shape of a config-
uration of LM is represented by their relative positions as
contained in their coordinates after correction for size,
position and orientation [7]. The statistical procedure is
called Generalized Procrustes Analysis (GPA) [12]. Resi-
dual coordinates produced by GPA lie in a curved space
[13,14], they must be further modified by a rigid rotation
so that they can be studied using classical statistical tech-
niques [15]. Resulting shape variables are called “partial
warps” scores (PW). The PW, or their principal compo-
nents, namely the “relative warps” (RW), may be used in
classical statistical analyzes (a complete glossary of the
many technical terms related to GM can be found at
http://life.bio.sunysb.edu/morph). These transformations
are computed relative to the consensus configuration
derived from a specific group of samples, this thwarts
mixing the final variables with other such variables com-
puted from other individuals.

Allometry
Geometric shape variables (PW) are not allometry-free
variables (they are isometry-free variables). The tentative
removal of the allometric effect on shape can be justified
for intraspecific studies [8,16,17] and less so for inter-
specific comparisons, where allometric variation is likely
to be part of the evolutionary differences relevant to
systematics.

Measurement error
Measurement error (ME) can be introduced at various
steps of morphometric analysis [18]. The mounting tech-
nique of specimens or organs, the photographing condi-
tions, and the user’s skill to collect LM coordinates may
produce artefactual variation. Generally, similar techni-
ques are used to process similar organisms, and digital
techniques of modern photography provide adequate
resolution for correct recognition of LM under different
conditions.
The “user effect” When a single user repeats the

measurements on the same specimens, the ME is gener-
ally not important. The “user effect” refers to the diver-
gence between two users digitizing the same LM.
Between two different users, the error is generally due
to small but persistent differences in pointing to the
exact location of some LM. We show the results of a
repeatability [18] study on three different insect species
(Table 1). The repeatability (R) could vary according to

the user’s skill and the quality of the anatomical LM
[19], but it systematically decreased when two users
were compared (Table 1). The effect was visibly ampli-
fied when looking at the final computation of Procrustes
distances (Figure 1).
Reducing ME generally requires averaging repeated

collections of the data [18]. However, such a laborious
task might not be satisfactory when comparing very
close specimens or groups, and ME may become a sig-
nificant obstacle for different users [20,21].

The taxonomic power of GM
The most important objection to the morphological
concept of species is the existence of sibling (or iso-
morphic) species [22]. Sibling (or also cryptic) species
are morphologically identical or nearly identical entities
recognized as different species according to other, mod-
ern concept(s) of species. However, this objection to the
typological concept (i.e. to “morphospecies”) is wea-
kened by the possibilities of modern quantitative shape
comparisons [23-25]. Shape comparisons detect minimal
morphological variations, which often are undetectable
by traditional morphological studies and even by classi-
cal morphometric approaches. Cryptic species of insects
showed distinct shapes in Triatominae [26-28], sandflies
[29], parasitoid hymenoptera [23,30,31], fruit flies [32]
and screwworm flies [33]. Morphometric discrimination
is not confined to species determination, it has also
been used to question species boundaries [34], or to
synonymize controversial taxa [35].

A geometric characterization system
Traditionally, morphometric traits have been introduced
in dichotomous keys in the form of ratios, e.g. “the sec-
ond antennal segment larger than the first one”. GM
does not use ratios, it is a powerful multi-characters
approach able to derive quantitative information about

Table 1 Mean repeatability of landmark collection from
the wings of three insect species

One user Two users

mean ± stdev mean ± stdev

Glossina palpalis palpalis 0.8053 ± 0.1101 0.6744 ±0.1623

Glossina fuscipes fuscipes 0.8099 ± 0.1315 0.6153 ± 0.2054

Aedes aegypti [43] 0.9206 ± 0.0303 0.8811 ±0.0632

Mean repeatability between the first and second measurements by the same
user (first column “One user”), and mean repeatability between the
measurements of a user versus the measurements of another user (second
column “Two users”). The repeatability was measured as a Model II oneway
ANOVA on repeated measures, where R is provided by the ratio of the
between-individual variance and the total variance (module VAR of the CLIC
package). stdev, standard deviation. The test was performed on the RW, and
the average R over the first five RW are presented. The relatively high
between-users repeatability in Aedes aegypti did not prevent a visible “user
effect” on the Procrustes distances estimations (See Figure 1).
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morphological similarities. However, the consensus-
dependent construction of shape variables prevents GM
to be converted into a straightforward taxonomic tool
[25,36,37].
Zelditch et al. [36] suggested identifying anatomical

parts showing differences on D’Arcy Thompson visuali-
zation grids, then introducing ratios to taxonomic key.
This proposition could be acceptable as long the GPA
accurately identifies each LM displacement. However, the
GPA considers the whole configuration and not indivi-
dual LM. Moreover, extracting localized difference would
mean some loss of information about shape variation, an
unwanted effect when comparing conspecific populations
or morphologically “indistinguishable” species.
Admittedly, the simplicity of classical taxonomic keys

cannot be achieved with modern morphometric meth-
ods, and if one wants to use the full metric properties of
the organisms, an analytical step cannot be avoided. Our
suggestion for a geometric characterization tool is to
separate the analytical step from the constitution of the
data, in line with “partial disarticulation” of Bowker [38].

Circumventing the “user effect”
A drastic solution to eliminate the user’s source of ME
is to eliminate the human user. The task of collecting
LM is then automatized by dedicated software [39-41].
Nonetheless, it might be expected that various algo-
rithms of image recognition could differ and show

unequal performances. In the same way we describe a
“user effect”, a possible “software effect” could exist too.
Since this effect (Table 1) is amplified in the final dis-
tances computation (Figure 1), and because the classifi-
cation is based on distances, more errors are expected
when data are derived from two users.
Our results (Table 2) show the assignation errors using

either Procrustes or Mahalanobis distances. As expected,
the error rate increased when coordinates were collected
by two different users. In total, this “user effect” produced

Figure 1 Distances evaluated two times, by either the same user (left) or two different users (right). Dots (stars) are pair-wise Procrustes
distances between female Aedes aegypti processed at 11 landmarks of the right wing. The distances were evaluated two times on the same set
of specimens, by either the same user (left) or two different users (right). The repeatability of the measurements were estimated and shown
Table 1. The user effect can be visualized going from left to right as a larger scattering of the distances around their expected values (identity).
Procrustes distances were evaluated using the module COV of the CLIC software. The graph was obtained from the NTSYSpc-2.02™software.

Table 2 Assignation errors using landmark collection
from the wings of two Glossina species

Species Distances One user Two users

Glossina p. palpalis Procrustes 2/44 (5%) 2/44 (5%)

Mahalanobis 1/44 (2%) 8/44 (18%)

Glossina f. fuscipes Procrustes 5/44 (11%) 10/44 (23%)

Mahalanobis 1/44 (2%) 14/44 (32%)

Total errors Procrustes 7/88 (8%) 12/88 (14%)

Mahalanobis 2/88 (2%) 22/88 (25%)

Assignation errors according to the “one user” and “two users” procedures, and
according to Procrustes and Mahalanobis distances. “One user” means that the
same user digitized both the reference and the external specimens. “Two users”
means that reference and external individuals were digitized by two different
persons. Absolute values are the number of wrong species attributions out of
the total of “unknown” specimens examined. For instance, “2/44” ( first row)
means that 2 of the 44 external individuals known to be G. p. palpalis were
wrongly assigned to G. f. fuscipes, according to the Procrustes distances.
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a two times increase in total error rate after Procrustes
classification, and a more than ten times increase using
Mahalanobis classification (Table 2).
The solution to the multiple users problem which is

immediately applicable is limiting image digitization to a
single user, either a human or a software (Table 3, steps 3
and 4), while still allowing images to be shared (Table 3,
step 1).

2-D pictures database
Instead of coordinates which are affected by the mea-
surement error, a reference database would contain the
digital pictures from which coordinates can be collected.
Then a single user having access to these reference pic-
tures could include them with her/his own images and
analyze the images together. This procedure eludes the
production of coordinates by different users, though it
does not address the errors due to different mounting
and photographing techniques.
Thus, to identify morphologically close species and char-

acterize populations, we suggest for GM a procedure
separating data gathering from analyzes, i.e. a system con-
sisting of a 2-D pictures database (Table 3, step 1), the
extraction of relevant data (Table 3, step 3) and a related
model of individual classification (Table 3, step 2 and
steps 4 to 8; see next paragraph).
Conditions to provide useful images, such as a size scale

(reticule), separation of sexes or the need for published

references, are described at the CLIC web page http://www.
mpl.ird.fr/morphometrics/clic/index.html. Since the CLIC
bank is dedicated to cryptic species, only images which
have been the material of a published work would be
accepted. Furthermore, to take into account the environ-
ment, reference images should be labeled with not only the
species but, ideally, the geographic origin, the date of
capture, and other parameters defining their habitats.

Classification
Where specific canalization of shape is efficient, we
expect any specimen to be more similar to other speci-
mens of the same species than to specimens belonging
to different species [42,43]. The species classification
as implemented in the CLIC package would then rely
on the estimation of metric distances and related attri-
bution algorithm. Classification techniques making use
of artificial intelligence [44-46] are not considered
here. When adding supplementary data to an analysis
performed on reference data, the supplementary data
are assigned to the reference group with which they
have the shortest distance. The shortest distance might
be however an important one and actually outside the
mean distance among the members of that group.
Thus, assignment to a given class, i.e. “discrimination”
in a statistical sense [47], does not necessarily mean
belonging to that class (“identification” in the biologi-
cal sense).

Table 3 A “one user” procedure of metric identification

Images (provided by multiple users)

Step 1 Obtaining reference images from a web data base

Step 2 Obtaining images of unknown specimens

Digitization (performed by a single user)

Step 3 Digitizing the images of reference (reference coordinates)

Step 4 Digitizing the images of the unknown specimens (unknown coordinates)

Classification

Procrustes

Step 5 Pairwise Procrustes distances between each unknown and each reference image

Mahalanobis

Step 6* Computing shape variables on the combined sets of coordinates obtained from step 3 and one unknown specimen obtained from
step 4

Step 7 Computing a discriminant model using the reference shape variables, exclusively (a partition of data from step 6)

Step 8 Entering to the discriminant model the shape variables of the unknown specimen (a partition of data from step 6)

Go to Step 6 for the next unknown specimen.

General steps implemented in the CLIC package, relevant to the geometric approach: digitization (Steps 3 and 4, module COO of the CLIC package), the
Procrustes classification (Step 5, module MOG of CLIC) and the discriminant analysis (Steps 6 and 7, module MOG) to identify organisms using mean reference
pictures (Step 1) and own pictures (Step 2). The step 2 refers to the field and/or laboratory activities of the biologist: for entomologists, it generally requires the
traditional tasks of collecting, dissecting and mounting insects. (*) To reduce multidimensionality, the number of shape variables (Step 6) can be reduced by
selecting a set of few first relative warps (RW, i.e. principal components of partial warps). The MOG module automatically selects a number of RW lower than the
smallest sample group.
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Procrustes distances
The Procrustes distances are based on a minimum cri-
terion (GPA is based on a least-squares algorithm).
They are computed in a curved space, so that they are
not Euclidean distances. An Euclidean distance is simply
a line drawn between two points on a plane, and can be
computed from the coordinates of these points by the
well-known Pythagorean theorem [36].
The MOG module of the CLIC package allows the

introduction of unknown specimens, and then performs
a first classification named “Procrustes classification”. It
is based on pair-wise Procrustes distances of each
unknown with the average image of each reference spe-
cies, as well as with each reference image separately.
The direct shape comparison between individual config-
urations could appear as a relevant technique for classi-
fication of unknown specimens. In our example, the
total error rate ranged from 8% to 14% according to the
“one user” or “two users” modes, respectively (Table 2).
However, this classification does not take into account
the dispersion ellipses of the reference groups. In our
approach, we want to assign unknown individuals to
reference groups. Their dispersion ellipses may differ for
artefactual (sampling process) or biological reasons (dif-
ferent correlations among variables), and produce undue
overlapping or similarities with other specimens.
Mahalanobis distances
This influence of intragroup variation is taken into
account with Mahalanobis distances by standardizing the
within group variance [47]. Mahalanobis distances may be
presented as Euclidean distances computed using the dis-
criminant factors derived from either PW or RW as input
variables. In the CLIC procedure (Table 3), the discrimi-
nant model is computed between the reference images
only (Table 3, step 7), the unknown specimens are then
added as supplementary data one by one (Table 3, step 8),
and the shape variables used in this classification techni-
que are computed relative to the consensus including the
single unknown specimen (Table 3, step 6). The “one by
one” procedure is mandatory. Should a large number of
unknown, external individuals be entered at once and
shape computed from the grand total, the external indivi-
duals would modify the total consensus, which could
reduce the discrimination between references and alter the
classification power.
The Mahalanobis classification is a powerful technique,

but very sensible to possible artifacts and/or outliers: it
produced the best result in the “one user” procedure (2%,
see Table 2), the worst one elsewhere (25%, see Table 2).
Software
The modules of the optional CLIC package http://www.
mpl.ird.fr/morphometrics/clic/index.html have been
shortly described previously [11,25]. Similar, complemen-
tary or additional analyzes can be performed using other

freely available software, most of them listed in the main
GM web page: http://life.bio.sunysb.edu/morph.

Conclusion
Information systematists could expect from GM is deter-
mining whether populations are drawn from multiple
species and how they can be discriminated [36]. Here we
suggest the use of GM to classify unknown specimens
according to known reference species, and we show that
to reduce artefactual classification errors, both unknown
and reference specimens should be digitized by a single
user. This is possible if the reference material is made
available to the user from a free access online bank of
images. Instead of transporting specimens from one user
to another, their images can be made available thanks to
web based technologies. The solution proposed here is
mostly applicable to 2-D data that can be collected from
photographs.
We suggest that the pictures deposited in the bank of

reference images be labeled with geographic locality and
data of collection time, this will provide the possibility
for investigating intraspecific variation. Population struc-
ture studies are then also possible.

Availability and requirements
1. Project name: CLIC (Collection of Landmarks for
Identification and Characterization)
2. Project home page: http://www.mpl.ird.fr/morpho-

metrics/clic/index.html
3. Operating system(s): Uploading images is platform

independent. The CLIC package is currently available
for Windows and Linux platforms only.
4. Programming language: HTML, TclTk (CLIC

package)
5. Other requirements: The uploading process is cur-

rently performed by the author of the CLIC initiative.
Images can be sent using for instance an online file
sharing software connected to the dujardinbe@gmail.
com email address.
6. License: The CLIC package is under GPL license.
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