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A hyperactive sleeping beauty transposase
enhances transgenesis in zebrafish embryos
Morgan Newman*, Michael Lardelli

Abstract

Background: Transposons are useful molecular tools for transgenesis. The ‘sleeping beauty’ transposon is a
synthetic member of the Tc1/mariner transposon family. Davidson et al. (2003) previously described a vector for
zebrafish transgenesis consisting of the inverted repeats of ‘sleeping beauty’ flanking the gene to be transposed.
Subsequently, there have been attempts to enhance the transpositional activity of ‘sleeping beauty’ by increasing
the activity of its transposase. Recently, Mates et al. (2009) generated a hyperactive transposase giving a 100-fold
increased transposition rate in mouse embryos.

Findings: The aim of this experiment was to determine whether this novel hyperactive transposase enhances
transgenesis in zebrafish embryos. Using our previously characterised mitfa-amyloidb-GFP transgene, we observed
an eight-fold enhancement in transient transgenesis following detection of transgene expression in melanophores
by whole mount in-situ hybridisation. However, high rates of defective embryogenesis were also observed.

Conclusion: The novel hyperactive ‘sleeping beauty’ transposase enhances the rate of transgenesis in zebrafish
embryos.

Findings
Transposons direct integrations of single copies of genetic
material into chromosomes [1] and are useful molecular
tools for transgenesis in vertebrate species. They function
by delivering a gene of interest to the chromosome in a cut
and paste manner. The ‘sleeping beauty’ transposon is a
synthetic member of the Tc1/mariner transposon family.
The transposon was engineered from a consensus sequence
of inactive fossil transposon sequences from various Salmo-
nid fish genomes [2]. Sleeping beauty consists of the trans-
posase gene flanked by terminal inverted repeats of direct
repeats. The transposase protein catalyses the excision and
integration of donor DNA into a TA dinucleotide site of a
recipient genome [1]. The derived sleeping beauty vector
system (SBT) has been shown to enhance production of
transgeneic animals in comparison to simple methods of
transgenesis such as injection of naked DNA [3,4]. It is
active in various vertebrate species such as fish, frogs, mice
and rats [3,5-7]. There have been attempts to enhance the
transpositional activity of the SBT, specifically by increasing
the activity of the transposase. Almost every amino acid has

been changed to derive hyperactive mutants of the SB
transposase and this has yielded modest increases in trans-
positional activity [8-11]. Recently, Mates et al. [5], used a
large-scale genetic screen in mammalian cells to generate a
hyperactive transposase that gave a ~100-fold enhancement
of transpositional activity over the original SB transposase
in mouse embryos.
Alzheimer’s disease may be caused by the accumulation

of amyloidb peptides in the brain [12]. Recently, we used
the SBT system to generate a zebrafish melanophore
model of amyloidb toxicity [7]. We generated transgenic
zebrafish possessing human amyloidb under the control
of the mitfa promoter that drives expression specifically
in melanophores (dark pigment cells) using our vector
pT2-mitfa-amyloidb-GFP. In that study the transposase
mRNA was generated from the plasmid pSBRNAX that
includes sequence from the 3’ UTR of the Xenopus
b-globin gene for mRNA stabilisation. In this experiment,
we compared the rates of transient transgenesis in zebra-
fish embryos using the original transposase mRNA
(SB10, generated from pSBRNAX [3]) or the hyperactive
transposase mRNA (SB100, generated from pCMV(CAT)
T7-SB100X [5]). It is important to note that the pCMV
(CAT)T7-SB100X vector does not contain the Xenopus
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b-globin 3’ UTR sequences for mRNA stabilisation.
Therefore, SB100 mRNA may not be as stable as SB10
mRNA and, once injected into the zebrafish embryos,
may possibly degrade at a faster rate.
Zebrafish embryos were injected at the 1-cell stage

with ~3 nl of linearised pT2-mitfa-amyloidb-GFP mixed
with either SB100 or SB10 transposase mRNA (final
concentration of DNA and mRNA is 25 ng/μl each) [6].
Embryos were permitted to develop until ~24 hour
post-fertilisation (hpf) at which time their chorions were
removed and they were fixed in 4% formaldehyde in a
phosphate buffered saline solution. There was some
variability in the normal development of individual
embryos injected with the SB100 mRNA. From a total
of 58 injected embryos, 22 showed developmental
defects. Specifically, 6 showed defects in epiboly (but
continued to develop later stage tissues) and 16 had
trunk/somitogenesis development defects (Table 1).
Whole-mount in-situ transcript hybridization (WISH)

was then performed on fixed embryos essentially as
described by Jowett [13]. Since the GFP coding sequences
in the pT2-mitfa-amyloidb-GFP transgene are transcribed
and not translated a digoxigenin-labelled antisense EGFP
cRNA probe was used, as previously described [7], to
detect cells transcribing GFP (in general, this can also pro-
vide more sensitive detection of gene expression than
observation of GFP fluorescence). Fixed embryos were
stained for ~18 hours at 4°C, followed by ~6 hours at
room temperature to be confident that all putative mela-
nophores expressing the GFP transcript were revealed.
There was some variability in the number of putative mel-
anophores expressing the GFP transcript in individual
embryos. However, of the 58 SB100 mRNA injected
embryos, 14 (24%) (Figure 1F) had putative melanophores
expressing the GFP transcript (see figure 1A-E) and of the
61 SB10 mRNA injected embryos, only 2 (3%) (Figure 1F)
had putative melanophores expressing the GFP transcript.
Therefore, injection of the SB100 mRNA resulted in an 8-
fold enhancement of transient transgenesis in zebrafish

embryos. Interestingly, 10 out of 14, SB100 mRNA
injected embryos with GFP transcript expression, also had
the above mentioned trunk/somitogenesis development
defects. This is consistent with higher rates of transgenesis
being associated with higher rates of deformity [14]. To
determine whether injection of the SB100 mRNA by itself
might cause developmental defects, we determined the
relative rates of defective embryos from injections of only
linearised pT2-mitfa-amyloidb-GFP DNA, SB10 mRNA,
SB100 mRNA or another transposase mRNA transcribed
from the pCS-TP plasmid [15] (TOL2 mRNA) at 25 ng/μl.
The results in Table 1 clearly show that only the SB100
mRNA causes increased developmental defects, indicating
that the SB100 mRNA and not the transgene causes this.
Embryos with epiboly defects are arrested in development
at a stage before differentiation of melanophores is
expected. Therefore, it is not possible to observe melano-
phore-specific GFP expression in these embryos. However,
the possibility exists that these embryos also possess the
transgene. Testing of the effects of a range of SB100
mRNA injection concentrations will be necessary to deter-
mine which concentration gives the optimum balance
between transgenesis and embryo defect rates.
In their tests of SB100-driven transgenesis in fertilised

mouse oocytes, Mates et al. (2009) did not observe a
decreased survival rate relative to uninjected controls at
day 7 of mouse embryogenesis and high rates of trans-
genesis were observed in mouse litters. However, the
slower rate of cell division that occurs in cleavage stage
mouse embryos relative to zebrafish embryos may mean
that the transposase mRNA breaks down in the mouse
zygotes before it can cause developmental defects.
The enhancement of transgenesis in zebrafish embryos

from use of the novel hyperactive transposase was not
~100-fold greater than the transgenesis rate using the
original SB transposase. Nevertheless, the observed
8-fold increase is a considerable improvement for two
reasons. First, the amyloidb-GFP transgene is under the
control of a tissue-specific promoter, mitfa, which
directs expression of the transgene to melanophores.
Melanophores make up only a small fraction of the total
cells in a zebrafish embryo at 24 hpf. Thus, transient
transgenesis is not expected to label this cell type fre-
quently. Secondly, the SB10 mRNA is generated from
pSBRNAX which has the Xenopus b-globin 3’ UTR
sequence for increased mRNA stability while the SB100
mRNA does not include such sequences. Therefore, the
SB100 mRNA would be expected to degrade at a faster
rate which might also affect transgenesis efficiency. If
one considers that the germline transmission frequency
of mitfa-amyloidb-GFP in the original study using SB10
mRNA was 20% (for a <3% rate of observable transient
transgenesis), then the 8-fold enhancement of transient
transgenesis observed in this study would presumably

Table 1 Results of injections of transposase mRNAs alone
or with the mitfa-amyloidb-GFP transgene

Injection Normal % (n) Mild % (n) Severe % (n)

Uninjected 98 (59) 2 (1) 0

mitfa-amyloidb-GFP only 94 (60) 3 (2) 3 (2)

-with SB100 mRNA 62 (36) 28 (16) 10 (6)

-with SB10 mRNA 97 (59) 3 (2) 0

SB100 mRNA only 40 (20) 16 (8) 44 (22)

SB10 mRNA only 83 (39) 8.5 (4) 8.5 (4)

TOL2 mRNA only 83 (38) 8.5 (4) 8.5 (4)

Percentage of embryos at 24 hpf with the number of embryos observed in
parentheses.

Normal: wild type appearance. Mild: trunk/somitogenesis-like defects. Severe:
epiboly-like defects.
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further improve the rate of germline transgenesis in zeb-
rafish. Overall, we conclude that the novel hyperactive
‘sleeping beauty’ transposase enhances the rate of trans-
genesis in zebrafish embryos.
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