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Abstract

Background: Different cell subpopulations in a single tumor may show diverse capacities for growth,
differentiation, metastasis formation, and sensitivity to treatments. Thus, heterogeneity is an important feature of
tumors. However, due to limitations in experimental and analytical techniques, tumor heterogeneity has rarely
been studied in detail.

Presentation of the hypothesis: Different tumor types have different heterogeneity patterns, thus heterogeneity
could be a characteristic feature of a particular tumor type.

Testing the hypothesis: We applied our previously published mathematical heterogeneity model to decipher
tumor heterogeneity through the analysis of genetic copy number aberrations revealed by array CGH data for
tumors of three different tissues: breast, colon, and skin. The model estimates the number of subpopulations
present in each tumor. The analysis confirms that different tumor types have different heterogeneity patterns.
Computationally derived genomic copy number profiles from each subpopulation have also been analyzed and
discussed with reference to the multiple hypothetical relationships between subpopulations in origin-related
samples.

Implications of the hypothesis: Our observations imply that tumor heterogeneity could be seen as an
independent parameter for determining the characteristics of tumors. In the context of more comprehensive usage
of array CGH or genome sequencing in a clinical setting our study provides a new way to realize the full potential
of tumor genetic analysis.

Background
Tumor heterogeneity is defined as the simultaneous pre-
sence of multiple clonal subpopulations of tumor cells
within a single neoplasm [1]. The concept of tumor het-
erogeneity implies the important fact that all of the
components actually both constitute and contribute to a
tumor society. Thus heterogeneity becomes an impor-
tant issue in cancer research since different subpopula-
tions may show different capacities for growth,
differentiation, metastasis formation, as well as sensitiv-
ity to radiation and chemotherapeutic treatments [2,3].
To date, some attempts have been made to decipher

tumor heterogeneity on the basis of the genetic profiles
of a few tumor subpopulations by using a combination

of laser-microdissection, PCR amplification, and com-
parative genomic hybridization (CGH) or array CGH
[4,5]. These studies revealed DNA copy number profiles
for individual subpopulations from specific sampling
sites. This may lead to a unilateral, rather than a global
view of the tumor society. Additionally, laser microdis-
section is a time-consuming and labor-intensive
approach and amplification of tiny amounts of tumor
cells may cause bias in the subsequent analysis.
Recently, SNP [6] and CGH array [7] analyses have been
used to describe tumor heterogeneity. However, the
developmental process of tumor heterogeneity remains
unclear.
We developed a mathematical method to estimate

tumor subpopulations and their corresponding percen-
tages in tumors through the analysis of array CGH data
[8]. This approach provides a novel tool to reveal differ-
ent cell subpopulations and to identify the heteroge-
neous population structure of a tumor.
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Breast cancer, colon cancer and skin squamous cell
carcinoma (SCC) are among the most common malig-
nant tumors worldwide [9]. There is overwhelming evi-
dence that breast cancer is a heterogeneous disease
[1,10]. Unlike breast cancer, colon cancer is thought to
be more homogeneous with a single dominant pathway
and histological presentation during tumor progression
[11]. SCC and keratoacanthoma (KA) have similar mor-
phological features [12]. However, SCC is malignant and
metastatic, requiring aggressive treatments, whereas KA
regresses spontaneously after a couple of months as a
benign neoplasm [12]. The heterogeneity of SCC and
KA has rarely been studied. In the present study, a mul-
tiple-type tumor collection with a relatively large sample
size allowed us to explore some characteristics of tumor
heterogeneity.

Presentation of the hypothesis
Through the analysis of array CGH data using our
established heterogeneity model, we deciphered DNA
copy number profiles for the major subpopulations in
each tumor. Significant differences of tumor heterogene-
ity between different tumors suggest that tumor hetero-
geneity could be a characteristic feature and a potential
clinical parameter for characterizing tumors. The rela-
tionship between subpopulations in origin-related sam-
ples, such as primary tumor, lymph node and distant
metastases could give clues to the understanding of
tumor development and its prevention.

Methods
Testing the hypothesis
Tumor samples
Total 268 tumor samples have been analyzed in this
study, in which 82 were from breast cancer, 60 from
colorectal cancer and 126 from skin tumors. All the
samples were fresh frozen after surgery.
Breast cancer
Eighty-two breast cancer samples were from 49 patients:
29 pairs of primary breast tumors and their matched
axillary lymph node (ALN) metastases, 10 primary
breast tumors without ALN metastases at diagnosis and
10 primary breast tumors with ALN metastasis detected
(these metastases were not available for this study).
Additionally, there were four “normal” breast cancer tis-
sues biopsies that were collected far from the primary
site at least 2 centimeters away from the primary site,
and regarded as normal by the pathologist. In the pre-
sent study, we abbreviate primary tumor, axillary lymph
node metastasis and “normal” breast tissues as T, M and
N, respectively. The samples were diagnosed as high-risk
breast carcinomas at the Copenhagen University Hospi-
tal during the period between February 2004 and
September 2005. The project was approved by the

Scientific and Ethical Committee of the Copenhagen
and Frederiksberg Municipalities (KF 01-069/03) [13].
The results of breast cancers analyzed by array CGH
have been previously published [8,13,14]
Colon cancer
Sixty colon cancer samples consisting of 40 samples
with low microsatellite instability (MSI-Low) and 20
samples with high microsatellite instability (MSI-High)
were studied. All samples were diagnosed as adenocarci-
nomas of the colon or of the rectum. The samples were
from a prospective cohort of colorectal cancer patients,
initiated in 2002 by the Danish Colorectal Cancer
Group South at Vejle Hospital, Denmark. The project
was approved by the science ethical committee and
given the number VF 20040109 [15].
Skin tumor
The skin samples consist of 102 KAs and 24 SCCs from
126 patients. The samples were collected in Norway,
except for 11 samples which are from England (Li J et al
unpublished data). This project was approved by the
“Regional committee for medical research ethics
Sothern-Norway (REK Sør)”. The project number is
S-06158.

Array CGH
Array CGH was performed as previously described
[14]. Briefly, genomic DNA was isolated from the fresh
frozen samples, labeled and cohybridized with normal
reference DNA. The arrays used as target for the
hybridization contained elements produced from
bacterial artificial chromosome (BAC) clones covering
the whole genome with a resolution of 1 Mega base
(Mb). The clones were obtained from the Wellcome
Trust Sanger Institute with annotation based on the
38/36 version of the clone information released by
Ensembl. Intensities were extracted and normalized as
described previously [14].

Heterogeneity model
To estimate tumor heterogeneity, we developed a math-
ematical method and validated the method by simula-
tion and an independent experiments [8]; here we give a
brief description of the heterogeneity model. This
method contains two steps: Step one establishes a
model representing the relationship between the experi-
mental data and the exact underlying copy number;

log( ) ~ ( log( ) , ),z N Cij i  + 2 (1)

where zij is the ratio of clone j in segment i and Ci is
the theoretical copy numbers ratio of the test sample
against the reference sample. The parameters a and b
are constants justified from calibration experiments [8]
and appear to be sample independent (but likely
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platform specific). We extend the Ci in equation (1) in
the following way:

C p Ci k
k

K

ik=
=∑ 0

, (2)

where K is the number of subpopulations, ∑k pk = 1 is
the percentage of the kth subpopulation, k = 1, and Cik

≥ 0 is the copy number in the kth subpopulation rela-
tively to the copy number of the test sample. The sub-
populations are denoted P0, P1, ..., Pk, such that the first
subpopulation P0 is assumed to consist of cells without
copy number aberration.
Step two is a statistical method to infer the number of

dominant subpopulations and their copy number pro-
files from CGH array data. First, the copy number pro-
file and the percentage of cells in each subpopulation
are estimated assuming a fixed number of subpopula-
tions, K. Second, it is statistically assessed which number
of subpopulations fits the data best. The method
assumes a model of sequential tumor evolution in which
each subpopulation evolves from the previous popula-
tion by the introduction of new aberrations, or by mak-
ing aberrations in the previous population more
aggravated. In our previous study, the robustness of the
statistical model has been validated by both bioinfor-
matic stimulation and independent experiments [8].

Unsupervised clustering
An unsupervised hierarchical clustering analysis was
applied to analyze the similarity of genomic profiles
across subpopulations by using the Cluster 3.0 software
[16]. The Pearson correlation algorithm was employed
for similarity metric calculation. Complete linkage clus-
tering was chosen to organize subpopulations in a tree
structure. TreeView software was utilized for visualiza-
tion of the cluster analysis result [16].

Statistical analysis
Statistical analysis was performed using the R 2.10.1
package.

Results
Heterogeneity in different types of tumors
We applied our heterogeneity model to estimate the
major subpopulations in all samples using the array
CGH profiles. A summary of the heterogeneity results
for the different types of tumors is presented in Table 1.
All breast cancer samples contain at least one aberrant
subpopulation. Nearly half of the breast cancers have
more than 2 aberrant subpopulations. For the colon
cancer samples, most of them were classified into the
group containing two subpopulations of which one is
“normal” including non-tumor cells. Thirty percent of

the MSI-High colon cancers have only the “normal”
population, whereas this is the case in only 7.5% of the
MSI-Low colon cancers. In the two categories of skin
samples, ~60% of the KAs (benign neoplasms) have one
subpopulation, i.e., a solo “normal” subpopulation. In
contrast, only ~17% of the SCCs (malignant counterpart
of KA) present only one “normal” subpopulation. Only
4.9% of the KAs have more than two subpopulations,
while this is the case in 29% of the SCCs.
In our study, the samples containing one or two sub-

populations are considered to be homogeneous, whereas
those containing more than two subpopulations are con-
sidered to be heterogeneous. We compared the number
of homogeneous and heterogeneous samples in different
groups of tumor samples (Table 2). The breast samples
are more heterogeneous than the colon and KA sam-
ples. Colon cancer is more heterogeneous than KA but
not significantly different from SCC. Notably, the KA
samples are significantly more homogenous than the
SCC samples. In colon cancers, there is no significant
difference in heterogeneity between MSI-High and MSI-
Low subtypes. Neither is there a significant difference in
heterogeneity between breast primary cancers and
lymph node metastases. Taken together, in our study,
breast cancers are more heterogeneous than the other
types of tumors whereas benign KAs have the lowest
heterogeneity.

Genomic alterations in the development of
subpopulation heterogeneity
Figure 1 presents the plots of all copy number changes
between the consecutive subpopulations within each
sample. It illustrates that the developments of P0 P1
subpopulation (the first subpopulation harboring geno-
mic aberrations), P1 P2 subpopulation, and P2 P3 sub-
population (if available), respectively. It should be noted
that 9 out of 60 colorectal samples were classified as
only “normal” with no corresponding P1 subpopulation
detectable. Thus the maximum height of the loss in the
plot colon P0 P1 of Figure 1, corresponds to 51 subpo-
pulations instead of 60. No colon sample had a P3 sub-
population. In the case of SCC, only two samples in
each group had a P3 subpopulation. Thus a plot of the
development of P2 P3 was not considered meaningful.
The recurrent genomic aberrations in the P1 subpopula-
tion in more than 50% of the samples for each cancer
type have been displayed in additional file 1. The most
common aberrations in the benign KA tumors are also
shown although they are only seen in 40% of the tumors
with a P1 subpopulation. A loss on chromosome 17 is
recurrently seen in breast cancer, colon cancer and skin
squamous cell cancer. A gain on chromosome 8 is com-
monly shown in breast cancer and colon cancer. The
recurrent alterations in the development of P1 P2, and
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P2 P3 in more than 50% of the samples for each type
tumor have been displayed in additional file 2.

The relationship of subpopulations in primary tumors,
metastases and “normal” tissues
In many breast cancer cases, we collected the primary
tumors and their matched lymph node metastases. In
addition four breast tissue samples were collected from
an area at least 2 centimeters from the primary tumor.
This tissue was regarded as normal by the pathologist.
These origin-related samples allow us to investigate
the developmental and evolutionary relationships
among the subpopulations in both intra-tumor and
inter-tumor comparisons. All origin-related breast can-
cer samples underwent heterogeneity model analysis,
and the estimated subpopulations in each sample were
derived. Subsequently, unsupervised clustering analysis
was carried out to explore the relationships between
subpopulations in all origin-related breast cancer sam-
ples. Complex and multiple relationships of subpopula-
tions in tumorigenesis are revealed in Figure 2. Except
for the cases 82, 58, 75, 77 and 90, the pair-matched
samples present the closest relationships between the
corresponding subpopulations in the primary tumors

and the metastases. Based on the clustering result, we
suggest seven hypothetical models to explain the rela-
tionships between subpopulations in origin-related
samples (Figure 2). For example, the convergence of
T60-P1 and M60-P1 revealed the simple relationship
that metastatic cell subpopulation P1 was derived from
its primary tumor cell subpopulation P1 (Model A). In
Model B, subpopulation P1 in metastasis (M53) could
be derived from the subpopulation in the primary
tumor (T53) and subsequently develops a new subpo-
pulation (M53-P2) in the metastasis. T74 contains two
aberrant subpopulations (P1 and P2), and T74-P1 pre-
sents a direct correlation with M74-P1 (Model C).
Also, one subpopulation in the primary tumor could
directly give rise to the P1 subpopulation in metastasis
but then both T-P1 and M-P1 could develop new P2
subpopulations in the primary tumor and in the metas-
tasis, respectively (Model D). In some cases, the subpo-
pulations of the metastases could be derived from
multiple subpopulations in the primary tumor. For
instance, T51-P1 is clustered with M51-P1, and T51-
P2 is clustered with M51-P2 (Model E). There are also
some complex models such as Model F and Model G,
in which the subpopulations in the “normal” tissue
samples do not show any relationships with the tumor
subpopulations. In Model G some subpopulations are
remarkably unrelated to the next (e.g. N49-P3 and
M49-P1).
In contrast, all the N-P1 samples cluster and in case

N46-P1 and N46-P2 showed correlations with T46-P1
and T46-P2, respectively. The above observations sug-
gest that the relationship between aberrant subpopula-
tions in “normal” breast tissue samples and the
corresponding tumors varies from case to case and that
more has to be learnt before the predictive value of
aberrant subpopulations can be fully exploited.

Table 1 The distribution of subpopulations in three types of tumors

sub_1 sub_2 sub_3 sub_4 Homogeneity Heterogeneity Total

Breast 82

Breast (T) 0 25 (51.02%) 20 (40.82%) 4 (8.16%) 25 (51.02%) 24 (48.98%) 49

Breast (M) 0 16 (55.17%) 10 (34.48%) 3 (10.34%) 16 (55.17%) 13 (44.83%) 29

Breast (N) 0 2 (50%) 1 (25%) 1 (25%) 2 (50%) 2 (50%) 4

Colon 60

Colon (MSI-High) 6 (30%) 12 (60%) 2 (10%) 0 18 (90%) 2 (10%) 20

Colon (MSI-Low) 3 (7.5%) 30 (75%) 7 (17.5%) 0 33 (82.5%) 7 (17.5%) 40

Skin 126

Skin (KA) 61 (59.8%) 36 (35.29%) 3 (2.94%) 2 (1.96%) 97 (95.10%) 5 (4.90%) 102

Skin (SCC) 4 (16.67%) 13 (54.17%) 6 (25%) 1 (4.17%) 17 (70.83%) 7 (29.17%) 24

In the top of the table, “1”, “2”, “3” and “4” are related to the number of total subpopulations. “Homogeneity” shows the number of the samples that contain
total 1 or 2 subpopulations. “Heterogeneity” displays the number of the samples that have 3 or 4 subpopulations. The corresponding number of the
subpopulations and its percentage (parentheses) in each type of tumor are presented, respectively. In breast cancers, “T”, “M” and “N” are abbreviated for
primary tumor, axillary lymph node metastasis and “normal” breast tissues, respectively.

Table 2 Comparison of tumor heterogeneity between
different types of tumors

Comparison P-value Comparison P-value

Breast/Colon 0.0001 Colon/SCC 0.135

Breast/SCC 0.114 Colon/KA 0.027

Breast/KA 0.0001 KA/SCC 0.0001

Breast (T)/Breast (M) 0.723 MSI-High/MSI-Low 0.443

The Chi-square test was used to test the significance of the difference in
heterogeneity between the groups. (T) means primary tumor, and (M) means
lymph node metastasis. The corresponding p-values are presented.
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Implications of the hypothesis
All cancers can be regarded as a heterogeneous cell
community that originates from a single progenitor and
becomes diverse through the acquisition of accumulated
alterations in the course of neoplastic evolution [17].
Cancer development is based on two processes: The
continuous acquisition of heritable genetic variation in
individual cells resulting in more or less random pheno-
typic change; Natural selection acting on the resultant
phenotypic diversity [18]. Most aberrant cells are exter-
minated and cells with the capability to proliferate and
survive more effectively than their neighbors get a selec-
tive advantage. Therefore, heterogeneity is a natural fea-
ture for cancers.

The relationship between tumor type and tumor
heterogeneity
In this study, tumor heterogeneity seems to be a para-
meter showing characteristics for different types of neo-
plasms, suggesting an association with tumor behavior.
In general, the breast, colon and skin tumors studied
(including benign and malignant counterparts from epi-
dermal tissue) present significantly different degrees of
heterogeneity. The breast cancers are more heteroge-
neous than the other types of tumors. Benign karatoa-
canthomas have the lowest heterogeneity. This

observation suggests that heterogeneity is a tumor-speci-
fic feature. The different levels in heterogeneity could
reflect different selection processes. Alternatively, the
differences in heterogeneity could be due to the bias in
sampling. For example, the skin tumors should be
detected earlier in their development than breast
tumors. More importantly, the breast cancer samples in
our study are collected from high risk patients [19]. The
higher heterogeneity found in breast cancer could thus
reflect the “high risk” feature of this sampling. In the
future, more stringently ascertained cancer samples are
needed for determining the relative heterogeneity fea-
ture of the different types of cancers.
In the colon cancers, the samples with MSI high level

are generally assigned lower N and M stages (frequently
N0M0), and rarely metastasize to liver compared with
the ones with MSI low level [20]. However, the reason
that renders MSI-High less aggressive than MSI-Low
remains unclear. In this study, we found a non-signifi-
cant tendency towards lower heterogeneity levels in
MSI-High samples than in MSI-Low samples, providing
one possible explanation for the above phenomenon.
Keratoacanthoma (KA) is a benign keratinocytic neo-

plasm that can spontaneously regress [12]. However,
KAs share many features such as infiltration and cytolo-
gical atypia with squamous cell carcinomas (SCCs),
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Figure 1 The development of P0 P1, P1 P2, and P2 P3 subpopulations. The developments of copy number profiles are divided into three
groups if available. From top to bottom, the change of P0 P1 subpopulations, P1 P2 subpopulations, and P2 P3 subpopulations for breast (left),
colon (center), and SCC (right) tumor samples. The heights of the vertical lines represent the percentage of samples in which the corresponding
clones have DNA copy number alterations. The index of clone is given at the bottom and ordered by genomic position (x-axis). The solid
vertical bars demarcate the chromosomes. The different copy number alterations were represented by colors in the lower right corner.
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Figure 2 The relationship between subpopulations in origin-related samples. Twenty-nine pairs of breast primary tumors (T), lymph node
metastases (M) and four “normal” breast tissue samples (N) were analyzed by unsupervised clustering. The similarity of genomic profiles of
subpopulations between samples is displayed by clustering (right). The corresponding hypothetical models are shown in the left. The
subpopulations presenting the same color denotes they have a close relationship. For more explanations see the text.

Li et al. BMC Research Notes 2010, 3:321
http://www.biomedcentral.com/1756-0500/3/321

Page 6 of 9



which compromises diagnosis and patient management
[12]. To date, no simple pathological criteria can give a
satisfactory discrimination between KAs and SCCs [12].
In this study, we observed that SCCs showed much
higher heterogeneity than KAs. As a benign tumor,
more than half KAs have only one subpopulation with-
out any numerical genomic aberrations. Furthermore,
less than 5% of the KAs have more than 3 subpopula-
tions in the tumors. By contrast, 83.33% of the SCCs
have more than 1 subpopulation, and 29.17% of the
SCCs have more than 2 subpopulations.
SCCs might have poorer genetic integrity and produce

more aberrant subpopulations than their benign coun-
terpart (KAs), even though the morphological and
pathological features are quite similar between the two
kinds of epidermal neoplasms [12]. The fact that there
are more subpopulations in SCCs than in KAs might
account for the more aggressive behavior of SCCs,
including metastatic potential. It is conceivable that a
tumor with higher number of subpopulations have a
greater chance to produce a population that is capable
of successful establishment of metastases through the
selective process.

The development process of P0 P1, P1 P2, and P2 P3
As illustrated in Figure 1, characteristic genomic aberra-
tions are already established in the P1 subpopulation of
each tumor. The recurrent aberrations such as the loss
in chromosome 17 shown in breast cancer, colon cancer
and skin squamous cell cancer, and the gain in chromo-
some 8 found in breast cancer and colon cancer suggest
common characters of all malignant tumors. The rest of
the recurrent genomic aberrations in the P1 subpopula-
tions might represent unique features related to the spe-
cific tumor type. The difference between P1, P2 and P3
within each type of tumor are not dramatic, suggesting
that the development of tumor heterogeneity is a con-
tinuous and accumulative process. In the context of the
evolutionary course of the tumor, the P1 subpopulation
already presents basic and essential genomic aberrations
for the given type of tumor and thus should be diagnos-
tically and prognostically informative.

The relationship between subpopulations in primary
tumor, metastasis and “normal” tissues
Elucidation of the changes in heterogeneity between
metastases and their original primary tumors should
deepen our understanding of the mechanisms of
metastasis. As a result from the selection in a new
microenvironment of the second organ where metas-
tases are established, subpopulations from the primary
tumor could decline and even be wiped out, while
new subpopulations could emerge in the newly estab-
lished metastasis. Tracking the alterations in the

subpopulations might help to identify metastatic favor-
ing features.
Our previous analysis of the close relationship

between breast cancer primary tumors (T) and their
lymph node metastases (M) was based on the analysis of
whole tumor genomic profiles [14]. The decomposition
of all subpopulations of T and M should allow us to
explore the reason for the remarkable similarity in geno-
mic profiles between the primary and metastatic tumor.
This may also provide clues in search for metastasis
mechanisms. In 29 pairs of breast cancer samples, we
found that the percentage and profile of subpopulations
did not change largely in the metastatic process [8].
However, lymph node metastases and their matched pri-
mary tumors present multiple subpopulation relation-
ships. In some cases (Model C), the metastatic cell
subpopulation P1 is derived from its primary tumor cell
subpopulation P1, but doesn’t show a close relationship
with the rest of the subpopulations in the primary
tumors, implying that only this subpopulation success-
fully survived and colonized a lymph node. This result
seems to corroborate Filder’s selection model in which
primary tumor contains heterogeneous subpopulations
with different abilities to metastasize [21]. Only the sub-
population that is competent for completing all steps in
tumorigenesis can establish a metastasis in the second
organ [21].
However, we frequently found that two subpopula-

tions in a primary tumor show close cell linage similar-
ity with two subpopulations in matching lymph node
metastasis, respectively (Model E and Model F). This
implies the two subpopulations of the primary tumor
both successfully survive and proliferate in the metasta-
sis. This might be understandable, if one considers the
anatomical structure of lymph vessels, serving as a
transport route for a metastasizing embolism [22]. More
compelling evidence for the existence of heterogeneous
embolic cell communities is provided by histopathologi-
cal observations. Ruiter et al confirmed that intravascu-
lar micrometastases (lymphatic and blood vessels) had
tissue-like textural features. Moreover, the structural
and functional organization of intravascular tumor cells
as a tissue has a key role in providing the optimum
microenvironment for sustained malignant dissemina-
tion during circulation [23].
The above both relationships between primary tumor

and lymph node metastasis support the hypothesis that
lymph node metastases are derived from the accumula-
tion of heterogeneous social tumor cells and that this
heterogeneity provides more candidates for successful
establishment of metastasis. When a metastatic cell com-
munity settles down in a lymph node, the heterogeneous
immigrated cells can take the selective pressure in new
environment. Taken together, the combined effects of

Li et al. BMC Research Notes 2010, 3:321
http://www.biomedcentral.com/1756-0500/3/321

Page 7 of 9



the anatomy of the lymph system and the selective pres-
sures might lead to the establishment of complex lymph
node metastasis similar to the primary tumor.
The “normal” breast tissue samples that were collected

far from the primary tumor site also exhibited some
genomic aberrations. Notably, some aberrations are
common between these four samples, so most of the
subpopulations in them were clustered together. There
could be several types of relationship between the “nor-
mal” aberrant subpopulations of tissues and the corre-
sponding primary tumors: They could develop totally
independently from their primary tumor. In some cases
they might have contributed to the development of a
tumor subpopulation (e.g. N49-P1/P2 and M49-P1).
Alternatively, one subpopulation in “normal” tissue
showing a close relationship with one subpopulation in
the primary tumor might suggest that it was derived
from that primary tumor.
We also need to be aware that the above models

deduced by the heterogeneity model are established on
the basis of the assumption of the mathematical model
of tumor heterogeneity. The heterogeneity model
assumes that new subpopulations in tumor inherit
essential genomic aberrations from the previous subpo-
pulation. In addition, they acquire more genomic aber-
rations (more losses and gains de novo or more
extensive of aberrations in the previous loci) based on
the previous subpopulation. The process of this develop-
ment is assumed to be nonreversible. Since CGH techni-
ques only detect copy number aberrations, the
heterogeneity model does not consider DNA-dosage
balanced genomic aberrations. Further studies involving
higher resolution methods and sequencing-based plat-
forms as well as more tumor samples will increase the
precision and power of tumor analyses based on tumor
heterogeneity modeling.
Our heterogeneity model and findings based on this

model provide a new approach in cancer research.
Knowledge of the heterogeneity of tumors could deepen
our understanding of the biological behavior of cancers
and might confer useful insights for clinical practice.

Additional material

Additional file 1: The recurrent genomic aberrations in the P1
subpopulation in more than50% of the samples for each type
tumor.

Additional file 2: The recurrent genomic alternations in the
development of P0 P1, P1 P2, and P2 P3 in more than 50% of the
samples for each type tumor.
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