
Gillespie et al. BMC Research Notes 2010, 3:81
http://www.biomedcentral.com/1756-0500/3/81

Open AccessSHORT REPORT
Short ReportAnalysing time course microarray data using
Bioconductor: a case study using yeast2 Affymetrix
arrays
Colin S Gillespie*†1,2, Guiyuan Lei†1,2, Richard J Boys1,2, Amanda Greenall2,3 and Darren J Wilkinson1,2

Abstract
Background: Large scale microarray experiments are becoming increasingly routine, particularly those which track a
number of different cell lines through time. This time-course information provides valuable insight into the dynamic
mechanisms underlying the biological processes being observed. However, proper statistical analysis of time-course
data requires the use of more sophisticated tools and complex statistical models.

Findings: Using the open source CRAN and Bioconductor repositories for R, we provide example analysis and protocol
which illustrate a variety of methods that can be used to analyse time-course microarray data. In particular, we
highlight how to construct appropriate contrasts to detect differentially expressed genes and how to generate
plausible pathways from the data. A maintained version of the R commands can be found at http://www.mas.ncl.ac.uk/
~ncsg3/microarray/.

Conclusions: CRAN and Bioconductor are stable repositories that provide a wide variety of appropriate statistical tools
to analyse time course microarray data.

Introduction
As experimental costs decrease, large scale microarray
experiments are becoming increasingly routine, particularly
those which track a number of different cell lines through
time. This is because time-course information provides
valuable insight into the dynamic mechanisms underlying
the biological processes being observed. However, a proper
statistical analysis of time-course data requires the use of
more sophisticated tools and complex statistical models.
For example, problems due to multiple comparisons are
increased by catering for changing effects over time. In this
case study, we demonstrate how to analyse time-course
microarray data by investigating a data set on yeast. We dis-
cuss issues related to normalisation, extraction of probesets
for specific species, chip quality and differential expres-
sion. We also discuss network inference in the Additional
file 1. The freely available software system R (see [1,2])
has many benefits for analysing data of this type and so

throughout the analysis we give the R commands that pro-
duce the numerical/graphical output shown in this paper. A
maintained version of the R commands can be found at
http://www.mas.ncl.ac.uk/~ncsg3/microarray/.

Description of the data
The data were collected according to the experimental pro-
tocol described in [3]. Briefly, three biological replicates
were studied on each of a wild-type (WT) yeast strain and a
strain carrying the cdc13-1 temperature sensitive mutation
(in which telomere uncapping is induced by growth at tem-
peratures above around 27°C). These replicates were sam-
pled initially at 23°C (at which cdc13-1 has essentially WT
telomeres) and then at 1, 2, 3 and 4 hours after a shift to
30°C to induce telomere uncapping. The thirty resulting
RNA samples were hybridised to Affymetrix yeast2 arrays.
The microarray data are available in the ArrayExpress data-
base (see [4]) under accession number E-MEXP-1551 .

Loading microarray data into Bioconductor
Installing Bioconductor and associated packages
Assuming that R is already installed, Bioconductor is fairly
straightforward to obtain installation script, viz:

* Correspondence: c.gillespie@ncl.ac.uk
1 School of Mathematics & Statistics, Newcastle University, Newcastle upon
Tyne, NE1 7RU, UK
† Contributed equally
Full list of author information is available at the end of the article
© 2010 Gillespie et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20302631
http://www.mas.ncl.ac.uk/~ncsg3/microarray/
http://www.mas.ncl.ac.uk/~ncsg3/microarray/
http://www.mas.ncl.ac.uk/~ncsg3/microarray/

Gillespie et al. BMC Research Notes 2010, 3:81
http://www.biomedcentral.com/1756-0500/3/81

Page 2 of 10
>url='http://bioconductor.org/biocLite.R'
>source(url)
> biocLite()
This installs a number of base packages, including affy,

affyPLM, limma, and gcrma (see [5-7]). Additional
non-standard packages can also be easily installed. For
example, the additional packages needed for this paper can
be installed by using

>#From Bioconductor
> biocLite(c('ArrayExpress', 'Mfuzz', 'timecourse',

'yeast2.db', 'yeast2probe'))
>#From cran
>install.packages(c('GeneNet', 'gplots'))
Bioconductor packages are updated regularly on the web

and so users can easily update their currently installed pack-
ages by starting a new R session and then using

>update.packages(repos = biocinstallRepos())
See [8] for further details on installation.
A list of packages used in this paper is given in the Addi-

tional file 1.

Entering data into Bioconductor
The data used in this paper can be downloaded from
ArrayExpress into R using the commands

>library(ArrayExpress)
> yeast.raw = ArrayExpress('E-MEXP-1551')
Unfortunately due to changes in the ArrayExpress web-

site, the ArrayExpress package for Bioconductor 2.4
(the default version for R 2.9) produces an error and so we
must use the package in Bioconductor 2.5 (the default ver-
sion for R 2.10). Details for downloading the latest
ArrayExpress package can be found in the Additional file 1.

A brief description of the yeast.raw object can be
obtained by using the print (yeast.raw) command:

AffyBatch object
size of arrays = 496 × 496 features (3163 kb)
cdf = Yeast_2 (10928 affyids)
number of samples = 30
number of genes = 10928
annotation = yeast2

If the Affymetrix microarray data sets have been down-
loaded into a single directory, then the .cel files can be
loaded into R using the ReadAffy command.

Also available from ArrayExpress are the experimental
conditions. However, some preprocessing is necessary:

> ph = yeast.raw@phenoData
> exp_fac = data.frame(data order = seq (1, 30),
+ strain = ph@data$Fac-

tor.Value.GENOTYPE.,
+ replicates = ph@data$Fac-

tor.Value.INDIVIDUAL.,
+ tps = ph@data$Fac-

tor.Value.TIME.)
>levels(exp_fac$strain) = c('m', 'w')

> exp_fac = with(exp_fac, exp_fac[order(strain, repli-
cates, tps),])

> exp_fac$replicate = rep(c(1, 2, 3), each = 5, 2)
The data frame exp_fac stores all the necessary infor-

mation, such as strain, time and replicate, which are neces-
sary for the statistical analysis.

Note that there are two yeast species on this chip, S.
pombe and S. cerevisiae. Also, amongst the 10,928 probe-
sets (with each probeset having 11 probe pairs), there are
5,900 S. cerevisiae probesets.

Pre-processing
Extraction of S. cerevisiae probesets
As these microarrays contain probesets for both S. cerevi-
siae and S. pombe, we first need to extract the S. cerevisiae
data before normalisation. This can be done by filtering out
the S. pombe data using the s_cerevisiae.msk file
from the Affymetrix website (see [9]). Note that users first
need to register with the Affymetrix website before down-
loading this file. Also note that in our analysis, the tran-
script id i.e. the systematic orf name (obtained from [10]) is
used for genes with no name.

We obtain a data frame containing lists of S. cerevisiae
genes, probes and transcripts (using the function Extrac-
tIDs() in the Additional file 1) as follows

>#Read in the mask file
> s_cer = read.table('s_cerevisiae.msk', skip = 2, string-

sAsFactors = FALSE)
> probe_filter = s_cer[[1]]
>source('ExtractIDs.R')
> c_df = ExtractIDs (probe_filter)
We also need to restrict the view of yeast.raw to the x-

and y- coordinates of the S. cerevisiae probesets in the cdf
environment by using

>#Get the raw dataset for S. cerevisiae only
>library(affy)
>library(yeast2probe)
>source('RemoveProbes.R')
> cleancdf = cleancdfname(yeast.raw@cdfName)
> RemoveProbes(probe_filter, cleancdf, 'yeast2probe')
Note that the commands in RemoveProbes.R are

listed in the Additional file 1. Thus the attributes of
yeast.raw, obtained via print(yeast.raw), are
now

AffyBatch object
size of arrays = 496 × 496 features(3167 kb)
cdf = Yeast_2(5900 affyids)
number of samples = 30
number of genes = 5900
annotation = yeast2

and the number of genes (actually probesets here) is
5,900 now that the S. pombe probesets have been removed.

http://bioconductor.org/biocLite.R

Gillespie et al. BMC Research Notes 2010, 3:81
http://www.biomedcentral.com/1756-0500/3/81

Page 3 of 10
Data Quality Assessment
Before any formal statistical analysis, it is important to
check for data quality. Initially, we might examine the per-
fect and mismatch probe-level data to detect anomalies.
Images of the first five arrays can be obtained using

> op = par(mfrow = c(3, 2))
>for(i in 1:5) {
+ plot_title = paste ('Strain:', exp_fac$strain [i],

'Time:', exp_fac$tps [i])
+ d = exp_fac$data_order [i]
+ image(yeast.raw [, d], main = plot_title)
+ }
These commands produce the image shown in the Addi-

tional file 1: Figure S2. Data quality can be assessed by
examining such images for anything that appears non-ran-
dom such as rings, shadows, lines and strong variations in
shade. The images for our data set do not appear to have
any non-random structure and so data quality is probably
high.

Another useful quality assessment tool is to examine den-
sity plots of the probe intensities. The command

> d = exp_fac$data_order[1:5]
>hist(yeast.raw[, d], lwd = 2, ylab = 'Density', xlab =

'Log (base 2) intensities')
produces the image shown in the Additional file 1: Figure

S3. Typically, differences in spread and position are cor-
rected by normalisation. However, the appearance of signif-
icant multi-modality in the distribution or many outlying
observations are indicative of poor data quality.

Other exploratory data analysis techniques that should be
carried include MAplots, where two microarrays are com-
pared and their log intensity difference for each probe on
each gene are plotted against their average. Also of interest
is to examine RNA degradation (see [6]), although [11] cast
some doubt over the validity of this method. For details on
how to carry out both of these methods in R, see [12,13] for
detailed instructions.

Normalising Microarray Data
There are number of methods for normalising microarray
data. Two of the most popular methods are GeneChip RMA
(GCRMA) and Robust Multiple-array Average (RMA); see
[14,15]. Essentially, GCRMA and RMA differ in how they
deal with background noise, with GCRMA using a more
sophisticated correction algorithm. However, the approach
adopted by GCRMA means that it can be time-consuming
to use with large data sets in contrast to RMA. A potential
drawback of using RMA is that it assumes that the overall
levels of expression are similar for each array. However this
assumption may be invalid if, for example, mutant cells
have a radically different level of transcriptional activity
than the WT. For further information regarding normalising
microarray data sets, see for example [16,17].

Since we have thirty microarray data sets and believe that
the levels of transcriptional activity are similar across
strains, we will use the RMA normalisation method. This
technique normalises across the set of hybridizations at the
probe level. The data can be normalised via

> yeast.rma = rma(yeast.raw)
> yeast.matrix = exprs(yeast.rma) [, exp_fac$data_order]
> cnames = paste(exp_fac$strain, exp_fac$tps, sep = ' ')
>colnames(yeast.matrix) = cnames
> exp_fac$data_order = 1:30
The normalisation procedure consists of three steps:

model-based background correction, quantile normalisation
and robust averaging. The aim of the quantile normalisation
is to make the distribution of probe intensities for each
array in a set of arrays the same. We illustrate its effect by
studying boxplots of the raw S. cerevisiae data against their
normalised counterparts values, shown in the Additional
file 1: Figure S4. Boxplots provide a useful graphical view
of data distributions and contain their median, quartiles,
maximum and minimum values. The boxplot command
is in the affyPLM package and so the figure is produced
by using

>library(affyPLM)
>par(mfrow = c(1, 2))
>#Raw data intensities
>boxplot(yeast.raw, col = 'red', main="")
>#Normalised intensities
>boxplot(yeast.rma, col ='blue')

Principal Component Analysis
Principal component analysis (PCA) is useful in explor-
atory data analysis as it can reduce the number of variables
to consider whilst still retaining much of the variability in
the data. In particular, PCA is useful for identifying patterns
in the data. Essentially, principal components partition the
data into orthogonal linear components which explain dif-
ferent contributions to the variability in the data. The first
component explains the largest contribution to variability in
the original dataset, that is, retains most information, with
the second component explaining the next largest contribu-
tion to variability, and so on. The following commands cal-
culate the principal components

> yeast.PC = prcomp(t(yeast.matrix))
> yeast.scores = predict(yeast.PC)
which we can then plot using
>#Plot of the first two principal components
>plot(yeast.scores [, 1], yeast.scores [, 2],
+ xlab = 'PC 1', ylab = 'PC 2',
+ pch = rep(seq (1, 5), 6),
+ col = as.numeric(exp_fac$strain))
>legend(-20, -4, pch = 1:5, cex = 0.6, c('t 0', 't 60', 't 120',

't 180', 't 240'))
Figure 1 highlights a clear (and expected) time effect in

the mutant yeast which is not present in the wild-type

Gillespie et al. BMC Research Notes 2010, 3:81
http://www.biomedcentral.com/1756-0500/3/81

Page 4 of 10
strain. In particular, mutant samples are clustered by their
time points; for example, the three mutant replicates at time
point 4 are clustered at the bottom right of the figure.

Identifying differentially expressed genes
In this experiment, interest lies in differences in gene
expression over time between the wild-type and mutant
yeast strains. It is expected that the wild-type expression
level is independent of time. Also we anticipate that the
mutant expressions at time t = 0 are the same as the wild-
type expression level. This hypothesis is supported by the
PCA plot in Figure 1.

There are currently two main packages available to detect
differentially expressed genes using this kind of data: the
timecourse package and the limma package. We illus-
trate how to analyse these data using both packages.

Using the timecourse package
This package assesses treatment differences by comparing
time-course mean profiles allowing for variability both
within and between time points. It uses the multivariate
empirical Bayes model proposed by [18].

Further details of the timecourse package can be
found in [19]. After installing the timecourse library,
we construct a size matrix describing the replication
structure using

>library(timecourse)
> size = matrix(3, nrow = 5900, ncol = 2)
To extract a list of differentially expressed we calculate

the Hotelling statistic via
> c.grp = as.character(exp_fac$strain)
> t.grp = as.numeric(exp_fac$tps)

> r.grp = as.character(exp_fac$replicate)
> MB.2D = mb.long(yeast.matrix, times = 5, method =

'2', reps = size,
+ condition.grp = c.grp, time.grp =

t.grp, rep.grp = r.grp)
The top (say) one hundred genes can be extracted via
> gene_positions = MB.2D$pos.HotellingT2 [1:100]
> gnames = rownames (yeast.matrix)
> gene_probes = gnames[gene_positions]
The expression profiles can also be easily obtained. The

profile for the top ranked expression is found using
> plotProfile(MB.2D, ranking = 1, gnames =

rownames (yeast.matrix))
and is shown in the Additional file 1: Figure S5.

Using the limma package
The limma package uses the moderated t-statistic
described by [7,20]. The function lmFit within the
limma library fits a linear model for each gene for a given
series of arrays, where the coefficients of the fitted models
describe the differences between the RNA sources hybri-
dised to the arrays. Precisely, we fit the model E [yg] = Xα g,
where yg = (yg,1, ..., yg, n)T contains the expression values for
gene g across the n arrays, X is a design matrix which
describes key features of the experimental design used and
αg is the coefficient vector for gene g. In the analysis stud-
ied here, the yeast data consists of data from n = 30 arrays.
The entries in the columns of X depend on the experimental
design used: there are two yeast strains (mutant and wild
type), each measured at five separate time points, and we
are interested in comparing the gene expressions between
mutant and wild type strains over time. Thus we seek a lin-

T 2

Figure 1 A plot of the first two principal components. The red symbols correspond to the wild-type strain.

−20 −10 0 10 20 30 40

−
10

−
5

0
5

10

PC 1

P
C

 2

t 0
t 60
t 120
t 180
t 240

Gillespie et al. BMC Research Notes 2010, 3:81
http://www.biomedcentral.com/1756-0500/3/81

Page 5 of 10
ear model describing the ten strain × time combinations by
determining values for the ten coefficients in the coefficient
vector αg. We will label these ten coefficients as ('m0', 'm60,
'm120', 'm180', 'm240', 'w0', 'w60', 'w120', 'w180', 'w240'),
where the first five coefficients represent the levels of the
mutant strain at time points t = 0, 1, 2, 3, 4 and the remain-
ing five coefficients are the equivalent versions for the wild
type strain. Statistically speaking, the model has a single
factor with ten levels. The design matrix X links these fac-
tors to the data in the arrays by having zero entries except
when an array contributes an observation to a particular
strain × time combination. For example, array 26 measures
the expression of the first wild type microarray at time t = 0
and so contributes an observation to level 'w0', the sixth
strain × time combination. Thus the entry in row 26, col-
umn 6 of the design matrix X(26, 6) = 1. Further, the arrays
are arranged in groups of three replicates. Thus the overall
experimental structure (expt_structure below) has
three arrays on level 'm0', then three arrays on 'm60', and so
on. Setting up the factor levels and the design matrix is
done in R by using

>library(limma)
> expt_structure = factor(colnames(yeast.matrix))
>#Construct the design matrix
> X = model.matrix(~0 + expt_structure)
>colnames(X) = c('m0', 'm60', 'm120', 'm180', 'm240',

'w0', 'w60', 'w120', 'w180', 'w240')
and then the coefficient vector αg is estimated via the

command
>lm.fit = lmFit(yeast.matrix, X)
Determining the differentially expressed genes amounts

to studying contrasts of the various strain × time levels, as
described by a contrast matrix C. For these data, we are
mainly interested in differences at the later time points, and
so a possible set of contrasts to investigate is that of differ-
ences between the mutant and wild type strains at each time
point, that is, ('m60-w60', 'm120-w120',
'm180-w180', 'm240-w240'). The limma package
allows complete flexibility over the choice of contrasts,
however this necessarily includes an additional level of
complexity. The values in the coefficient vector of con-
trasts, βg = CTαg for gene g, describe the size of the differ-
ence between strains at each time point. The relevant R
commands are

> mc = makeContrasts('m60-w60', 'm120-w120', 'm180-
w180', 'm240-w240', levels = X)

> c.fit = contrasts.fit(lm.fit, mc)
> eb = eBayes(c.fit)
The final command uses the eBayes function to produce

moderated t-statistics which assess whether individual con-
trast values βgj are plausibly zero, corresponding to no sig-
nifficant evidence of a difference between strains at time
point j. The moderated t-statistic is constructed using a

shrinkage approach and so is not as sensitive as the standard
t-statistic to small sample sizes. It also gives a moderated F-
statistic which can be used to test whether all contrasts are
zero simultaneously, that is, whether there is no difference
between strains at all time points.

Ranking differentially expressed genes
There are a number of ways to rank the differentially
expressed genes. For example, they can be ranked accord-
ing to their log-fold change

>#see help(toptable) for more options
> toptable(eb, sort.by = 'logFC')
or by using F-statistics
> topTableF(eb)
The advantage of using F-statistics over the log fold

change is that the F-statistic takes into account variability
and reproducibility, in addition to fold-change.

Our analysis is based on a large number of statistical
tests, and so we must correct for this multiple testing. In our
example we use the (very) conservative Bonferroni correc-
tion since we have a large number of differentially
expressed genes and the resulting corrected list is still long.
Another common method of correcting for multiple testing
is to use the false discovery rate (fdr) (use the command
?p.adjust to obtain further details). The following com-
mands rank genes according to their (corrected) F-statistic
p-value and annotates the output by indicating the direction
of the change for each contrast for each gene: +1 for up-reg-
ulated expression (mutant type having higher expression
than wild type at a particular time point), -1 for down-regu-
lated expression and 0 for no significant change.

> modFpvalue = eb$F.p.value
>#Change 'bonferroni' to 'fdr' to use the false discovery

rate as a cut-off
> indx = p.adjust(modFpvalue, method = 'bonferroni') <

0.05
> sig = modFpvalue[indx]
>#No. of sig. differential expressed genes
> nsiggenes = length(sig)
> results = decideTests(eb, method = 'nestedF')
> modF = eb$F
> modFordered = order(modF, decreasing = TRUE)
>#Retrieve the significant probes and genes
> c_rank_probe = c_df$probe [modFordered

[1:nsiggenes]]
> c_rank_genename = c_df$genename [modFordered [1:

nsiggenes]]
>#Create a list and write to a file
> updown = results[modFordered [1:nsiggenes],]
>write.table(cbind(c_rank_probe, c_rank_genename,

updown),
+ file = 'updown.csv', sep = ',', row.names =

FALSE, col.names = FALSE)

Gillespie et al. BMC Research Notes 2010, 3:81
http://www.biomedcentral.com/1756-0500/3/81

Page 6 of 10
The following code (adapted from lecture material found
at [13]) plots the time course expression for the top one
hundred differentially expressed genes according to their F-
statistic (see Figure 2).

>#Rank of Probesets, also output gene names
>par(mfrow = c (3, 3), ask = TRUE, cex = 0.5)
>for (i in 0:99){
+ indx = rank(modF) == nrow(yeast.matrix) -i
+
+ id = c_df $probe [indx]
+ name = c_df $genename [indx]
+ genetitle = paste (sprintf ('%. 30s', id), sprintf ('%.

30s', name), 'Rank =', i +1)
+
+ exprs.row = yeast.matrix [indx,]
+
+ plot (0, pch = NA, xlim = range(0, 240), ylim =

range(exprs.row), ylab = 'Expression',
+ xlab = Time, main = genetitle)
+
+ for (j in 1:6){

+ pch_value = as.character (exp_fac$strain [5 * j])
+ points (c (0, 60, 120, 180, 240), exprs.row [(5 * j-

4):(5 * j)], type = 'b', pch = pch_value)
+ }
+ }
When interpreting rank orderings based on statistical sig-

nificance, it is important to bear in mind that a statistically
significant differential expression is not always biologically
meaningful. For example, Figure 2 contains RNR2. This
gene is highly significant because of low variation in its
time course. However the actual difference in expression
levels between wild-type and mutant stains is relatively
small. We address this problem in the next section.

Comparison of the timecourse and limma packages
Both packages have different strengths. One advantage of
the timecourse package over the limma package is that
it allows for correlation between repeated measurements on
the same experimental unit, thereby reducing false positives
and false negatives; these false positives/negatives are a
significant problem when the variance-covariance matrix is

Figure 2 Time course expression levels for the top 9 differentially expressed genes, ranked by their F-statistic.

0 50 100 150 200

8
9

10
12

1774263_at EGT2 Rank = 1

Time

E
xp

re
ss

io
n

m

m
m

m
m

m

m

m m

m

m

m
m m

m

w w w w ww w w w ww w w w w

0 50 100 150 200

8
10

12
14

1776837_at HUG1 Rank = 2

Time

E
xp

re
ss

io
n

m

m
m m m

m

m

m
m m

m

m

m
m m

w w w w ww w
w w w

w w
w w w

0 50 100 150 200

7
8

9
10

1779441_at PRY3 Rank = 3

Time

E
xp

re
ss

io
n

m

m

m
m

m

m

m

m
m

m

m

m

m m m

w w w w w
w

w w w w
w

w w w w

0 50 100 150 200

7
8

9
10

1769988_at DSE4 Rank = 4

Time

E
xp

re
ss

io
n

m

m
m m

m

m

m
m m

m

m

m

m m
m

w w w w w
w

w w w w
w

w w w
w

0 50 100 150 200

8
9

10
12

1776626_at SCW11 Rank = 5

Time

E
xp

re
ss

io
n m

m
m m m

m

m

m m m

m

m

m m m

w
w

w w w
w

w w w w
w

w w w w

0 50 100 150 200

12
.5

13
.5

1774675_at RNR2 Rank = 6

Time

E
xp

re
ss

io
n

m

m

m
m m

m

m

m
m m

m

m

m m m

w w w w ww w w w ww w w w w

0 50 100 150 200

7
8

9
10

1773030_at BUD9 Rank = 7

Time

E
xp

re
ss

io
n m

m

m m m

m

m

m m m

m

m

m m m

w
w w w w

w w
w w w

w
w w w w

0 50 100 150 200

6
7

8
9

11

1779965_at DSE2 Rank = 8

Time

E
xp

re
ss

io
n

m

m

m m m

m

m

m
m

m

m

m

m m m

w
w w w w

w
w w w w

w
w w w w

0 50 100 150 200

9
10

12

1780044_at RNR3 Rank = 9

Time

E
xp

re
ss

io
n

m

m
m m m

m

m

m m m

m

m
m

m m

w w
w w w

w
w w w w

w
w w w w

Gillespie et al. BMC Research Notes 2010, 3:81
http://www.biomedcentral.com/1756-0500/3/81

Page 7 of 10
poorly estimated. An advantage of the limma package is
that it allows more flexibility by allowing users to construct
different contrasts. In general we might expect both pack-
ages to produce fairly similar lists of say the top 100 probe-
sets. In the analysis of the yeast data, we can determine the
overlap of the top 100 probesets by using

> N = 100
> gene_positions = MB.2D$pos.HotellingT2 [1:N]
> tc_top_probes = gnames [gene_positions]
> lm_top_probes = c_df$probe [modFordered [1:N]]
>length(intersect(tc_top_probes, lm_top_probes))
The result is a moderately large overlap of fifty-three

probesets. We note that changing the ranking method in the
limma package also yields similar results as those given by
the timecourse library.

Two fold-change list
When looking for "interesting" genes it can be helpful to
restrict attention to those differential expressed that are both
statistically significant and of biological interest. This
objective can be achieved by considering only significant
genes which show, say, at least a two-fold change in their
expression level. This gene list is obtained using the follow-
ing code (adapted from [12])

>#Obtain the maximum fold change but keep the sign
> maxfoldchange = function(foldchange)
+ foldchange[which.max(abs(foldchange))]
> difference = apply(eb$coeff, 1, maxfoldchange)
> pvalue = eb$F.p.value

> lodd = log10(pvalue)
>#hfc: high fold-change
> nd = (abs(difference) >log (2, 2))
> ordered_hfc = order(abs(difference), decreasing =

TRUE)
> hfc = ordered_hfc[1: length(difference [nd])]
> np = p.adjust(pvalue, method = ' bonferroni') < 0.05
>#lpv: low p value(large F-value)
> ordered_lpv = order(abs(pvalue), decreasing =

FALSE)
> lpv = ordered_lpv[1: length (pvalue [np])]
> oo = union(lpv, hfc)
> i i = intersect(lpv, hfc)
Figure 3 contains a "volcano" plot which illustrates the

effect of using different levels of fold change and signifi-
cance thresholds. The figure is produced by using the fol-
lowing code

>#Construct a volcano plot using moderated F-statistics
>par(cex = 0.5)
>plot(difference[-oo], lodd[-oo], xlim = range(differ-

ence), ylim = range(lodd))
>points(difference[hfc], lodd[hfc], pch = 18)
>points(difference[lpv], lodd[lpv], pch = 1)
>#Add the cut - off lines
>abline(v = log (2, 2), col = 5); abline (v = - log (2, 2),

col = 5)
>abline (h = -log10 (0.05/5900), col = 5)
>text (min(difference) + 1, -log10 (0.05/5900) + 0.2,

'Bonferroni cut off')

Figure 3 Volcano plot showing the Bonferroni cut-off and the two-fold change.

−6 −4 −2 0 2 4 6

0
5

10
15

20
25

30

difference[−oo]

lo
dd

[−
oo

]

Bonferroni cut off

647 intersects

Gillespie et al. BMC Research Notes 2010, 3:81
http://www.biomedcentral.com/1756-0500/3/81

Page 8 of 10
>text (1, max(lodd) - 1, paste (length (i i), 'intersects'))

Cluster Analysis
Biological insight can be gained by determining groups of
differentially expressed genes, that is, groups of genes
which increase or decrease simultaneously. This can be
achieved by using cluster analysis.

Traditional cluster analysis
In this section, we separate the top fifty differentially
expressed genes into groups of similar pattern (clusters).
Clearly different genes will have different overall levels of
expression and so we first standardise their measurements
by taking the expression level of the mutant strain (at each
time point) relative to the wild-type at time t = 0:

> c_probe_data = yeast.matrix [ii,]
>#Average of WT
> wt_means = apply(c_probe_data [, 16:30], 1, mean)
> m = matrix(nrow = dim(c_probe_data) [1], ncol = 5)
>for (i in 1:5) {
+ mut_rep = c(i, i+5, i +10)
+ m [, i] = apply(c_probe_data [, mut_rep], 1, mean)

- wt_means
+ }
>colnames(m) = sort(unique(exp_fac$tps))
The heatmap in Figure 4 is obtained by using the function

heatmap.2 from the library gplots via the following
code

>library(gplots)
>#Cluster the top 50 genes
> heatmap.2 (m [1:50,], dendrogram = 'row', Colv =

FALSE, col = greenred (75),
+ key = FALSE, keysize = 1.0, symkey =

FALSE, density.info = ' none',
+ trace = 'none', colsep = rep(1:10), sepcolor

= 'white', sepwidth = 0.05,
+ hclustfun = function (c){hclust(c, method =

'average')},
+ labRow = NA, cexCol = 1)
Figure 4 shows the relative expression levels for the

mutant strain at each time point ('0', '60', '120', '180', '240').
As expected, the relative expression levels at time t = 0 are
very similar. However, as time progresses, groupings of
genes appear whose levels are up-regulated (red) or down-
regulated (green). Note that the intensity of the colour cor-
responds to the magnitude of the relative expression. Gene
names appear on the right side of the figure and on the left
side, the cluster dendrogram shows which genes have simi-
lar expression. The dendrogram suggests that there are per-
haps six to ten clusters.

Soft clustering
Soft clustering methods have the advantage that a probe can
be assigned to more than one cluster. Furthermore, it is pos-

sible to grade cluster membership within particular group-
ings. Soft clustering is considered more robust when
dealing with noisy data; for more details see [21,22]. The
Mfuzz package implements soft clustering using a fuzzy c-
means algorithm. Analysing the data for c = 8 clusters is
achieved by using

>library(Mfuzz)
> tmp_expr = new('ExpressionSet', exprs = m)
> cl = mfuzz(tmp_expr, c = 8, m = 1.25)
> mfuzz.plot(tmp_expr, cl = cl, mfrow = c (2, 4),

new.window = FALSE)
Of course, it is usually not clear how many clusters there

are (or should be) within a dataset and so the sensitivity of
conclusions to the choice of number of clusters (c) should
always be investigated. For example, if c is chosen to be too
large then some clusters will appear sparse and this might
suggest choosing a smaller value of c. Figure 5 shows the
profiles of the eight clusters obtained from the Mfuzz pack-
age. The probes present within each cluster can be found by
using

> cluster = 1
> cl [[4]][, cluster]

Conclusion
The response to telomere uncapping in cdc13-1 strains was
expected to share features in common with responses to cell
cycle progression, environmental stress, DNA damage and
other types of telomere damage. The statistical analysis
determined lists of probesets associated with genes
involved in all of these processes. The techniques used
focussed on making best use of the temporal information in
time-course data. The use of cdc13-1 strains, which uncap
telomeres quickly and synchronously, also allowed the
identification of genes involved in the acute response to
telomere damage. This case study has demonstrated the
power of R/Bioconductor to analyse time-course microar-
ray data. Whilst the statistical analysis of such data is still
an active research area, this paper presents some of the cut-
ting-edge tools that are available to the life science commu-
nity. All software discussed in this article is free, with many
of the packages being open-source and subject to on-going
development.

Additional material

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
AG conducted the microarray experiments. All authors participated in the anal-
ysis of the data and in the writing of the manuscript.

Additional file 1 Additional R commands and analysis. 1. R commands
for extracting S. cerevisiae ids, removing unwanted probesets and convert-
ing probesets to genes. 2. R commands for genetic regulatory network
inference. 3. A list of R packages used in this manuscript. 4. Additional fig-
ures.

http://www.biomedcentral.com/content/supplementary/1756-0500-3-81-S1.PDF

Gillespie et al. BMC Research Notes 2010, 3:81
http://www.biomedcentral.com/1756-0500/3/81

Page 9 of 10

Figure 4 Clustering of the top fifty differentially expressed genes. Red and green correspond to up- and down-regulation respectively.

0 60 12
0

18
0

24
0

Figure 5 Eight clusters obtained using the Mfuzz package.

Cluster 1

Time

E
xp

re
ss

io
n

ch
an

ge
s

1 2 3 4 5

−
4

−
2

0

Cluster 2

Time

E
xp

re
ss

io
n

ch
an

ge
s

1 2 3 4 5

−
2.

0
−

0.
5

Cluster 3

Time

E
xp

re
ss

io
n

ch
an

ge
s

1 2 3 4 5

−
1

0
1

2

Cluster 4

Time

E
xp

re
ss

io
n

ch
an

ge
s

1 2 3 4 5

−
0.

5
1.

0

Cluster 5

Time

E
xp

re
ss

io
n

ch
an

ge
s

1 2 3 4 5

−
1

1
3

5

Cluster 6

Time

E
xp

re
ss

io
n

ch
an

ge
s

1 2 3 4 5

−
5

−
3

−
1

Cluster 7

Time

E
xp

re
ss

io
n

ch
an

ge
s

1 2 3 4 5

−
3

−
1

1

Cluster 8

Time

E
xp

re
ss

io
n

ch
an

ge
s

1 2 3 4 5

0
2

4

Gillespie et al. BMC Research Notes 2010, 3:81
http://www.biomedcentral.com/1756-0500/3/81

Page 10 of 10
Acknowledgements
We wish to thank Dan Swan (Newcastle University Bioinformatics Support Unit)
and David Lydall for helpful discussions. The authors are affiliated with the Cen-
tre for Integrated Systems Biology of Ageing and Nutrition (CISBAN) at Newcas-
tle University, which is supported jointly by the Biotechnology and Biological
Sciences Research Council (BBSRC) and the Engineering and Physical Sciences
Research Council (EPSRC).

Author Details
1School of Mathematics & Statistics, Newcastle University, Newcastle upon
Tyne, NE1 7RU, UK, 2Centre for Integrated Systems Biology of Ageing and
Nutrition (CISBAN), Newcastle University, UK and 3Institute for Ageing and
Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon
Tyne, NE4 5PL, UK

References
1. R Development Core Team: R: A Language and Environment for Statistical

Computing 2009 [http://www.r-project.org]. Vienna, Austria
2. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B,

Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R,
Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney
L, Yang JYH, Zhang J: Bioconductor: open software development for
computational biology and bioinformatics. Genome Biology 2004,
5:R80.

3. Greenall A, Lei G, Swan DC, James K, Wang L, Peters H, Wipat A, Wilkinson
DJ, Lydall D: A genome wide analysis of the response to uncapped
telomeres in budding yeast reveals a novel role for the NAD+
biosynthetic gene BNA2 in chromosome end protection. Genome
Biology 2008, 9:R146.

4. Parkinson H, Kapushesky M, Kolesnikov N, Rustici G, Shojatalab M,
Abeygunawardena N, Berube H, Dylag M, Emam I, Farne A, Holloway E,
Lukk M, Malone J, Mani R, Pilicheva E, Rayner TF, Rezwan F, Sharma A,
Williams E, Bradley XZ, Adamusiak T, Brandizi M, Burdett T, Coulson R,
Krestyaninova M, Kurnosov P, Maguire E, Neogi SG, Rocca-Serra P,
Sansone SA, Sklyar N, Zhao M, Sarkans U, Brazma A: ArrayExpress update-
from an archive of functional genomics experiments to the atlas of
gene expression. Nucleic Acids Research 2009, 37:D868-72.

5. Gautier L, Cope L, Bolstad BM, Irizarry RA: affy-analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics (Oxford, England) 2004,
20(3):307-15.

6. Bolstad BM, Collin F, Brettschneider J, Simpson K, Cope L, Irizarry RA,
Speed TP: Bioinformatics and Computational Biology Solutions Using R and
Bioconductor New York: Springer-Verlag. Statistics for Biology and Health;
2005:33-48.

7. Smyth GK: Limma: linear models for microarray data. In Bioinformatics
and Computational Biology Solutions using R and Bioconductor Edited by:
Gentleman R, Carey V, Dudoit S, R Irizarry WH. New York: Springer;
2005:397-420.

8. Bioconductor: Installation instructions. [http://www.bioconductor.org/
docs/install].

9. Pombe and Cerevisiae Filter [http://www.affymetrix.com/Auth/
support/downloads/mask_files/s_cerevisiae.zip]

10. Yeast Annotation File [http://www.affymetrix.com/Auth/analysis/
downloads/na24/ivt/Yeast_2.na24.annot.csv.zip]

11. Archer KJ, Dumur CI, Joel SE, Ramakrishnan V: Assessing quality of
hybridized RNA in Affymetrix GeneChip experiments using mixed-
effects models. Biostatistics (Oxford, England) 2006, 7(2):198-212.

12. Gregory Alvord W, Roayaei JA, Quiñnones OA, Schneider KT: A microarray
analysis for differential gene expression in the soybean genome using
Bioconductor and R. Briefings in Bioinformatics 2007, 8:415-31.

13. Analysis of Gene Expression Data Short Course, JSM2005 [http://
bioinf.wehi.edu.au/marray/jsm2005/]

14. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,
Speed TP: Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics (Oxford, England)
2003, 4:249-64.

15. Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo R, Spencer R: A Model
Based Background Adjustment for Oligonucleotide Expression Arrays.
Journal of the American Statistical Association 2004, 99:909-917.

16. Harr B, Schlötterer C: Comparison of algorithms for the analysis of
Affymetrix microarray data as evaluated by co-expression of genes in
known operons. Nucleic Acids Research 2006, 34:e8.

17. Labbe A, Roth MP, Carmichael PH, Martinez M: Impact of gene
expression data pre-processing on expression quantitative trait locus
mapping. BMC Proceedings 2007, 1(Suppl 1):S153.

18. Tai YC, Speed TP: A multivariate empirical Bayes statistic for replicated
microarray time course data. The Annals of Statistics 2006, 34:2387-2412.

19. Tai YC: timecourse: Statistical Analysis for Developmental Microarray Time
Course Data 2007 [http://www.bioconductor.org].

20. Smyth GK: Linear models and empirical Bayes methods for assessing
differential expression in microarray experiments. Statistical
Applications in Genetics and Molecular Biology 2004, 3:Article3.

21. Futschik ME, Carlisle B: Noise-robust soft clustering of gene expression
time-course data. Journal of Bioinformatics and Computational Biology
2005, 3:965-88.

22. Futschik M: Mfuzz: Soft clustering of time series gene expression data 2007
[http://itb.biologie.hu-berlin.de/~futschik/software/R/Mfuzz/index.html].

doi: 10.1186/1756-0500-3-81
Cite this article as: Gillespie et al., Analysing time course microarray data
using Bioconductor: a case study using yeast2 Affymetrix arrays BMC
Research Notes 2010, 3:81

Received: 6 July 2009 Accepted: 19 March 2010
Published: 19 March 2010
This article is available from: http://www.biomedcentral.com/1756-0500/3/81© 2010 Gillespie et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Research Notes 2010, 3:81

http://www.biomedcentral.com/1756-0500/3/81
http://creativecommons.org/licenses/by/2.0
http://www.r-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18828915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19015125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960456
http://www.bioconductor.org/docs/install
http://www.bioconductor.org/docs/install
http://www.affymetrix.com/Auth/support/downloads/mask_files/s_cerevisiae.zip
http://www.affymetrix.com/Auth/support/downloads/mask_files/s_cerevisiae.zip
http://www.affymetrix.com/Auth/analysis/downloads/na24/ivt/Yeast_2.na24.annot.csv.zip
http://www.affymetrix.com/Auth/analysis/downloads/na24/ivt/Yeast_2.na24.annot.csv.zip
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16135694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17906332
http://bioinf.wehi.edu.au/marray/jsm2005/
http://bioinf.wehi.edu.au/marray/jsm2005/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16432259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18466498
http://www.bioconductor.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16646809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16078370
http://itb.biologie.hu-berlin.de/~futschik/software/R/Mfuzz/index.html

	Abstract
	Background
	Findings
	Conclusions

	Introduction
	Description of the data
	Entering data into Bioconductor
	Pre-processing
	Extraction of S. cerevisiae probesets
	Data Quality Assessment
	Normalising Microarray Data

	Identifying differentially expressed genes
	Using the timecourse package
	Using the limma package
	Ranking differentially expressed genes
	Two fold-change list

	Cluster Analysis
	Traditional cluster analysis
	Soft clustering

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References

