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Abstract

Background: Due to its high sensitivity, the Smith-Waterman algorithm is widely used for biological database
searches. Unfortunately, the quadratic time complexity of this algorithm makes it highly time-consuming. The
exponential growth of biological databases further deteriorates the situation. To accelerate this algorithm, many
efforts have been made to develop techniques in high performance architectures, especially the recently emerging
many-core architectures and their associated programming models.

Findings: This paper describes the latest release of the CUDASW++ software, CUDASW++ 2.0, which makes new
contributions to Smith-Waterman protein database searches using compute unified device architecture (CUDA). A
parallel Smith-Waterman algorithm is proposed to further optimize the performance of CUDASW++ 1.0 based on
the single instruction, multiple thread (SIMT) abstraction. For the first time, we have investigated a partitioned
vectorized Smith-Waterman algorithm using CUDA based on the virtualized single instruction, multiple data (SIMD)
abstraction. The optimized SIMT and the partitioned vectorized algorithms were benchmarked, and remarkably,
have similar performance characteristics. CUDASW++ 2.0 achieves performance improvement over CUDASW++ 1.0
as much as 1.74 (1.72) times using the optimized SIMT algorithm and up to 1.77 (1.66) times using the partitioned
vectorized algorithm, with a performance of up to 17 (30) billion cells update per second (GCUPS) on a single-GPU
GeForce GTX 280 (dual-GPU GeForce GTX 295) graphics card.

Conclusions: CUDASW++ 2.0 is publicly available open-source software, written in CUDA and C++ programming
languages. It obtains significant performance improvement over CUDASW++ 1.0 using either the optimized SIMT
algorithm or the partitioned vectorized algorithm for Smith-Waterman protein database searches by fully exploiting
the compute capability of commonly used CUDA-enabled low-cost GPUs.

Background
Sequence database searches in the field of bioinformatics
are used to identify potential evolutionary relationships
by means of identifying the similarities between query
and subject sequences. The similarities between
sequences can be determined by computing their opti-
mal local alignments using the dynamic programming
based on the Smith-Waterman (SW) algorithm [1,2].
However, the quadratic time complexity of this algo-
rithm makes it computationally demanding, which is
further compounded by the exponential growth of
sequence databases. To reduce the execution time, some

heuristic solutions, such as FASTA [3] and BLAST [4,5],
have been devised to reduce the execution time, usually
producing good results. However, these heuristics might
fail to detect some distantly related sequences due to
the loss of sensitivity. In this case, the use of high per-
formance architectures, especially the emerging accelera-
tor technologies and many-core architectures such as
FPGAs, Cell/BEs and GPUs, becomes one recent trend
to execute the SW algorithm, allowing the production
of exact results in a reasonably shorter time.
For the FPGA technology, linear systolic array and

massively parallel computing using custom instructions
are used to perform the SW algorithm. Oliver et al.
[6,7] constructed a linear systolic array to perform the
SW algorithm on a standard Virtex II FPGA board
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using affine gap penalties. Li et al. [8] exploits custom
instructions to accelerate the SW algorithm for DNA
sequences on an Altera Stratix EP1S40 FPGA by divid-
ing the SW matrix into grids of 8 × 8 cells. For the
SIMD vectorization, particularly streaming SIMD exten-
sions 2 (SSE2) technology, there are two basic vectorized
SW algorithms available: one computes the algorithm
using SIMD vectors parallel to the minor diagonal [9],
and the other uses SIMD vectors parallel to the query
sequence in a sequential layout [10] or a striped layout
[11]. The striped SW approach [11] was then optimized
for the Cell/BE [12]. SWPS3 [13] extends this work for
the Cell/BE and also improves it for ×86/SSE2 to sup-
port multi-core processors, and CBESW [14] is designed
for the Cell/BE-based PlayStation 3. For general-purpose
GPUs, Liu et al. [15] developed an implementation of
the SW algorithm using OpenGL as a first step. After
the advent of CUDA programming model, SW-CUDA
[16] was developed using CUDA, supporting multiple
G80 (and higher) GPUs. However, this algorithm distri-
butes the SW computation among multi-core CPUs and
GPUs, which makes it highly CPU dependent and not
able to truly exploit the computation power of GPUs.
Different from SW-CUDA, CUDASW++ 1.0 [17],
designed for multiple G200 (and higher) GPUs, com-
pletes all the SW computations on GPUs by fully
exploiting the powerful GPUs. To the best of our
knowledge, CUDASW++ 1.0 was the fastest publicly
available solution to the exact SW algorithm on com-
modity hardware before this paper.
In this paper, we present the latest release of the

CUDASW++ software, CUDASW++ 2.0, which makes
new contributions to SW protein database searches
using CUDA by deeply exploring the compute power of
CUDA-enabled GPUs. An optimized SIMT SW algo-
rithm is suggested to further optimize the performance
of CUDASW++ 1.0 based on the SIMT abstraction. For
the first time have we investigated a partitioned vector-
ized SW algorithm using CUDA based on the virtualized
SIMD abstraction. CUDASW++ 2.0 obtains significant
performance improvement over CUDASW++ 1.0 using
either the optimized SIMT or the partitioned vectorized
algorithms on the same platforms, achieving a perfor-
mance of up to 17 (30) GCUPS on a single-GPU
GeForce GTX 280 (dual-GPU GeForce GTX 295) gra-
phics card. In addition, it also outperforms the other
previous SW sequence database search implementations
on GPUs and some other implementations using SSE2,
Cell/B.E or heuristics.

The Smith-Waterman algorithm
The SW algorithm is used to identify the similarity
between two sequences by computing the maximum
local alignment score. Given two sequences S1 and S2 of

lengths l1 and l2 respectively, the SW algorithm com-
putes the similarity score H(i, j) of two sequences end-
ing at position i and j of S1 and S2, respectively. H(i, j)
is computed as in equation (1), for 1 ≤ i ≤ l1, 1 ≤ j ≤ l2:
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where sbt is the substitution matrix, r is the gap open
penalty and s is the gap extension penalty. A substitu-
tion matrix sbt gives the substitution rates of amino
acids in proteins, derived from alignments of protein
sequences. The recurrences are initialized as H(i, 0) =
H(0, j) = E(i, 0) = F(0, j) = 0 for 0 ≤ i ≤ l1 and 0 ≤ j ≤
l2. The maximum local alignment score is defined as the
maximum score in H. The computation of each cell in
H depends on its left, upper, and upper-left neighbors,
as shown by the three arrows in Additional file 1. In
addition, this data dependency implies that all cells on
the same minor diagonal in the alignment matrix are
independent, and can be computed in parallel. Thus, the
alignment can be computed in minor-diagonal order
from the top-left corner to the bottom-right corner in
the alignment matrix, where the computation of minor
diagonal i only needs the results of minor diagonals i-1
and i-2.

CUDA programming model
CUDA is an extension of C/C++ with a minimalist set
of abstractions for expressing parallelism, enabling users
to write scalable multi-threaded parallel code for
CUDA-enabled GPUs [18]. A CUDA program consist of
two parts: a host program running on the host CPU,
and one or more parallel kernels which can be executed
on GPUs with NVIDIA’s Tesla unified graphics and
computing architecture [19].
A kernel is written in conventional scalar C-code,

which represents the operations to be performed by a
single thread and is invoked as a set of concurrently
executing threads. These threads are organized into a
grid of thread blocks, where a thread block is a set of
concurrent threads. This hierarchical organization has
implications for thread communication and synchroni-
zation. Threads in a thread block are allowed to syn-
chronize with each other using barriers, and can
communicate through a per-block shared memory
(PBSM). However, threads located in different thread
blocks cannot communicate or synchronize directly. To
write efficient CUDA programs, besides the PBSM, it is
important to understand the other memory spaces in
more detail: non-cached global and local memory,
cached texture and constant memory as well as on-chip
registers.
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The Tesla architecture is built around a fully program-
mable scalable processor array, organized into a number
of streaming multiprocessors (SMs). Each SM contains
eight scalar processors (SPs), sharing a PBSM of size 16
KB. All threads of a thread block are executed concur-
rently on a single SM. The SM executes threads in
small groups of 32 threads, called warps, in an SIMT
fashion. When one thread blocks is scheduled to execute
on an SM, threads in the thread block are split into
warps that get scheduled by the SIMT unit. A warp exe-
cutes one common instruction at a time, but allows for
instruction divergence. When divergence occurs, the
warp serially executes each branch path. Thus, parallel
performance is generally penalized by data-dependent
conditional branches and improved if all threads in a
warp follow the same execution path. Branch divergence
occurs only in a warp, and different warps run indepen-
dently regardless of common or disjointed code paths
they are executing.

Virtualized SIMD vector programming model
Because a warp executes one common instruction at a
time, all threads in a warp are implicitly synchronized
after executing any instruction. This execution manner
is very similar to the characteristic of SIMD vector
organizations that a single instruction controls multi-
ple processing elements. Therefore, it is viable to vir-
tualize a warp as an SIMD vector with each thread as
a vector element. An alternative virtualization at the
warp level is to divide a warp into several thread
groups of equal size and then virtualize each thread
group as a vector with each thread in the group as an
element. However, for the current CUDA-enabled
GPU technologies, this warp-level virtualization limits
the virtualized vector length to 32. To support longer
vector lengths, vectors can be virtualized at the thread-
block level, where a thread block is considered as a
large vector with each thread in the thread block as an
element. In this case, the intrinsic function __syncth-
reads() has to be used to explicitly synchronize all
threads at specific synchronization points in the kernel
to keep the correctness of the virtualized vector
computations.
In this paper, we refer to the virtualized vector as vir-

tualized SIMD vector and its corresponding program-
ming model as virtualized SIMD model to differentiate
from the real SIMD vector organizations. Since this vir-
tualization is based on the SIMT model, the virtualized
SIMD model shares all the features of the SIMT model
with an additional ability to conduct vector computa-
tions. We define VL to denote the length of a virtualized
vector, i.e. the number of data lanes of the vector. For
the convenience of discussion, we assume that the first
element (indexed by 0) is on the rightmost and the last

element (indexed by VL - 1) on the leftmost of the vec-
tor. Each thread comprising a virtualized vector is
assigned a vector ID vtid that is equal to the position
index of its corresponding vector element in the vector
of length VL, where 0 ≤ vtid <VL. In this paper, we use
warp-level virtualization to implement vectorized SW
algorithms.

Methods
Query profile
To calculate H(i, j), the substitution score sbt(S1[i],
S2[j]), from the substitution matrix, is added to H(i-1,
j-1). Due to the huge number of iterations in the SW
algorithm calculation, reducing the number of instruc-
tions needed to perform one cell calculation has a sig-
nificant impact on the execution time. In this regard,
Rognes et al. [10] and Farrar [11] suggested the use of
a query profile parallel to the query sequence for each
possible residue. A query profile is pre-calculated just
once before database searches, and can be calculated
in two layouts: a sequential layout [10] and a striped
layout [11].
Given a query sequence Q of length l defined over an

alphabet Σ, a query profile is defined as a numerical
string set P = {Pr | r Î Σ}, where Pr is a numeric string
consisting of substitution scores that are required to
compute a complete column (or row) of the alignment
matrix, and the values of Pr depend on whether it uses a
sequential or a striped layout. For a sequential query
profile (see Additional file 2), Pr(i), the i-th value of Pr,
is defined as

P i sbt r Q i i lr( ) , [ ] ,       1 (2)

Even though a sequential query profile is initially
designed for SIMD vector computation of the SW algo-
rithm, it is also suitable for scalar computation of the
algorithm. For SIMD vector computation, it generally
aligns l according to vector length VL for performance
consideration and pads Q with dummy residues that
have a substitution score of zero between itself and any
residue.
A striped query profile (see Additional file 3) is

designed for SIMD vector computation. To construct a
striped query profile, given a vector length VL, the
query sequence Q is divided into a set of equal length
query segments QSEG = {QSEG1, QSEG2, ..., QSEGVL} of
VL elements. The length T of each query segment is
equal to (l + VL - 1)/VL. If l is not a multiple of VL, Q
is first padded with dummy residues. For simplicity, we
assume l is a multiple of VL. Correspondingly, each
numerical string Pr of a striped query profile can be
considered as a set of non-overlapping, consecutive VL-
length vector segments VSEG = {VSEG1, VSEG2, ...,
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VSEGT} of T elements, where the i-th element of VSEGj

maps the j-th element of QSEGi. Hence, Pr(i) of a
striped query profile is defined as

P i sbt r Q i VL T i VL i lr( ) , ( )% ( ) /          1 1 1 1,   (3)

Optimized SIMT Smith-Waterman algorithm using CUDA
The SIMT SW algorithm used by CUDASW++ 1.0 is
designed based on the SIMT abstraction of CUDA-
enabled GPUs, which enables thread-level parallelism
for independent scalar threads as well as data paralle-
lism for coordinated threads. It uses two stages to com-
plete the database searches: the first stage uses inter-
task parallelization using thread-level parallelism, and
the second stage uses intra-task parallelization using
data parallelism. Since the first stage dominates the total
runtime when searching large database, the optimiza-
tions of CUDASW++ 2.0 are focused on this stage. The
performance of CUDASW++ 2.0 is significantly
improved due to the following optimizations: introdu-
cing a sequential query profile and using a packed data
format.
A sequential query profile stored in texture memory is

used to replace random access to the substitution matrix
in shared memory. Inspired by the fact that texture
instructions output filtered samples, typically a four-
component (RGBA) color [19], the sequential query pro-
file is re-organized using a packed data format, where

each numerical string Pr is packed and represented
using the char4 vector data type, instead of the char
scalar data type. In this way, four substitution scores are
realized using only one texture fetch, thus significantly
improving texture memory throughput. Like the query
profile, each subject sequence is also re-organized using
a packed data format, where four successive residues of
each subject sequence are packed together and repre-
sented using the uchar4 vector data type. In this case,
when using the cell block division method, the four resi-
dues loaded by one texture fetch are further stored in
shared memory for the use of the inner loop (see the
pseudocode of the CUDA kernel shown in Figure 1). In
addition, some redundant operations are removed to
improve instruction pipeline throughput.

Basic vectorized Smith-Waterman algorithm using CUDA
The basic vectorized SW algorithm is designed by
directly mapping the striped SW algorithm [11] onto
CUDA-enabled GPUs using CUDA, based on the virtua-
lized SIMD vector programming model. For the compu-
tation of each column of the alignment matrix, the
striped SW algorithm consists of two loops: an inner
loop calculating local alignment scores postulating that
F values do not contribute to the corresponding
H values, and a lazy-F loop correcting any errors intro-
duced from the calculations of the inner loop. The basic
vectorized algorithm uses a striped query profile. In the

Figure 1 Pseudocode of the CUDA kernel for the optimized SIMT algorithm.
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alignment matrix, for a specific column, the inner loop
is completed in T iterations by moving SIMD vectors
sequentially through all vector segments of Pr corre-
sponding to this column. For the convenience of discus-
sion, define vecH(i, j), vecE(i, j) and vecF to process the
H, E and F values of the cells corresponding to VSEGi

of Pr, where 1 ≤ i ≤ T, for the j-th column of the align-
ment matrix. Using virtualized SIMD vectors, several
technical issues have to be addressed for this CUDA
algorithm, including saturation algorithmic operations,
shift operations and predicate operations on virtualized
vectors.
Saturation additions and subtractions are required to

calculate alignment scores. Since CUDA-enabled gra-
phics hardware lacks support for these operations, maxi-
mum and minimum operations are used to artificially
implement them. The integer functions max(x, y) and
min(x, y), in the CUDA runtime library, are used to
avoid divergence. Shift operations on vectors are
required both for the inner and lazy-F loops. We imple-
ment these operations using shared memory, where all
threads comprising a virtualized vector writes their ori-
ginal values to a share memory buffer and then reads
their resulting values from the buffer as per the number
of shift elements. Additional file 4 gives the CUDA
pseudocode for shifting a virtualized vector by n ele-
ments to the left. As can be seen from the pseudocode,
one shift operation is time-consuming as compared with
vector register operations in a real SIMD vector archi-
tectures, even though access to shared memory without
bank conflicts has a much lower latency than device
memory [20].
The lazy-F loop requires predicate operations on vir-

tualized vectors when determining whether to continue
or exit the loop by checking vecF against the values of
vecH(i, j). An approach is to use shared memory to simu-
late these operations. Although this approach is effective,
it is inefficient due to the overhead incurred by the
accesses to shared memory. Fortunately, CUDA-enabled
GPU devices with compute capability 1.2 and higher pro-
vide the support for two warp vote functions __all(int)
and __any(int), providing an indispensible capability to
perform fast predicate operations across all threads
within a warp. We use the __all(int) warp vote function
to implement the predicate operations on virtualized vec-
tors for the lazy-F loop.
The striped query profile is stored in texture memory

to exploit the texture cache. Subject sequences and the
query profile are stored using the scalar data type in an
unpacked fashion because the inner loop is a for loop
without manually unrolling. The intermediate element
values of vecH(i, j) and vecE(i, j) are stored in global
memory, with vecF stored in registers, to support long
query sequences. To improve global memory access

efficiency, we use the unsigned half-word data type to
store the H and E values in global memory.

Partitioned vectorized Smith-Waterman algorithm using
CUDA
To gain higher performance, we have investigated a par-
titioned vectorized SW algorithm using CUDA. This
algorithm first divides a query sequence into a series of
non-overlapping, consecutive small partitions as per a
specified partition length (PL), and then aligns the query
sequence to a subject sequence partition by partition.
For the partitioned vectorized algorithm, PL must be a
multiple of VL. The alignment between one partition of
the query sequence and the subject sequence is per-
formed using the basic vectorized algorithm. In this
case, because PL is usually set to be relatively smaller,
shared memory or registers can be used to store the
alignment scores.
In this algorithm, it considers each partition as a new

query sequence and constructs a striped query profile
for each partition. However, this partitioned vectorized
algorithm makes the alignment of one partition depend
on the alignment scores of the previous partition in
the alignment matrix (see Figure 2). More specifically,
the computation of the H and F values of the first row
of one partition depends on the H and F values of the
last row of the previous partition (note that the posi-
tions of the first and the last rows are kept unchanged
for a striped query profile regardless of the specific
values of PL and VL). In this case, after having com-
pleted the computation of one column of a partition,
the H and F values of the last cell in this column have
to be saved for the future use of the next partition. For
performance consideration, instead of directly storing
F value of the last cell of the partition, we store the
F value of the first cell of the next partition, calculated
from the H and F values of the last cell in the current
partition. However, there is a problem with the striped
algorithm in that for a specific column, after exiting
from the lazy-F loop, it makes sure that the H and
E values of all cells are correct, but provides no guar-
antee that vecF stores the correct F value of the last
cell. This is because the lazy-F loop is likely to quit,
with high probability, with no need to re-calculate all
the cell values. Since the H values of all cells in the
last row of the previous partition are always correct,
the correctness of our partitioned vectorized algorithm
will be proved if we could prove that the correctness
of the F values of all cells in the last row of the pre-
vious partition does not affect the correct computation
of F values of all cells in the first row of the current
partition. In the following, we will prove that the
F values of all cells in the first row of the current par-
tition can always be correctly calculated.
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Theorem 1. For the partitioned vectorized SW algo-
rithm, the F values of all cells in the first row of the cur-
rent partition are correctly computed regardless of the
correctness of the F values of all cells in the last row of
its previous partition.
Proof. Taking cells B and C in Figure 2 as an exam-

ple, define CF to denote the F value of C, BH to denote
the H value of B, and BF to denote the F value of B,
where CF = max(BH - r - s, BF - s) according to equa-
tion (1). For the striped SW algorithm, the correctness
of the F value of the last cell for a specific column j in
the alignment matrix depends on two possible
conditions.
Case 1: the lazy-F loop does not stop until the F

values of all cells in column j have been corrected
because the F value of each cell contributes to its H
value. In this case, due to the recalculation of all cells,
vecF stores the correct F value of the last cell. Since
both BH and BF are correct, CF is definitely correctly
calculated.
Case 2: the lazy-F loop stops after some iterations

with no need to recalculate all cells. This means that
the F values of the remaining cells will not contribute
to their corresponding H values, but might not be
equal to their correct F values directly calculated using
equation (1). In this case, because BF - s ≤ BH - r - s,
CF is equal to BH - r - s so that CF has no relationship
to BF.

From the above discussion, a conclusion can be drawn
that CF can always be correctly calculated regardless of
whether BF is correct or not. Therefore, the theorem is
proven.
The partitioned vectorized algorithm stores the values

of vecH and vecE of one column for a partition in regis-
ters to achieve peak performance. Using registers, the
inner loop and the lazy-F loops are manually unrolled
according to the number of vector segments. Since the
computation of the inner loop is fully unrolled, the
access to the striped query profile can be optimized
using the packed data format. Like the optimized SIMT
algorithm, each numerical string Pr of this query profile
is packed and represented using the char4 vector data
type according to the access order of threads comprising
a virtualized vector. However, the subject sequences are
not packed because we failed to find performance
improvement using the packed data format. Figure 3
shows the pseudocode of the CUDA kernel of the parti-
tioned vectorized algorithm.

Results and discussion
We use GCUPS [17] to measure the performance of our
algorithms. In this paper, the execution time t includes the
transfer time of the query sequences from host to GPU,
the calculation time of the SW algorithm, and the time
taken to transfer-back the scores. In addition, when run-
ning on multiple GPUs, t also includes the transfer time of

Figure 2 Alignment matrix of the partitioned vectorized algorithm and data dependencies for H and F vectors.
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database sequences from host memory to GPU, and time
required for creating and destroying the host threads.
The performance of CUDASW++ 2.0 is benchmarked

and analyzed by searching for 20 sequences of length
from 144 to 5,478 against Swiss-Prot release 56.6
(released on Dec. 16, 2008, comprising 146,166,984
amino acids in 405,506 sequences and having the long-
est sequence of 35,213 amino acids). The tests on a sin-
gle GPU are carried out on a GeForce GTX 280 (GTX
280) graphics card, with 30 SMs comprising 240 SPs
and 1 GB RAM, installed in a PC with an AMD
Opteron 248 2.2 GHz processor running the Linux OS.
The multiple GPU tests are carried out on a GeForce
GTX 295 (GTX 295) graphics card with two G200
GPU-chips on a single card, which consists of 480 SPs
(240 SPs per GPU) and 1.8 GB RAM, installed in a PC
with an Intel i7 quad-core 2.67 GHz processor running
the Linux OS. This graphics card has a slightly lower
clock frequencies compared to GTX 280.
The performance of the optimized SIMT algorithm has

no relationship with the substitution matrix and gap
penalties used, whereas the two vectorized algorithms are

sensitive to them. Generally, for a specific substitution
matrix, the higher the gap open and gap extension penal-
ties, the higher the performance. This is because fewer
iterations are needed to recalculate F in the lazy-F loop.
Since the BLOSUM family of substitution matrices, parti-
cularly BLOSUM62, is the de facto standard in protein
database searches and sequence alignments, if not speci-
fied, all the tests in this paper use BLOSUM62 as the sub-
stitution matrix by default. The optimized SIMT
algorithm exploits a gap penalty of 10-2 k, and the two
vectorized algorithms use several different gap penalties to
check the runtime characteristics. For the optimized SIMT
algorithm, maximal performance is achieved for a thread
block size of 256 threads and a grid size equal to 4× the
number of SMs; for the basic vectorized algorithm, maxi-
mal performance is achieved using VL equal to warp size
(i.e. 32) for a thread block of 256 threads and a grid size
equal to 64× the number of SMs; and for the partitioned
vectorized algorithm, maximal performance is achieved
using PL equal to 256 and VL equal to half-warp size (i.e.
16) for a thread block of 192 threads and a grid size equal
to 128× the number of SMs. The basic vectorized

Figure 3 Pseudocode of CUDA kernel of the partitioned vectorized Smith-Waterman algorithm.
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algorithm produces much lower performance than the
partitioned vectorized algorithm for several different gap
penalties. Additional file 5 shows the performance percen-
tage ratio of the basic vectorized algorithm to the parti-
tioned vectorized one for different gap penalties on a
single GPU. Hence, the basic vectorized algorithm is
excluded from the release of CUDASW++ 2.0.
The optimized SIMT algorithm achieves an average

performance of 16.5 (27.2) GCUPS with a highest of
16.9 (28.8) GCUPS on GTX 280 (GTX 295). The parti-
tioned vectorized algorithm achieved an average per-
formance of 15.3 (22.9) GCUPS with a highest of 16.3
(27.0) GCUPS using a gap penalty of 10-2 k; an aver-
age performance of 16.3 (24.8) GCUPS with a highest
of 17.6 (29.6) GCUPS using a gap penalty of 20-2 k;
and an average performance of 16.8 (26.2) GCUPS
with a highest of 17.8 (29.7) GCUPS using a gap pen-
alty of 40-3 k on GTX 280 (GTX 295). The runtime
(in seconds) and GCUPS of the optimized SIMT and
partitioned vectorized algorithms on GTX 280 and
GTX 295 is shown in Tables 1 and 2, respectively.
From the tables, it can be seen that the optimized
SIMT algorithm produces reasonably stable perfor-
mance, while the performance of the partitioned vec-
torized algorithm shows some small fluctuations
around the average performance, increasing with the

increase of the gap open and gap extension penalties.
On GTX 280, the optimized SIMT algorithm slightly
outperforms the partitioned vectorized algorithm using
a gap penalty of 10-2 k, has nearly the same perfor-
mance with the latter using a gap penalty of 20-2 k,
but is slightly outperformed when using a gap penalty
of 40-3 k. On GTX 295, the optimized SIMT algo-
rithm has a slightly higher average performance than
the partitioned vectorized algorithm using any of the
three gap penalties, but has a lower highest perfor-
mance when using gap penalties of 20-2 k and 40-3 k.
This indicates that these two algorithms have remark-
ably similar performance characteristics.
We next compare CUDASW++ 2.0 to CUDASW++

1.0. CUDASW++ 1.0 is re-benchmarked on the same
platforms as used for CUDASW++ 2.0. Since the perfor-
mance of CUDASW++ 1.0 is not affected by the choice
of substitution matrix and gap penalty, we use
BLOSUM62 with a gap penalty of 10-2 k for all tests.
Figure 4 and Figure 5 show the performance compari-
son between CUDASW++ 1.0 and CUDASW++ 2.0 on
GTX 280 and GTX 295, respectively. On average, com-
pared to CUDASW++ 1.0, the optimized SIMT algo-
rithm runs about 1.74 (1.72) times faster on GTX 280
(GTX 295); the partitioned vectorized algorithm runs
about 1.58 (1.45) times faster using a gap penalty of

Table 1 Performance evaluation of the optimized SIMT and partitioned vectorized algorithms on GTX 280

Query Sequences Partitioned SIMT

10-2 k 20-2 k 40-3 k 10-2 k

Query Length Time GCUPS Time GCUPS Time GCUPS Time GCUPS

P02232 144 1.58 13.3 1.41 14.9 1.40 15.0 1.38 15.2

P05013 189 1.80 15.4 1.66 16.7 1.65 16.8 1.75 15.8

P14942 222 2.01 16.1 1.84 17.6 1.82 17.8 2.00 16.2

P07327 375 3.97 13.8 3.64 15.1 3.51 15.6 3.35 16.4

P01008 464 4.57 14.8 4.20 16.1 4.03 16.8 4.05 16.7

P03435 567 5.87 14.1 5.38 15.4 5.28 15.7 4.94 16.4

P42357 657 6.64 14.5 6.16 15.6 5.97 16.1 5.00 16.6

P21177 729 6.92 15.4 6.40 16.6 6.24 17.1 5.77 16.6

Q38941 850 7.98 15.6 7.37 16.9 7.35 16.9 6.35 16.8

P27895 1000 10.27 14.2 9.29 15.7 8.74 16.7 7.44 16.7

P07756 1500 15.07 14.5 14.08 15.6 13.43 16.3 8.64 16.9

P04775 2005 19.30 15.2 18.05 16.2 17.36 16.9 13.04 16.8

P19096 2504 22.89 16.0 21.49 17.0 21.19 17.3 17.50 16.7

P28167 3005 28.54 15.4 26.08 16.8 25.53 17.2 21.89 16.7

P0C6B8 3564 32.44 16.1 30.56 17.0 29.60 17.6 26.41 16.6

P20930 4061 40.47 14.7 36.07 16.5 34.31 17.3 31.35 16.6

P08519 4548 42.41 15.7 39.89 16.7 38.86 17.1 35.84 16.6

Q7TMA5 4743 42.44 16.3 39.36 17.6 39.30 17.6 40.18 16.5

P33450 5147 50.91 14.8 47.74 15.8 44.20 17.0 41.92 16.5

Q9UKN1 5478 55.46 14.4 49.49 16.2 46.66 17.2 45.62 16.5
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10-2 k, about 1.72 (1.57) times faster using a gap penalty
of 20-2 k, and about 1.77 (1.66) times faster using a gap
penalty of 40-3 k on GTX 280 (GTX 295). Hence,
CUDASW++ 2.0 obtains significant performance
improvement over CUDASW++ 1.0 using either the
optimized SIMT or the partitioned vectorized algo-
rithms running on the same platforms.
We decided not to include comparisons with the follow-

ing publicly available SW implementations: SWPS3, SW-

CUDA, and CBESW, as CUDASW++ 1.0 significantly out-
performs them. Now, we compare the performance
between CUDASW++ 2.0 and NCBI-BLAST (version
2.2.22+). NCBI-BLAST is re-benchmarked on the above
PC with an Intel i7 quad-core processor. The substitution
matrices BLOSUM62 with a gap penalty of 10-2 k and
BLOSUM50 with a gap penalty of 10-3 k are used for the
tests. All the other parameters are used by default. To
demonstrate the power of CUDASW++ 2.0 for long query

Table 2 Performance evaluation of the optimized SIMT and partitioned vectorized algorithms on GTX 295

Query Sequences Partitioned SIMT

10-2 k 20-2 k 40-3 k 10-2 k

Query Length Time GCUPS Time GCUPS Time GCUPS Time GCUPS

P02232 144 1.19 17.7 1.13 18.7 1.09 19.4 1.02 20.7

P05013 189 1.34 20.7 1.30 21.4 1.26 22.1 1.25 22.3

P14942 222 1.49 22.0 1.41 23.1 1.38 23.7 1.37 23.8

P07327 375 2.77 19.9 2.58 21.4 2.42 22.8 2.15 25.7

P01008 464 3.04 22.4 2.82 24.2 2.66 25.6 2.54 26.8

P03435 567 3.93 21.2 3.61 23.1 3.49 23.9 3.11 26.8

P42357 657 4.29 22.5 4.02 24.0 3.87 25.0 3.56 27.1

P21177 729 4.53 23.7 4.22 25.4 4.04 26.5 3.90 27.5

Q38941 850 5.03 24.9 4.66 26.8 4.63 27.0 4.53 27.6

P27895 1000 6.58 22.3 5.87 25.1 5.38 27.3 5.21 28.2

P07756 1500 9.86 22.4 9.19 24.0 8.58 25.7 7.72 28.6

P04775 2005 12.26 24.1 11.32 26.0 10.79 27.3 10.26 28.7

P19096 2504 14.32 25.7 13.34 27.6 12.99 28.4 12.79 28.8

P28167 3005 18.31 24.1 16.46 26.9 15.56 28.4 15.33 28.8

P0C6B8 3564 21.09 24.9 19.34 27.1 17.99 29.1 18.20 28.8

P20930 4061 26.75 22.3 23.35 25.6 20.76 28.8 20.77 28.8

P08519 4548 27.36 24.4 25.11 26.6 23.92 28.0 23.24 28.8

Q7TMA5 4743 25.86 27.0 23.57 29.6 23.51 29.7 24.24 28.8

P33450 5147 32.69 23.2 30.57 24.8 27.37 27.7 26.33 28.7

Q9UKN1 5478 36.61 22.0 32.40 24.9 28.88 27.9 28.05 28.7

Figure 4 Performance comparison between CUDASW++ 1.0 and CUDASW++ 2.0 on GTX 280.
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sequences, we build a subset of Swiss-Prot release 56.6
database, which contains all the sequences of lengths ≥
2000 in the database. This subset comprises 5,670,072
amino acids in 1,875 sequences. Performance is compared
by searching all sequences in this subset against the Swiss-
Prot database. As mentioned above that the performance
of CUDASW++ 1.0 and the optimized SIMT algorithm of
CUDASW++ 2.0 has no relationship with the substitution
matrix and gap penalties used, we just test them using
BLOSUM62 with a gap penalty of 10-2 k. Table 3
shows the runtime (in hours) and average GCUPS of
CUDASW++ 1.0, CUDASW++ 2.0 and NCBI-BLAST,
where CUDASW++ 1.0 and 2.0 are benchmarked on GTX
295. From the table, CUDASW++ 2.0 using the optimized
SIMT algorithm produces the best performance, taking
8.00 hours to complete the searching and achieving an
average of 28.8 GCUPS. NCBI-BLAST using BLOSUM50
and a gap penalty of 10-3 k produces the worst perfor-
mance, taking up to 51.45 hours and achieving only an
average of 4.5 GCUPS. Even though the partitioned vec-
torized algorithm gives lower performance than the opti-
mized SIMT algorithm due to the use of smaller gap

penalties, it still significantly outperforms CUDASW++
1.0 and NCBI-BLAST that uses BLOSUM50 and a gap
penalty of 10-3 k. Hence, the overall performance of
CUDASW++ 2.0 is significantly better as compared with
CUDASW++ 1.0 and NCBI-BLAST.

Conclusions
In this paper, we have presented our new contributions
to SW database searches using CUDA, through the lat-
est release of the CUDASW++ 2.0 software targeted for
CUDA-enabled GPUs with compute capability 1.2 and
higher. An optimized SIMT SW algorithm is suggested
to further optimize the performance of CUDASW++ 1.0
based on the SIMT abstraction of CUDA-enabled
GPUs. For the first time we have investigated a parti-
tioned vectorized SW algorithm using CUDA based on
the virtualized SIMD abstraction of CUDA-enabled
GPUs. This virtualized SIMD vector programming
model provides guidance for designing other bioinfor-
matics algorithms, such as pairwise distance computa-
tion in ClustalW [21,22], using SIMD vectorization for
CUDA-enabled GPUs. The optimized SIMT and the
partitioned vectorized algorithms have remarkably simi-
lar performance characteristics when benchmarked by
searching the Swiss-Prot release 56.6 database with
query sequences of length varying from 144 to 5,478.
The optimized SIMT algorithm produces reasonably
stable performance, while the partitioned vectorized
algorithm has some small fluctuations around the aver-
age performance for a specific gap penalty, increasing
with the increase of the gap open and gap extension
penalties. CUDASW++ 2.0 provides direct support for
multiple GPU devices installed in a single host. It
obtains significant performance improvement over
CUDASW++ 1.0 using either the optimized SIMT

Figure 5 Performance comparison between CUDASW++ 1.0 and CUDASW++ 2.0 on GTX 295.

Table 3 Performance comparison between CUDASW++
1.0, CUDASW++ 2.0 and NCBI-BLAST

Software Performance

Time(h) GCUPS

Optimized SIMT (BL62, 10-2 k) 8.00 28.8

Partitioned (BL62, 10-2 k) 11.15 20.7

Partitioned (BL50, 10-3 k) 11.71 19.7

NCBI-BLAST(BL62, 10-2 k) 9.56 24.1

NCBI-BLAST(BL50, 10-3 k) 51.45 4.5

CUDASW++ 1.0 (BL62, 10-2 k) 14.12 16.3
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algorithm or the partitioned vectorized algorithm on the
same platform, achieving a highest performance of up to
17 (30) GCUPS on GTX 280 (GTX 295).
Even though the optimal alignment scores of the SW

algorithm can be used to detect related sequences, the
scores are biased by sequence length and composition.
The Z-value [23-25] has been proposed to estimate the
statistical significance of these scores. However, the
computation of Z-value requires the calculating of a
large set of pairwise alignments between random per-
mutations of the sequences compared, which is highly
time-consuming. The acceleration of Z-value computa-
tion with CUDA is therefore part of our future work.

Availability and requirements
• Project name: CUDASW++
• Project home page: http://cudasw.sourceforge.net/
• Operating System: Linux
• Programming language: CUDA and C++
• Other requirements: CUDA SDK and Toolkits 2.0
or higher; CUDA-enabled GPUs with compute cap-
ability 1.2 and higher
• License: none

List of abbreviations
CPU: Central Processing Unit; CUDA: Compute Unified
Device Architecture; Cell/BE: Cell Broadband Engine
Architecture; FPGA: Field-Programmable Gate Array;
GCPUS: Billion Cell Updates per Second; GPU: Graphics
Processing Unit; GTX 280: NVIDIA GeForce GTX 280;
GTX 295: NVIDIA GeForce GTX 295; OpenGL: Open
Graphics Library; OS: Operating System; PBSM: Per-block
Shared Memory; PC: Personal Computer; RAM: Random
Access Memory; SIMD: Single Instruction Multiple Data;
SIMT: Single-instruction, Multiple-thread; SM: Streaming
Multiprocessor; SP: Scalar Processor; SSE2: Streaming
SIMD Extensions 2; SW: Smith-Waterman.

Additional file 1: Data dependencies in the Smith-Waterman
alignment matrix. This figure demonstrates the data dependencies in
the alignment matrix for the Smith-Waterman algorithm.

Additional file 2: An example query profile using sequential layout.
This figure demonstrates an example query profile using sequential
layout.

Additional file 3: An example query profile using striped layout.
This figure demonstrates an example query profile using striped layout,
where VL = 4 and T = 4.

Additional file 4: CUDA pseudocode of shifting a virtualized vector
by n elements to the left. This figure demonstrates an example CUDA
pseudocode of shifting a virtualized vector by n elements to the left.

Additional file 5: Performance percentage ratio of the basic
vectorized algorithm to the partitioned vectorized one. This figure
demonstrates the performance percentage ratio of the basic vectorized
algorithm to the partitioned vectorized one on a single GPU.
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