
RESEARCH ARTICLE Open Access

Towards classifying species in systems biology
papers using text mining
Qi Wei1, Nigel Collier1,2*

Abstract

Background: In recent years high throughput methods have led to a massive expansion in the free text literature
on molecular biology. Automated text mining has developed as an application technology for formalizing this
wealth of published results into structured database entries. However, database curation as a task is still largely
done by hand, and although there have been many studies on automated approaches, problems remain in how
to classify documents into top-level categories based on the type of organism being investigated. Here we present
a comparative analysis of state of the art supervised models that are used to classify both abstracts and full text
articles for three model organisms.

Results: Ablation experiments were conducted on a large gold standard corpus of 10,000 abstracts and full papers
containing data on three model organisms (fly, mouse and yeast). Among the eight learner models tested, the
best model achieved an F-score of 97.1% for fly, 88.6% for mouse and 85.5% for yeast using a variety of features
that included gene name, organism frequency, MeSH headings and term-species associations. We noted that term-
species associations were particularly effective in improving classification performance. The benefit of using full text
articles over abstracts was consistently observed across all three organisms.

Conclusions: By comparing various learner algorithms and features we presented an optimized system that
automatically detects the major focus organism in full text articles for fly, mouse and yeast. We believe the method
will be extensible to other organism types.

Background
In recent years high throughput methods have led to a
massive expansion in the free text literature on molecu-
lar biology. Automated text mining has developed as an
application technology for formalizing this wealth of
results into structured database entries. As has been
well reported, unstructured knowledge in free texts is
inconvenient and hard to share, organize, and acquire.
The use of databases as stores of knowledge has made it
much easier for biologists and other life scientists to
keep up to date with new discoveries. Yeh et al. [1] out-
line two purposes for databases. The first one is as a
place for experts to consolidate data, often including
DNA sequence information, about a single organism or
a single class of organisms. The second is to make the
information searchable by using a variety of automated

techniques. Biological experiments are yielding more
and more results that can be formalized by registering
them in databases such as MGD (Mouse Genome Data-
base) [2], FlyBase [3], DictyDb [4], and Wormpep [5].
The curation of literature in databases is a skilled
human task that ensures the data stored in them accu-
rately reflects scientific fact. In particular, database cura-
tion in the life sciences helps to ensure data quality to
enable quick access to the latest experimental results.
The bottleneck is that curation is a time-consuming
task requiring a high degree of skill. For example, MGD
curators have to ensure that the stored publication data
can be used to validate expressions of genes under cer-
tain conditions. In this paper we present a method of
text classification to support database curators in the
initial stages of their work by selecting full articles
according to the main focus species. The value in this
study is to present experimental evidence on the best
models and features for this purpose.
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In recognition of the growing importance of database
curation a number of communities have become estab-
lished to support development of gold-standard shared
tasks. The Knowledge Discovery and Data Mining
(KDD) Challenge CUP task in 2002 [1] focused on auto-
mating the work of curating Flybase, by identifying
papers on the topic of gene expression in drosophila.
The goal of the BioCreative [6] challenge was to pose
tasks that would result in scalable systems for use by
biology researchers and end users such as annotation
database curators. BioCreative tried to address the data-
base curation task by challenging participants to identify
papers according to the evidence they contained for
assigning GO codes to human proteins. The highest
achieved F-score was 81% for human in BioCreative II
reflecting the fact that this task still remains a very chal-
lenging one. The TREC Genomics [7] track featured a
text categorization task in 2005 and 2006 with the best
system achieving an F-score of 58.7%. Documents were
classified according to how their content could be of
help in assigning GO annotations to mouse genes.
Despite the relative successes of the above studies, a

fundamental problem remains: how to classify texts into
different types of model organism efficiently. In this
paper, we present a system to classify full journal papers
according to the main organism used in the experiment.
A few previous studies such as Lin 2009 [8] have indi-
cated the benefits of using full papers over abstracts for
information extraction tasks; our experiments provide
additional evidence to support this. Additionally we show
the advantage of using species-gene association features
with classification performance improving by 10%.
Text classification of full papers aims at automatically

determining whether a paper belongs to one or more
specific topic categories based on the contents described
in the document. A species classification system would
be especially valuable to database curators whose job is
to review many documents and collect those containing
certain experimental results pertaining to a specific
organism. In earlier work, Liu and Wu (2004) [9] stu-
died text classification for four organisms (fly, mouse,
yeast and worm) using Medline abstracts, where the
dataset had low levels of ambiguity between organisms
(1%). They showed a best F-score around 94.1%. Rinaldi
et al. [10] showed that in the BioCreative II corpus, the
major organisms mentioned in full texts were humans
(56.3%), mice (9.3%), yeast (6.5%) and C. elegans (6%).
They devised a system that extracted a ranked list of
species for each full paper texts and showed that such a
list was good for disambiguation; the number of possible
gene references was reduced to 45012 (p = 0.0308, r =
0.5763) from the initial annotation step 283556 (p =
0.0072, r = 0.7469). Wang and Matthews [11] created a
rule-based system that used a combination of species

name and gene name in the same sentence. They
showed an 11.6 point improvement in F-score in classi-
fication by combining the rule-based system to the max-
ent classifiers. In our experiments, we explored similar
features as a baseline and expand the investigation to
include several new feature types such as species-gene
proximity and species weight on eight learner models.
Many researchers consider text classification to be the

first step in database curation. Yeh et al. [1] classified
papers from the FlyBase dataset and determined
whether the paper should be curated or not on the basis
of the presence of experimental evidence for fly gene
products, achieving a highest performance level of 76%
using an information extraction approach with manually
constructed rules. Donaldson et al. [12] used a support
vector machine trained on the words in Medline
abstracts to distinguish abstracts containing information
on protein-protein interactions to help in curation of
the BIND database; they got an F-score of 92%.
In our experiments reported below, we focus on clas-

sifying documents for three different organisms: fly,
mouse and yeast. We believe this study contributes to
the work on biological text classification and database
curation and will aid in the task of gene name
disambiguation.

Methods
Dataset
The dataset we employ was based on the BioCreative I
task 1B corpus which was manually selected from three
model organism databases: Fly [3] (Drosophila melano-
gaster), Mouse [2] (Saccharomyces cerevisiae), Yeast [13]
(Mus musculus). PubMed IDs were selected from the
databases and Medline abstracts were selected according
to these PubMed identifiers to make up the BioCreative
I task 1B corpus. There are 4 gene mentions in each
abstract on average. We manually collected the corre-
sponding full papers for the abstracts from PubMed and
Google search. The final corpus contained 3761, 3572,
3725 papers for fly, yeast and mouse respectively.

Work flow
The workflow for the experiment is shown in Figure 1.
(1) Documents were cleaned and saved in a standard
format; (2) Documents were then classified using a rule-
based classification model. The purpose of this step was
to choose the easiest cases in the dataset and classify
them first. The heuristic rule was simple: if a title con-
tained only one organism mention then the text was
tagged according to that organism. In this way 5% of
documents were classified, and the remaining docu-
ments were resolved in the following steps; (3) AbGene
[14] was used to annotate the gene names in each docu-
ment and which part of the document should be used
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was determined by using a content selection model.
One-hundred articles with similar structures (abstract,
introduction, result, experiment, discussion, and conclu-
sion) were selected manually and a gene-section distri-
bution for these 100 articles was created. Based on this
analysis the abstract, introduction, result and conclusion
sections were selected, and other sections were
excluded. If an article contained no significant sub-title
to show these four sections, the gene distribution was
counted and compared to the gold-standard gene distri-
bution and the four sections were selected according to
the similarity calculation. Gene names were selected as
features. (4) Additional features such as title and journal
name were then added; (5) Eight supervised models
were used to classify the documents. In this step, the
data remaining undecided from step (2) were used. We
then analyzed the model’s performance using ablation
experiments on various combinations of features.

Models
In our experiments, we compared eight supervised clas-
sification methods: Naïve Bayes, Conditional Random
Fields, support vector machines (SVMs), Decision table,
Decision trees, Logistics Regression as well as Adaboost
and Bagging on the best performing models.

The Naïve Bayes model is a simple probabilistic classi-
fier based on Bayes’s theorem with strong independence
assumptions that is widely used in text classification.
The Naïve Bayes implementation we used was included
in the Weka toolkit [15], default parameters were used
for training.
Conditional random fields (CRF) [16] is a discrimina-

tive probabilistic framework that is used for labelling
and segmenting sequential data. A CRF is an undirected
graphical model that defines a single log-linear distribu-
tion over labelled sequences given a particular observa-
tion sequence. Recently Hirohata et al. [17] showed
success in applying CRF for a document classification
task. We applied the same broad methodology as Hiro-
hata et al. in our implementation. We formulated the
document classification task as a sequence labelling task
by firstly labelling each document section with its focus
species and then labelling the focus species for the
whole document based on the sequence of section
labels. The CRF++ toolkit [18] was used. The hyper-
parameter to set the trade-off between over-fitting and
under-fitting was set at 10. Default values were used for
the other parameters.
SVMs were introduced by Vapnik [19] in 1995 as a

learning system that uses a hypothesis space of linear

Figure 1 Experimental workflow.
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functions in a high dimensional feature space, trained
with a learning algorithm from optimization theory that
implements a learning bias derived from statistical
learning theory.
Boosting [20] and bagging [21] are generic methods

aimed at aggregating classifiers for improved prediction
performance using sample weighting and re-sampling
respectively on the original training data. Both techni-
ques can be applied to a variety of base learners and
have been shown to give substantial gains in accuracy
for classification tasks. In our experiments Naive Bayes
was chosen as the base learner for its high level of per-
formance in the stand alone task.
Decision tables [22] contains two major components, a

list of attributes and a set of labelled instances on those
attributes. Labelling is done by default on majority class
matching and then by arbitrary tie breaking and
attribute elimination. They have a close relation to rule-
based knowledge bases. Decision trees [23] are poten-
tially powerful predictors and explicitly represent the
structure of a rule set in tree form with leaf nodes func-
tioning as classification decisions and transitions along
branches taking place according to attribute values.
Logistic regress [24] is a popular discriminative classifier
for modelling binary data. In our experiment, AdaBoost,
Bagging, Decision tables, Decision trees and Logistic
regress were implemented from the Weka toolkit.
For the named entity recogniser, AbGene was used to

annotate the gene names in the document. AbGene [25]
was pre-trained on annotated Medline abstracts with a
reported F-score of 98%. Tanabe [14] showed that it is
possible to use AbGene on full text articles from
PubMed Central (PMC) with a reduced level of perfor-
mance at 72.6% precision and 66.7% recall. Since our
abstracts were selected from Medline and the full text
was selected from PMC and Google search, we can
expect broadly similar levels of performance with this
earlier experiment.

Features
The experiment tested several linguistic features which
we describe in detail below:
(1) GN: Gene name terms
Following gene name annotation with AbGene, genes

were listed according to their frequency in the docu-
ment and the top n genes were selected as features to
train the model. Here, n is a fixed number decided
before the experiment. We varied n from 1 to 100 in
preliminary experiments, with the results indicating that
the larger n was, the better the results were. As n > 100
was difficult to handle using our CRF software due to
machine memory limitations, n = 100 was used in the
experiment.
(2) OF: Organism frequency

Organism name mentions were used as a reference for
classifying the text into different model organisms. The
organism names included not only mice, fly and yeast
but also synonym words such as mouse, drosophila, and
saccharomyces. This list was compiled by hand accord-
ing to the NCBI taxonomy.
(3) MH: MeSH headings
Bloehdorn and Hotho [26] report that MeSH headings

improved the accuracy of classification by 3% to 5%. We
therefore selected the three frequently mentioned MeSH
headings for each based on frequency in the training
data.
(4) DT: Document title terms
Some of the document titles contained organism name

mentions and gene name mentions which were then
used as features in the rule classification model and
NLP classification model.
(5) TS: Term-species
If one sentence contained a gene name and a species

name, the weight of the species name was counted by
using the distance between the species name and gene
name. The total weight was tallied for each article, and
the weight of the species name was used as a feature.
(6) JN: Journal Name
This was the name of the journal in which the

abstract or article was published.
(7) NT: Number of terms
First, gene list was extracted from the training corpus

and sorted by the frequency of the gene. Then the num-
ber of genes in the top-100 frequent gene list was
counted.
(8) AGN: Additional gene name terms
When there was a gene-species pair in one sentence,

the gene name and species name was used to find an
additional gene name in UniProt. For example, there
was a gene named “IL2”, by looking up in UniProt, the
additional gene name was “Interleukin”.

Evaluation metrics
We consider a binary label where one entity can be
either positive (+) or negative (-). In Table 1, the label
stands for its gold standard label, and the assignment
stands for the label given by the model. TP stands for
true positive, TN stands for true negative, FP stands for
false positive, and FN stands for false negative. Standard
evaluation measures are defined on the basis of these
labels as follows:

Table 1 Scoring Matrix

Assignment

+ -

Gold standard + TP FN

- FP TN
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1. Precision P = TP/(TP+FP)
2. Recall: R = TP/(TP+FN)
3. F-score F = (2PR)/(P+R)

Results
Experiment one: Comparison on different learner models
In the first experiment, eight different models were
selected: Naïve Bayes, AdaBoost, Bagging, Decision
table, Decision tree, Logistics Regression, CRF and
SVMs. Table 2 compares the 10-fold cross evaluation of
the different models. NB had the highest F-score (84.8%
for fly, 73.9% for mouse and 73.8% for yeast), and CRF
had the second highest (80.2% for fly, 73.0% for mouse
and 72.3% for yeast). AdaBoost and Bagging both used
Naïve Bayes as the base learner, but we did not observe
a significant improvement when using the basic feature
set. Logistics Regress performed well on fly (79.6%) but
not so well on the other two species. SVMs gave high
precision but low recall in fly and yeast; high recall but
low precision in mouse.
The model comparison used only the basic feature set

(MeSH headings, journal name, gene name, and article

title). We also did feature analysis on MeSH headings
and journal name in this experiment. The analysis
showed that by using MeSH headings as a feature, a 2%
improvement in F-score was achieved by using Naïve
Bayes and CRFs. The journal name feature improved
the F-score by 1% by using Naïve Bayes and CRFs.

Experiment two: Comparison of different feature sets
NB and CRF were selected as the two best performing
models from Experiment one. This time we used an
extended set of features that included TS (term-species)
and OF (organism frequency) in 10-fold cross evaluation
experiments. The best performing combination achieved
an average F-score of 90.7%. As shown in Table 3, classifi-
cation for fly achieved the best among the three kinds of
organisms (97.1%) followed by mouse (88.6%) and yeast
(85.5%). We considered that the reason for this is that for
fly focussed experimental papers, the gene-species pairing
gave a clear signal, whereas in mouse the organism was
often considered as the experiment model for human so
the gene-species pair and organism frequency became
highly ambiguous. In yeast the species name of yeast was

Table 2 Result of experiment one: comparison of different models

F1 F1-JN F1-MH

P R F P R F P R F

fly 0.780 0.929 0.848 0.685 0.890 0.777 0.530 0.808 0.640

NB mouse 0.810 0.680 0.739 0.697 0.620 0.656 0.683 0.410 0.776

yeast 0.750 0.727 0.738 0.646 0.515 0.573 0.747 0.657 0.828

fly 0.780 0.929 0.848 0.659 0.899 0.761 0.638 0.677 0.657

AdaBoost mouse 0.810 0.680 0.739 0.697 0.620 0.656 0.696 0.550 0.615

yeast 0.750 0.727 0.738 0.649 0.485 0.555 0.640 0.737 0.685

fly 0.791 0.919 0.850 0.729 0.869 0.793 0.606 0.838 0.703

Bagging mouse 0.788 0.670 0.724 0.670 0.670 0.670 0.831 0.490 0.616

yeast 0.768 0.768 0.765 0.638 0.515 0.570 0.696 0.717 0.706

fly 0.532 0.667 0.592 0.556 0.354 0.432 0.532 0.667 0.592

Decision Table mouse 0.515 0.520 0.517 0.388 0.870 0.537 0.515 0.520 0.517

yeast 0.740 0.545 0.628 0.727 0.081 0.145 0.740 0.545 0.628

fly 0.637 0.798 0.709 0.500 0.687 0.579 0.341 0.606 0.436

Decision tree mouse 0.557 0.640 0.595 0.500 0.550 0.524 0.339 0.400 0.367

yeast 0.729 0.434 0.544 0.596 0.313 0.411 1.000 0.040 0.078

fly 0.878 0.727 0.796 0.932 0.697 0.798 0.663 0.576 0.603

Logistics Regression mouse 0.586 0.750 0.658 0.721 0.490 0.583 0.541 0.730 0.621

yeast 0.705 0.626 0.663 0.513 0.808 0.627 0.740 0.545 0.628

fly 0.762 0.868 0.802 0.688 0.879 0.764 0.503 0.830 0.621

CRF mouse 0.789 0.700 0.730 0.725 0.640 0.669 0.766 0.390 0.511

yeast 0.734 0.725 0.723 0.652 0.566 0.598 0.744 0.650 0.685

fly 0.925 0.641 0.757 0.619 0.684 0.650 0.200 0.240 0.217

SVM mouse 0.403 1.000 0.574 0.309 0.406 0.351 0.250 0.147 0.185

yeast 0.636 0.194 0.297 0.400 0.207 0.273 0.356 1.000 0.525

F1: basic features used to train the model were GN, MH, DT, and JN.

F1-JN: the features used were GN, MH and DT.

F1-MH: the features used were GN, DT, and JN.
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rarely mentioned in the paper. The most significant result
was that by using TS, OF and AGN features; an improve-
ment of 10% was achieved.

Experiment three: Comparison on full texts and abstracts
Large-scale collections of abstracts are often used in life
science classification experiments, whereas full text arti-
cles are rarely used due to difficulties in sourcing them
from publishers and converting them into plain text for-
mat. This trend is now changing due to the availability
of open source publications. However, the highly
detailed experimental information contained in full text
papers reveals new challenges for biomedical document
classification. For example, Tanabe [14] showed that
entities like restriction enzyme sites, laboratory protocol
kits, primers, vectors, molecular biology supply compa-
nies, and chemical reagents are rarely mentioned in
abstracts, but plentiful in the methods section of the full
article. Their appearance adds to the previously men-
tioned morphological, syntactic and semantic ambigu-
ities. To mitigate this issue, content selection was
applied to filter data in the full articles according to sec-
tions. Secondly, the full text, especially the Method and
Introduction sections, contain larger numbers of asso-
ciated gene/protein mentions in comparison with the
abstracts. Again, this can be partially mitigated by con-
tent selection.
On the other hand, there are also some advantages to

using full texts over abstracts. Potential redundancy of
information allows models with lower levels of recall to
have several chances to discover reported facts such as
the species-gene/protein features that we observed to be
highly valuable when making decisions about focus
species.

To confirm the value of using full texts we compared
classification performance of the full texts from our cor-
pus of abstracts to the original abstracts. The compari-
son is shown in Table 4. We performed a two tailed
paired sample t-test to show that there is an improve-
ment of 11 points in F-score. In these experiments 10 ×
10 cross validation was used in conjunction with two-
tailed corrected resample t-test (p < 0.001) as presented
by Bouckaert and Frank 2004 [27].

Discussion
Content selection
As discussed above, one difficulty for focus species clas-
sification on full text articles is that of content selection.
Deciding which part of the document is the most valu-
able and developing a strategy to select it is quite a diffi-
cult issue given that documents in our collection come
from different journals which have different section
structures. As a proxy for explicit section headings we
decided to use the gene mention distribution as a clue
for partitioning the full text papers. However, this
approach proven weak in cases where the test document

Table 3 Result of experiment two: comparison of different feature sets

F1 F1+TS F1+OF

P R F P R F P R F

fly 0.78 0.929 0.848 0.97 0.97 0.97 0.792 0.931 0.856

NB mouse 0.81 0.68 0.739 0.826 0.95 0.884 0.821 0.685 0.747

yeast 0.75 0.727 0.738 0.929 0.788 0.852 0.762 0.731 0.746

fly 0.762 0.868 0.802 0.965 0.952 0.958 0.771 0.87 0.818

CRF mouse 0.789 0.7 0.73 0.814 0.878 0.845 0.791 0.71 0.748

yeast 0.734 0.725 0.723 0.902 0.786 0.84 0.739 0.73 0.734

F1+NT F1+ADN F1+TS+OF+NT+ADN

P R F P R F P R F

fly 0.775 0.825 0.799 0.812 0.931 0.867 0.971 0.972 0.971

NB mouse 0.823 0.621 0.708 0.823 0.712 0.763 0.827 0.953 0.886

yeast 0.752 0.723 0.737 0.786 0.987 0.875 0.931 0.791 0.855

fly 0.753 0.877 0.81 0.773 0.887 0.826 0.966 0.954 0.96

CRF mouse 0.865 0.698 0.773 0.792 0.714 0.751 0.817 0.878 0.846

yeast 0.729 0.727 0.728 0.762 0.751 0.756 0.901 0.788 0.841

F1: basic features used to train the model were GN, MH, DT, JN.

Table 4 Comparison of full papers and abstracts

full text(F1+TS+RN+NT
+AND)

abstract (F1+TS+RN+NT
+AND)

P R F P R F

Fly 0.971 0.972 0.971 0.812 0.892 0.850

NB Mouse 0.827 0.953 0.886 0.755 0.763 0.759

Yeast 0.931 0.791 0.855 0.791 0.748 0.769

fly 0.966 0.954 0.960 0.820 0.898 0.857

CRF mouse 0.817 0.878 0.846 0.732 0.741 0.736

yeast 0.901 0.788 0.841 0.757 0.750 0.753
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contained more sections than the standard one (four
sections mentioned in the methods). During analysis we
found that using such section selections showed no
improvement in F-score.

Feature selection
Another challenge was feature selection. Rinaldi et al.
[10] used the species name appearing in a document as
a clue to find the correct topic organism. Our experi-
ment built on Rinaldi’s findings in that not only did it
use the species word itself as a feature, it also used spe-
cies-gene pairs appearing together in one sentence and
weighted the species according to the distance between
the gene and species. Doing so improved the average
F-score by 12% compared to that for the basic feature
set. Compared with Rinaldi’s work, our approach
showed an average 3% improvement in the F-score.

Difficult case: multi-species mentioned in one paper
Although many researchers have focused on text classi-
fication in biology, their experiments have mainly been
targeted at extracting information about single organ-
isms. Considering the task in the real world; texts are
often not clean data on specific organisms.
The most difficult cases we encountered were when

the text contained multiple species names. As the
abstract below (PMID: 11018518) illustrates, four kinds
of species were mentioned: fly (Drosophila melanoga-
ster), mouse, zebrafish and silkworm (Bombyx mori).

Coatomer is a major component of COPI vesicles and
consists of seven subunits. The gamma-COP subunit
of the coatomer is believed to mediate the binding to
the cytoplasmic dilysine motifs of membrane proteins.
We characterized cDNAs for Copg genes encoding
gamma-COP from mouse, zebrafish, Drosophila mel-
anogaster and Bombyx mori. Two copies of Copg
genes are present in vertebrates and in B. mori. Phy-
logenetic analysis revealed that two paralogous genes
had been derived from a single ancestral gene by
duplication independently in vertebrates and in
B. mori. Mouse Copg1 showed ubiquitous expression
with the highest level in testis. Zebrafish copg2 was
biallelically expressed in hybrid larvae in contrast to
its mammalian ortholog expressed in a parent-of-
origin-specific manner. A phylogenetic analysis with
partial plant cDNA sequences suggested that copg
gene was also duplicated in the grass family
(Poaceae).

This is a special case, but approximately 5% of articles
in our collection reported multiple species. In the future
we will need to consider how to handle these special
cases more efficiently.

Conclusion
In this paper, we presented a system that automatically
categorizes full text documents into three organism
categories: mouse, fly and yeast. Eight different models
were compared and different feature sets were tested in
the experiment indicating the key importance of the
term-species distance feature we introduced. We also
compared full texts and abstracts and showed the bene-
fit of full texts in this task. Although the experiment
was undertaken on only three focus species, we believe
the methods employed will be extensible to other
organisms.
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