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Abstract

Background: Culex quinquefasciatus (Say) is a major species in the Culex pipiens complex and an important vector
for several human pathogens including West Nile virus and parasitic filarial nematodes causing lymphatic filariasis.
It is common throughout tropical and subtropical regions and is among the most geographically widespread
mosquito species. Although the complete genome sequence is now available, additional genomic tools are
needed to improve the sequence assembly.

Findings: We constructed a bacterial artificial chromosome (BAC) library using the pIndigoBAC536 vector and
HindIII partially digested DNA isolated from Cx. quinquefasciatus pupae, Johannesburg strain (NDJ). Insert size was
estimated by NotI digestion and pulsed-field gel electrophoresis of 82 randomly selected clones. To estimate
genome coverage, each 384-well plate was pooled for screening with 29 simple sequence repeat (SSR) and five
gene markers. The NDJ library consists of 55,296 clones arrayed in 144 384-well microplates. Fragment insert size
ranged from 50 to 190 kb in length (mean = 106 kb). Based on a mean insert size of 106 kb and a genome size of
579 Mbp, the BAC library provides ~10.1-fold coverage of the Cx. quinquefasciatus genome. PCR screening of BAC
DNA plate pools for SSR loci from the genetic linkage map and for four genes associated with reproductive
diapause in Culex pipiens resulted in a mean of 9.0 positive plate pools per locus.

Conclusion: The NDJ library represents an excellent resource for genome assembly enhancement and
characterization in Culex pipiens complex mosquitoes.

Keywords: Bacterial Artificial Chromosome, Culicidae, Culex pipiens/quinquefasciatus, Lymphatic filariasis, West Nile
virus, Wuchereria bancrofti

Introduction
Culex quinquefasciatus (Say), the southern house mos-
quito, is a major vector for a number of important
human pathogens including West Nile virus and
Wuchereria bancrofti, the primary global etiologic agent
for lymphatic filariasis (LF) [1-3]. It is estimated that
more than 1.2 billion people are at risk for infection by
parasites causing LF, with 120 million people presently
infected [4]. Among these are over 40 million people
who suffer from chronic morbidity associated with lym-
phadema and hydrocele [5]. Despite the availability of

effective antihelminthics to treat and prevent infections,
the damage to the lymphatic system caused by these
parasites is largely irreversible. Although efforts to eradi-
cate LF globally using mass drug administration to
human populations in endemic areas were initiated in
2000, the success of these efforts will likely also rely on
the implementation of effective mosquito vector control
strategies [6]. However, vector control efforts can be
hindered by the rapid selection for emergence of insecti-
cide resistance [7]. Consequently, the identification of
new targets for insecticides as well as the development
of novel vector control strategies is expected to play a
large role in the successful control and/or eradication of
mosquito-borne diseases [8].
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Cx. quinquefasciatus and Cx. pipiens (L.) are the two
most common and geographically widespread species in
the Cx. pipiens complex, a species complex with nearly
worldwide distribution [9]. Cx. quinquefasciatus is com-
mon in tropical and subtropical regions while Cx.
pipiens, the northern house mosquito, occupies more
temperate regions. Both species are abundant in urban
areas where they oviposit in stagnant, and often polluted
water. They frequently enter homes and feed on humans
during the night, hence the common name of house
mosquito. The taxonomic status of this complex has
been a subject of debate, and these taxa are sometimes
placed within a single species, i.e., Cx. pipiens quinque-
fasciatus or Cx. pipiens pipiens [9]. Introgression
between these species is common in the United States
where hybrids can be found as far south as Louisiana
and as far north as Illinois [10-12], yet in South Africa
the populations remain largely distinct [13,14]. Females
are morphologically indistinguishable, while differences
in male genitalia have been used to identify species as
well as interspecies hybrids [10-12,15]. Recently, how-
ever, PCR assays have been developed to aid in the dif-
ferentiation of species in this complex [16-19].
Given their medical importance, Cx. pipiens complex

mosquitoes have garnered considerable attention by the
scientific community during the last 100 years [9].
Nevertheless, the current status of contemporary Cx.
pipiens genetics remains considerably behind that of
other important mosquito vectors such as Anopheles
gambiae and Aedes aegypti [20]. The Cx. quinquefascia-
tus (Johannesburg strain) genome sequence was recently
determined using the whole genome shotgun (wgs)
approach, thus providing a valuable resource for advan-
cing genome studies in this species complex [21]. How-
ever, the genome assembly remains highly fragmented
and few (~40) of the 3171 supercontigs have been
assigned to their respective chromosomes [21].
Bacterial artificial chromosome (BAC) genomic

libraries are important resources for the assembly and
characterization of complex genomes. They have been
utilized for the assembly of numerous genomes includ-
ing Drosophila melanogaster and An. gambiae [22,23].
BAC libraries have also been used for the development
of genetic markers for non-model organisms [24,25].
Furthermore, BAC clones can be used for positional
cloning to help identify and characterize genomic
regions of interest [26,27], as well as for construction of
BAC-based physical map assemblies [28-31]. These are
useful for long-range contiguity and anchoring of wgs
draft assemblies as well as targeted re-sequencing for
high resolution using BAC pools [32]. The objective of
this work was to construct a BAC library with compre-
hensive coverage of the Cx. quinquefasciatus genome,
thereby providing a tool to aid in genome assembly,

marker development, and gene discovery in Cx. pipiens
complex mosquitoes.

Methods
BAC library construction
High molecular weight DNA was extracted from pupae
from the Johannesburg (JHB) strain. This strain was
established using individuals from Johannesburg South
Africa, and was the strain used in the Cx. quinquefascia-
tus genome project [21]. Pupae were gently homoge-
nized in 1X PBS buffer containing 50 mM EDTA pH
8.0 and 0.1% BME and filtered through one layer of
miracloth into 50 mL Falcon tubes. Cells were pelleted
by centrifugation in a swinging-bucket rotor (Beckman)
at 3,200 rpm for 15 minutes at 4°C. Pellets were washed
2 additional times with PBS and gently resuspended in 1
mL of PBS. The nuclei solution was warmed to 45°C in
a waterbath, mixed gently with an equal volume of 1.5%
low-melt agarose (Seaplaque) and aliquoted into plug
molds (BioRad) using large-bore tips. Protein digestion
and plug washing was performed exactly as the methods
of Luo and Wing (2003) [33].
HindIII partial restriction enzyme digestion of DNA,

as well as the preparation of high molecular weight
DNA fragments was conducted following the procedure
of Luo and Wing (2003) [33]. Preparation of the HindIII
cloning-ready single copy pIndigoBAC536 vector from
the high copy pCUGIBAC1 plasmid was performed
according to Luo et al. (2001) [34]. The size selected
high molecular fragments were ligated to the vector and
transformed into E. coli strain DH10B competent cells
(Invitrogen, Carlsbad, CA). White recombinant colonies
were selected on LB plates containing chloramphenicol,
X-Gal and IPTG, and picked robotically using the
Genetix Q-bot (Genetix, UK). Recombinant clones were
transferred into individual wells of microtiter plates,
grown and then stored at -80°C. The BAC library was
also gridded onto 10, 11.25 × 22.25 cm filters in high
density, double spots (18,432 clones represented per fil-
ter) and 4 × 4 patterns.
To estimate the size of the BAC inserts, DNA from 82

randomly selected clones was prepared according to
standard alkaline lysis protocol, digested with NotI, and
separated by pulsed-field gel electrophoresis (PFGE) on
a 1% agarose gel under the following conditions: 5-15
sec linear ramp time, 6 V/cm, 14°C in 0.5 × TBE buffer
for 15 hours and stained with ethidium bromide. Insert
sizes of the clones with endogenous NotI sites, evi-
denced by multiple restriction fragments, were estimated
by summing the fragments. Southern blotting was used
to confirm that all of the clones were truly Cx. quinque-
fasciatus and are not significantly contaminated by
other types of DNA. One gel used for insert size deter-
mination was transferred to a positively charged nylon
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Table 1 SSR primer sequences

SSR locus GenBank accession SSR Primer Sequence (F/R) Product size (bp)a # Positive plate pools

C127GAC1 GF102017 GCGTTTGGAGAGTGGAAAAG 307 10

TGAGTTTTCAGTGCCCTCCT

C32AC1B GF110611 AAACGATCGCAATTCGAAAC 242 3

GTGGCGAACAACATTCACAG

C32TC1B GF110612 TCATCGTTCATTCGTTCCAA 179 2

TGTCATTTTCTGCCTGCATC

C32TG1 GF102044 CGTGTTTTCCATTGTTGGTG 400 29

TTGGCTGTGTCAACTGCTTC

C68ACAT1 GF102032 GGCCTTGCTGAGAAAACTTG 425 1

CCCAAAATCCAAGCTTCAAA

C68CA1 GF102033 ATAAAGCGACCAAGGCTCAA 294 7

GCGAAACCATTCAAAAGCAT

C68GA1B GF110613 CACCCCACAGTTAACCCAAC 245 8

CTCGAGAGATTTGGCCTTTG

C65AC1 GF102022 GGAGTTGTGCGGTTGAAAGT 305 19

GCACTGCCTAACGGATCATT

C65CGC1 GF102023 TCTGGGTACAACCCCGTAAC 221 20

AGAGAGTGCGCAAAAGCAAT

C65TG1 GF102021 ACTGCGAAACGCTTACTGCT 302 9

GTGTGTGGACTGTGGTGGAG

C474CT1B GF110614 CCCAAACTTGCCACAAAAGT 290 2

CTCACTCTCCGTGAACGACA

C48ATC1 GF102034 CATTTTTCGGGTGGCTTCTA 337 7

CGAGATCGAAATGATGCTGA

C48CGA1B GF110615 GCTTGGGAATCTGAATCTGC 251 4

ACCTTGCATTCAACGAGCTT

C48GTT1B GF110616 GTGGCCACCTGGTTGTAGTT 309 23

ACCACCGGTAGAACATCTCG

C175AT1 GF102036 GGACCAAGGGTACGATTTGA 185 14

CAGACTGGTTAACGGCTTCC

C175TG1 GF102045 TCAGATCTCCGAGAGGAGGA 295 4

CTGTCAGGGCCAGATTTCAT

C134AC1 GF102037 GAAGGTCAGCCACTCAGGC 194 0

ACAGCTGACTCTCGTCGAC

C129GT1 GF102038 AAGGTGCAAAACCAAACTGG 377 1

TGGAGCACAGCCCTACTCTT

C66CA1 GF102026 CGACTACTGCCCCAATTTGT 213 2

CACCCTCCCCTACAGACGTA

C177CA1B GF110618 AGGGCAATGTTTACGACGAC 293 2

CTTGCGCCTTAGTCATCCTC

C177TG1 GF102028 AGCACAAAAAGGCACGATTT 197 6

TAAACGCAAGTAGGCGGAGT

C99TGT1B GF110619 GCAGTGGAGGATTCTGAGGA 358 5

CAGAACGTTTGGCGAATTTT

C205CA1 GF102029 CAATGCGCCTTCTGGATTAT 227 3

CTCGTGATGGCCATTTCTCT

C205TG1B GF110620 ATTGCTCAAGTGCTGCCTTT 212 7

ATGACGACGAAAAACCGAAC

C139TG1B GF110621 GGGATCGCTACGTGTTTTGT 265 6

TCTCGGAATGCCAGTCTTTT

C446AC2 GF110622 CATACGACGTGGAACAAACG 162 17
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membrane Hybond N+ (GE Healthcare) following the
methods of Chomczynski (1992) [35]. BAC vector (pIn-
digoBAC536) and total Culex DNA were used as probes
and radiolabeled with the DECAprime™ II kit (Ambion,
Inc). The probes were mixed and denatured, and hybri-
dization was carried out overnight at 60°C. The mem-
brane was washed with 1× SSC, 0.1% SDS at 60°C twice
for one hour each. The membrane was exposed to a
phosphor screen (GE Healthcare) overnight and the
image recorded by a Typhoon 9400 imager (GE
Healthcare).

BAC library screening
Screening of the BAC library was generally performed as
described by Jiménez et al. (2004) [36]. Briefly, we first
prepared pools of DNA representing all clones within
each of the individual 144 384-well microplates. Plates
were initially replicated on LB agar plates containing
12.5 μg/ml chloramphenicol and incubated overnight at
37°C. The plates were then flooded with LB broth con-
taining 12.5 μg/ml chloramphenicol, agitated for 4 h at
37°C and the slurries used to prepare 9.5 ml overnight
cultures. These individual plate pool cultures were used
for large-scale alkaline lysis DNA extractions [37] and
subsequent PCR screening with SSR oligonucleotide pri-
mer sets.
A combination of PCR-based plate-pool DNA screen-

ing and radiolabeled oligonucleotide probe hybridization
was used to screen the NDJ library. Initial PCR-based
screening of BAC DNA representing individual plate
pools was performed using 29 simple sequence repeats
(SSRs) (Table 1) [38-40]. The Primer3 program [41] was
used to design primers to amplify regions within a gene
on supercontig 3.134 and four genes previously identi-
fied as having a role in reproductive diapause in Cx.
pipiens s.s. (Table 2) [42,43]. PCR reactions were per-
formed in a total volume of 25 μl containing 50 mM
KCl, 10 mM Tris (pH 9.0), 0.1% Triton X, 1.5 mM
MgCl2, 200 μM dNTPs, 5 pmol of each primer (F and
R), 25 ng of plate pool DNA and 1 unit of Taq

Table 1 SSR primer sequences (Continued)

ACGAGGTTGAGGTTGGTGAC

C446TG1 GF102043 GGAAAGGGGCACTTGTGTAA 397 22

CGTTTGCTTCTCTTCGAACC

CxpGT4 AY423738 GTCGTCGCTAACCCTTGTT 146 2

CGCGATAGTCGGTAATCGT

CxqTri4 AY958079 CTAGCCCGGTATTTACAAGAAC 121 16

AACGCCAGTAGTCTCAGCAG
aPredicted amplicon size based on nucleotide sequence in VectorBase [50].

Table 2 Primer sequences for genes used in library screening

Gene VectorBase gene ID GenBank accession SSR Primer Sequence (F/R) Product size (bp)a # Positive plate pools

CHP* CPIJ007110 GF110930 CGAGCAGTTCAAACACCAGA 207 12

GCTTCTTCAGGTTGCTCCAC

FOXO CPIJ016794 GF110931 CTGAGCCCAATTCAGTCCAT 187 3

TCTGCTGTAAAGTCAGCTCGTC

ILP-1 CPIJ018051 GF110932 AGTCCCTCGGAGGAGTTCAA 163 7

TCGGCACAGTACTGCTTGAG

ILP-2 CPIJ018050 GF110933 TCCAGCAGATCTTCGATGC 140 10

TGTAGATCGGGGAACTCGTC

ILP-5 CPIJ001698 GF110934 GGTTCCATCACGCAGGAGT 87 23

GTTGATCCGCTTGTTCGAC
aPredicted amplicon size based on nucleotide sequence in VectorBase [50]. *CHP: Conserved hypothetical protein.

Figure 1 Insert size distribution of BAC clones in the NDJ
library based on pulsed-field gel electrophoresis of 82
randomly selected clones.
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polymerase. PCR thermal cycling conditions were 5 min.
at 94°C, followed by thirty cycles of 1 min. at 94°C, 1
min. at 60°C, 2 min. at 72°C, and then 10 min. at 72°C
for a final extension. The SSR positive plate pools were
identified by electrophoresis on 2% agarose gels using
ethidium bromide and UV visualization.
Well position of marker loci within select positive

microplates was determined by DNA-DNA hybridiza-
tion. Four individual clones were identified by probing
with P32-labeled PCR amplicons (C127GAC1, C65AC1,
C99TGT1, and FOXO) and thereafter sized with PFGE.
Briefly, microplates representing positive pools were
replicated to Colony/Plaque screen hybridization mem-
branes (NEN™, Life Science Products) following Jimé-
nez et al. [36]. Hybridizations and radiolabeling of the

target clones were conducted following our standard
probing procedures [44]. The presence of the marker
locus in each of the four clones was confirmed by PCR
and UV visualization on 2% agarose gels, as described
for plate pool screening.

Results and Discussion
We have constructed a BAC library for Cx. quinquefas-
ciatus, an important human disease vector and a major
species in the Cx. pipiens complex, using high molecular
weight DNA extracted from Johannesburg strain pupae
and partially digested with HindIII. The Notre Dame
Johannesburg (NDJ) library consists of 144 384-well
microplates containing 55,296 clones. NotI digestion and
pulsed-field gel electrophoresis of 82 randomly selected

Figure 2 NotI digests of Culex quinquefasciatus BAC clones. A. Pulsed-field gel electrophoresis of 38 randomly selected clones and 4 clones
containing markers used in plate pool screening. B. Southern transfer of the BACs from panel A hybridized with a mixture of total Cx.
quinquefasciatus gDNA and BAC vector.
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clones produced fragments ranging from 50 to 190 kb in
length (mean = 106 kb) and no empty vectors (Figures 1
and 2). Southern blotting with BAC vector and Cx.
quinquefasciatus gDNA indicated that the inserts are of
Culex origin and all BACs appear to be fully digested
(Figure 2B). Based on a mean insert size of 106 kb and
a genome size of 579 Mbp, the BAC library provides
~10.1-fold coverage of the Cx. quinquefasciatus genome.
To further assess the quality of the library, we prepared

and screened DNA extractions representing each of the
144 plate pools with 29 simple sequence repeat (SSR)
markers representing all three linkage groups (Figure 3).
The number of positive plate pools for each SSR ranged
from 0 to 29, resulting in a mean of 8.7 positive plate
pools per screen. Only one of the SSR markers
(C134AC1) did not amplify in any of the plate pools.
Nevertheless, a gene sequence (CPIJ007110) on the same
supercontig (3.134), ~80 kb downstream, amplified in 12
plate pools. In addition to the SSRs, we screened the
plate pools with primers designed to amplify sequences

within exons of four genes previously determined to have
a role in reproductive diapause in Cx. pipiens sensu
stricto (s.s.) [42,43]. The number of positive plate pools
for the gene sequences ranged from three to 23, resulting
in a mean of 10.8 positive plate pools per gene (Table 2).
The size distribution of the four individual clones
selected by probing with radiolabeled markers is similar
to the size distribution of the library (Figure 2A). The
overall mean number of positive plate pools for the 29
SSRs and five genes used to screen the library was 9.0,
indicating that the NDJ BAC library represents ~9 BAC
clones per marker across the Cx. quinquefasciatus gen-
ome, assuming that only one BAC clone per 384-well
plate pool contains the target sequence.
Detailed genetic and genomic studies among the Cx.

pipiens complex could provide valuable insights into the
molecular genetic mechanisms influencing important
traits such as vector competence, insecticide resistance,
and reproductive diapause. Despite morphological simi-
larities and their ability to form hybrid populations, spe-
cies within the complex differ in several life history
traits. For example, Cx. quinquefasciatus requires a
blood meal prior to laying eggs (anautogenous) and is
unable to enter diapause and overwinter in cold cli-
mates. Cx. pipiens and Cx. pipiens pallens also are anau-
togenous but adult females are able to enter
reproductive diapause and survive winter in temperate
climates, and Cx. pipiens molestus is able to lay eggs
without taking a blood meal (autogenous) but does not
enter diapause [45-47]. Presently, detailed molecular
analyses of these traits are limited by the fragmented
genome assembly. Fingerprinting, end-sequencing and
physical assembly of the NDJ BAC library would likely
facilitate the construction of a more complete genome
sequence assembly by serving as a template for genome
finishing, including gap-filling, as well as providing
resources to enable the assignment of the individual
superscaffolds to their respective chromosome position
via in situ hybridization. In summary, the NDJ BAC
library provides a valuable resource for marker develop-
ment, positional cloning, and genome sequence assem-
bly enhancement for Cx. quinquefasciatus thus helping
to advance genome studies in Cx. pipiens complex
mosquitoes.

Library availability
The NDJ BAC library is available to researchers through
the Clemson University Genomics Institute (see Culex
pipiens library CPQLBa at http://www.genome.clemson.
edu/).
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