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Abstract

Background: Background: Deep RNA sequencing, the application of Next Generation sequencing technology to
generate a comprehensive profile of the message RNA present in a set of biological samples, provides
unprecedented resolution into the molecular foundations of biological processes. By aligning short read RNA
sequence data to a set of gene models, expression patterns for all of the genes and gene variants in a biological
sample can be calculated. However, accurate determination of gene model expression from deep RNA sequencing
is hindered by the presence of ambiguously aligning short read sequences.

Findings: BowsStrap, a program for implementing the sequence alignment tool ‘Bowtie’ in a bootstrap-style
approach, accommodates multiply-aligning short read sequences and reports gene model expression as an
averaged aligned reads per Kb of gene model sequence per million aligned deep RNA sequence reads with a
confidence interval, suitable for calculating statistical significance of presence/absence of detected gene model
expression. BowStrap v1.0 was validated against a simulated metatranscriptome. Results were compared with two
alternate ‘Bowtie™-based calculations of gene model expression. BowStrap is better at accurately identifying
expressed gene models in a dataset and provides a more accurate estimate of gene model expression level than
methods that do not incorporate a boot-strap style approach.

Conclusions: BowStrap v1.0 is superior in ability to detect significant gene model expression and calculate accurate
determination of gene model expression levels compared to other alignment-based methods of determining
patterns of gene expression. BowStrap v1.0 also can utilize multiple processors as has decreased run time
compared to the previous version, BowStrap 0.5. We anticipate that BowStrap will be a highly useful addition to the
available set of Next Generation RNA sequence analysis tools.
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Findings

Background

Deep RNA sequencing (RNAseq) is a powerful tool for
assessing gene expression patterns. As Next Generation
Sequencing (NGS) becomes an increasingly prevalent
tool for scientific investigation, efficient and robust
methods for interpreting short read sequence data as
gene model expression levels are required. Gene expres-
sion is commonly represented as the number of short
sequence Reads aligned Per Kilobase of gene sequence
per Million of aligned reads (RPKM). However, a
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significant fraction of the total reads in an RNA-seq ex-
periment cannot be aligned to a unique location in the
gene set [1-3]. Accounting for these ambiguously align-
ing reads is required for an accurate measure of gene
expression, especially for gene models with high
sequence identity in a transcriptome.

One method used to accommodate multiply-aligning
reads is to discard them and consider only those reads
that can be aligned to a unique location in gene models
or genome [4,5]. ERANGE assigns multiply-aligned
reads to gene models according to the distribution fre-
quency of uniquely aligned reads [1]. Cufflinks aligns
short reads to genomic sequence, essentially preforming
gene discovery analysis with every experimental
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sequence [6]. While thorough and capable of detecting
subtle gene splice variants in expression data, Cufflinks
requires very deep sequencing of transcriptomes. Al-
though each of these methods represents gene model ex-
pression levels as a measure of number of short
sequences that align, none of these approaches provide a
measure of the statistical significance for presence or ab-
sence of gene model expression nor are these methods
expressly designed to distinguish between expression
levels of high sequence identity gene models.

BowStrap, presented in an early version in [7], follows
a unique approach. BowStrap calculates the expression
of gene models as a statistical distribution. Utilization of
BowStrap requires a high quality set of gene models and
output of the ultra-fast sequence alignment program
“Bowtie” [8]. BowStrap uses the output from Bowtie, a
file of gene model names and lengths (in base pairs), and
the number of desired bootstrap iterations. BowStrap
calculates PRKM values across multiple iterations. For
each iteration, if an RNAseq read can be aligned to more
than one possible location, that read is uniformly
assigned to a randomly selected alignment location by
BowStrap. This iterative, bootstrap-style approach is the
a straightforward way of assigning standard errors and
confidence intervals to gene model expression, as
opposed to an estimate of read distribution which can
provide the expected number of reads that align to a
gene model, but is less able to express that value as a
distribution that is a function of the specific properties
of an RNAseq dataset and particular combination of po-
tentially ‘cross-hybridizing’ gene models. For every gene
model in the set, BowStrap reports the RPKM for
uniquely aligning reads, and the average and standard
deviation for boot-strapped RPKM. A statistical meas-
urement to determine if expression of a gene model has
been detected at significant levels can be calculated as a
Cumulative Normal Distribution (CND) and expressed
as a p-value. The updated and much improved version
of BowStrap presented here is faster, capable of running
on multiple processors, and includes the very important
information for uniquely aligning reads for each gene
model. Counts for uniquely aligning reads can be used
to further distinguish gene expression levels between
highly homologous genes in a transcriptome. To demon-
strate the utility of BowStrap relative to other ‘Bowtie’-
based methods of calculating gene model expression
levels, we compare BowStrap results to gene model ex-
pression calculated using ‘Bowtie’s random allocation of
multiply-aligned reads and gene model expression calcu-
lated by disregarding of multiply aligned reads.

BowStrap method
The protocol for using BowStrap is as follows:
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Step 1. Align short read sequence data to gene models
using Bowtie, reporting all alignments, i.e.:

$ ./bowtie —all < bowtie_build > <short_reads.fq >
<bowtie_output_file>

Where bowtie build is the build file for the set of
gene models, short_reads.fq is the file or collection of
files of short read sequence data, and bowtie_output_-
file the user-selected file name for Bowtie output.

Step 2. Generate resampled gene model expression
data using BowStrap, i.e.:

$ perl BowStrap_v1.0.pl < Gene_size_file >
<iterations > [<num_processors>]
< bowtie_output_file > <output_file>

Where Gene_size_file is a tab-separated file of gene
model names and gene model sizes, iterations is a user-
selected number of boot-strap iterations, num_processors,
an option only in multi-threaded BowStrap, is a user
selected integer for number of processors to be
devoted to calculations, bowtie_output_file is the out-
put from step 1, and output_file is the location for
saved results.

The output of BowStrap lends itself to calculation of
statistical significance of detected gene model expressed,
calculated CND (Eq. 1)
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where p is the average and o is the standard deviation of
a re-sampled gene model's RPKM. As this equation will
fail to return a value if the average or standard deviation
is equal to 0, if the average is equal to 0, then the CND
pValue is set equal to 1, else if standard deviation is
equal to 0, then the CND p-value is set equal to 0. A
CND p-value close to zero indicates statistically signifi-
cant levels of detected gene expression.

Test BowStrap performance relative to other
“bowtie”-based methods

In order to validate BowStrap and compare results to
those of other ‘Bowtie’-based methods of gene model ex-
pression calculation, we generated a single synthetic
RNAseq dataset.

Generate a synthetic RNA-seq dataset

Complex synthetic RNAseq read sets were generated to
highlight the advantages of the BowStrap approach. This
synthetic data set is derived from the combined set of
gene models, publically available from the Joint Genome



Larsen and Collart BMC Research Notes 2012, 5:275
http://www.biomedcentral.com/1756-0500/5/275

Institute (http://genome.jgi.doe.gov/), for the fungus
Laccaria bicolor and the plant Populus tremuloides
(68164 total gene models). The combination of gene
sequences from different species complicates the ability
to find unique alignments for short sequences. In
addition, P. tremuloides contains multiple duplicate
genes [9] and L. bicolor has a high intron density con-
taining multiple exons as short as 7 bp [10] making
alignment to genomic sequence with RNA reads more
difficult. To insure the synthetic dataset represent a bio-
logically relevant expression pattern, the relative gene
model expression values were taken form from a previ-
ously published experiment investigating symbiotic
interaction between the fungus and plant [11]. Synthetic
reads were randomly generated from gene model
sequences and used to generate sets of 50, 25, 10, 1, and
0.5 million (M) total 46-mer reads. The results of this
were five synthetic metatranscriptomes with the same
pattern of relative gene expression levels, but different
total amounts of sequence data.

Bowtie alignments indicate that about one third of all
synthetic reads do not uniquely align to gene model
sequences in these synthesized datasets, highlighting the
need for tools like BowStrap in determination of gene
expression data from deep RNAseq data.

Generate gene model expression values using synthetic
RNA-seq data set

In addition to BowStrap method, two other, non-
bootstrapped ‘Bowtie’-based methods that use align-
ments to gene models were used to calculate expression
levels. The first uses the default ‘Bowtie” setting, which
randomly assigns reads with multiple possible alignment
positions to one of the possible locations. The second
uses the ‘Bowtie” setting for discarding all ambiguously
aligning reads, reporting only those reads that align to a
single location. BowStrap CND p-values were further
adjusted using Benjamini-Hochberg false discovery rate
correction [12].

Table 1 Detection of gene expression
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Compare BowStrap with alternate methods

For each simulated data set, the total number of signifi-
cantly expressed gene models was identified (Table 1).
For BowStrap, (Benjamini-Hochburg False Discovery
Rate corrected CBD p-value < 0.05) were calculated. For
alternate ‘Bowtie’-based methods, which do not return a
statistical significance with determination of gene model
expression, expression was considered to be any RPKM
greater than zero. This difference in how expressed gene
models are in deified by different methods is an impor-
tant caveat to keep in mind when comparing results
between approaches. Accuracy was determined using
significantly expressed gene determination and non-zero
expression in synthetic data sets. False negatives, gene
models incorrectly detected as expressed, was also calcu-
lated. Random assignment of ambiguously aligning reads
provides good accuracy, and this method is more accur-
ate than BowStrap for dataset sizes less than 25 M reads.
Using randomly assigned reads however results in a far
higher proportion of false positives in the detected of
expressed genes. While using only uniquely aligning
reason average yields the worst accuracy, this method
did not produce any false positives. Results indicate that
BowStrap approach is highly accurate (>90% accuracy)
with at least 10 million reads and is tolerably accurate
(74%) in calculating gene expression levels even with
very small (i.e. 1 million reads) datasets. There are very
few false-positives in the set of significantly expressed
gene models, never exceeding 0.5% in 50 M read data
set.

To determine how well different approaches compare
at accurately calculating gene model expression levels,
we used Spearman’s Rank Correlation between calcu-
lated and known gene model expression values for all
approaches. BowStrap method is consistently best at cal-
culating gene model expression levels than alternative
approaches at every dataset size. (Table 2). To visualize
how well calculated gene model expression matches the
known gene model expression, MA-plots of the 25 M
sequence data set were employed (Figure 1). In an MA

Dataset Accuracy %False positive

Random Unique BowsStrap Random Unique BowsStrap
50 M 097 091 098 2.70 0.0 043
25 M 0.97 091 097 267 0.0 0.21
moM 0.97 0.90 0.92 272 0.0 0.08
™M 0.97 0.88 0.74 344 0.0 0.00
05 M 097 0.87 0.66 340 0.0 0.00

Three ‘Bowtie’-based methods for gene model expression were considered, using gene model expression values from synthetic RNAseq data of 50, 25, 10, 1, and
0.5 million total 46-mer sequence reads. “Random” uses ‘Bowtie’s default random assignment of multiply aligning reads. “Unique” uses only reads with a single,
unambiguous alignment location. “Accuracy” is the proportion of gene models correctly identified as either expressed or absent. For “Random” and “Unique”,
detection of expression is defined as an RPKM value greater than 0. For “BowStrap”, detection of expression is defined as Benjamini-Hochburg corrected

p-value < 0.05. “% False Positive” is the percent of gene models identified as expressed that are absent in synthetic RNAseq data.
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Table 2 Spearman’s correlation between calculated gene
expression and known gene model expression

Dataset Random Unique BowsStrap
50 M 091 0.80 1.00
25 M 0.90 0.80 1.00
m0oM 0.90 0.81 0.99
™ 0.89 0.81 0.96
05 M 0.87 0.81 094

Spearman’s Rank Correlation was calculated between gene model expression
values in synthetic read data and ‘Bowtie’-based methods for estimation of
gene model expression levels. Three ‘Bowtie’-based methods for gene model
expression were considered, using gene model expression values from
synthetic RNAseq data of 50, 25, 10, 1, and 0.5 million total 46-mer sequence
reads.
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Figure 1 MA Plots for different gene expression calculation
methods. The 25 M read dataset was selected for this figure. Results
for other size datasets are similar. ‘M is the log, of calculated gene
model expression level divided by known gene model expression
level. ‘A" is the log, of average between calculated and known gene
model expression level. Each point in scatter plot is result for a
single gene model.
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plot, perfect correspondence between calculated and
known expression levels would result in all points in
scatterplot falling on the x-axis. The further points are
distributed from the x-axis, the less good is the corres-
pondence between calculated and known gene model
expression levels. In this figure, BowStrap shows the
closest relationship between calculated and observed
gene model expression levels. Using randomly assigned
ambiguously aligned reads method tends to over-report
gene model expression. Using only uniquely aligned
reads performed the worst, most often under-reporting
gene model expression levels.

BowStrap runtime

Relative to BowStrap v0.5 [7], BowStrap v1.0 runs an
average of 2.5 times faster, with the improvement in run
time 1.2 fold for 0.5 M data set and 3.0 fold for 50 M
read dataset (Table 3).

Conclusions

BowStrap, a bootstrap-style application of the ultrafast
alignment program ‘Bowtie’ for estimating gene model
expression from short read RNAseq datasets was intro-
duced. BowStrap was shown to be more accurate at
detecting significant gene model expression for larger
datasets, and was more accurate at reporting gene model
expression levels for all size datasets. Excellent accuracy
of gene model expression levels even for small datasets
makes this approach potentially very useful for multi-
plexed sequencing, allowing more samples to be run and
making better use of smaller datasets. Although Bow-
Strap does not itself identify possible splice variants in
gene expression data, it can be used to highlight
expressed gene models suitable to closer study, i.e.
[7,11]. BowStrap 1.0 is much faster than the original
BowStrap program and a multi-thread version runs even
faster, run time decreasing approximately linearly with
the number of processors. BowStrap is unique in its abil-
ity to assign statistical significance to gene model ex-
pression from RNAseq analysis and will be a useful

Table 3 Runtime of BowStrap

Dataset Total core hours
50 M 355
25 M 9.1
10M 6.9
™ 08
0.5 M 0.2

BowsStrap was used to generate gene model expression values from a
synthetic RNAseq data of 50, 25, 10, 1, and 0.5 million total 46-mer sequence
reads. “Total Core Hours” indicates total core hours required to perform 1000
bootstrap-style iterations. Multithread BowStrap decreases total time required
approximately linearly with number of processors used, but memory required
increases linearly.
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addition to the set of available tools for short-read
sequence analysis.

Availability and requirements

Project name: BowStrap

Project home page: http://www.bio.anl.gov/molecular_
and_systems_biology/bowstrap/bowstrap_download.html
Operating system: Platform independent

Programing language: Perl

Other requirements: Bowtie; Multithread Perl module
for multi-processor BowStrap

License: GNU

Any restrictions to use by non-academics: None

Abbreviations

(M): Million; (RNAseq): RNA sequencing; (NGS): Next Generation Sequencing;
(RPKM): Reads Per Kill base per Million reads; (CND): Cumulative Normal
Distribution.
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