
Wright et al. BMC Research Notes 2012, 5:476
http://www.biomedcentral.com/1756-0500/5/476
RESEARCH ARTICLE Open Access
Non-invasive prenatal diagnostic test accuracy for
fetal sex using cell-free DNA a review and
meta-analysis
Caroline F Wright1, Yinghui Wei2, Julian PT Higgins2 and Gurdeep S Sagoo1*
Abstract

Background: Cell-free fetal DNA (cffDNA) can be detected in maternal blood during pregnancy, opening the
possibility of early non-invasive prenatal diagnosis for a variety of genetic conditions. Since 1997, many studies have
examined the accuracy of prenatal fetal sex determination using cffDNA, particularly for pregnancies at risk of an
X-linked condition. Here we report a review and meta-analysis of the published literature to evaluate the use of
cffDNA for prenatal determination (diagnosis) of fetal sex. We applied a sensitive search of multiple bibliographic
databases including PubMed (MEDLINE), EMBASE, the Cochrane library and Web of Science.

Results: Ninety studies, incorporating 9,965 pregnancies and 10,587 fetal sex results met our inclusion criteria.
Overall mean sensitivity was 96.6% (95% credible interval 95.2% to 97.7%) and mean specificity was 98.9%
(95% CI = 98.1% to 99.4%). These results vary very little with trimester or week of testing, indicating that the
performance of the test is reliably high.

Conclusions: Based on this review and meta-analysis we conclude that fetal sex can be determined with a high
level of accuracy by analyzing cffDNA. Using cffDNA in prenatal diagnosis to replace or complement existing
invasive methods can remove or reduce the risk of miscarriage. Future work should concentrate on the economic
and ethical considerations of implementing an early non-invasive test for fetal sex.
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Background
Knowledge of the genetic status of the fetus in an on-
going pregnancy gives couples the power to make an
informed decision about their unborn child. When a
fetus is known to have a particular genetic abnormality,
a decision may be made either to choose termination or
to continue with the pregnancy and take steps to provide
appropriate care for the newborn child. Prenatal testing
falls into two categories: screening and diagnosis. Pre-
natal screening is offered to all pregnant women as part
of routine prenatal care to determine if the fetus is at
substantial risk of having a particular disorder such as
Down Syndrome or sickle cell anaemia. In cases deemed
to be at high risk, prenatal diagnosis is offered to provide
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reproduction in any medium, provided the or
a definitive diagnosis and determine whether the fetus
has inherited a disorder.
Prenatal genetic diagnosis is often used where there is a

family history of a sex-linked disease. Most sex-linked dis-
eases are recessive X-linked diseases caused by a particular
mutation on the X chromosome. The disease is normally
manifested only in males, who carry a single X chromo-
some, whilst in females the normal allele on the second X
chromosome compensates for the diseased allele. The
most common X-linked recessive diseases include haemo-
philia (a blood clotting disorder) and Duchenne muscular
dystrophy (a progressive muscle wasting disease), although
numerous others can result in severe conditions. Whilst
each disease is individually relatively rare, it has been esti-
mated that in combination they occur in around 5 in
10,000 live births [1].
In the UK, sex-linked diseases are usually diagnosed

through referral to a clinical geneticist when there is a
known family history of a particular disease. Although
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fetal sex can often be determined using an ultrasound
scan of the fetus in the second or third trimester, a
definitive prenatal diagnosis can only be made through
invasive testing in which a sample of fetal cells is
physically removed from the uterus for genetic ana-
lysis, using either chorionic villus sampling (CVS) at
11–14 weeks gestation, or amniocentesis from 15 weeks
gestation. Both these invasive techniques carry a small
but significant risk of miscarriage (1-2%) [2] and al-
though currently the gold standard for prenatal diagno-
sis, many women are reluctant to undergo invasive
testing. However, there are substantial advantages to earl-
ier diagnosis. Where future management might involve a
decision to terminate the pregnancy, early termination
carries fewer risks (being medically induced or involving
surgical vacuum aspiration), whilst late termination (at
more than 14 weeks) may require the induction of
labour, potentially causing significantly greater physical,
emotional and psychological complications.
Due to the risk of miscarriage with these traditional

prenatal diagnostic methods, enormous interest has
arisen in the field of non-invasive prenatal diagnosis
(NIPD). In 1997, Lo et al. [3] demonstrated the presence
of fetal DNA in the maternal blood, opening the possi-
bility that a simple blood test could provide a non-
invasive method for prenatal diagnosis. Fragments of
cell-free fetal DNA (cffDNA) originating from the pla-
centa are detectable in the maternal blood stream [3]
from 5 weeks gestation until birth [4], when they are
rapidly cleared from the circulation and are undetectable
within 2 hours [5]. It has been proposed that cffDNA
could be used for non-invasive prenatal diagnosis. How-
ever, cffDNA only comprises around 3% to 6% [4], al-
though up to 10% has also been reported [6], of the total
cell-free DNA in the maternal circulation during preg-
nancy, the rest being maternal in origin. Therefore, dis-
tinguishing, or ideally isolating, fetally derived cell-free
DNA in an overwhelming background of maternal DNA
is a significant technical challenge due to the high level
of molecular similarity between it and the maternally
derived cell-free DNA. As a result, a number of different
protocols have been developed to extract the cell-free
DNA from a blood sample and analyze it for fetal specific
sequences, usually with real time quantitative polymerase
chain reaction (qPCR).
To date, the most advanced application of cffDNA for

prenatal diagnosis is fetal sex determination for pregnan-
cies at high risk of an X-linked disease (or certain mascu-
linising endocrine disorders), in order to reduce the need
for invasive testing. This is achieved through selective
amplification and detection of Y chromosome sequences
not otherwise present in the mother, most commonly the
sex determining region Y (SRY), but sometimes using the
testis specific protein Y linked 1 (also known as DYS14).
The fetus is presumed to be female if no Y chromosome
DNA can be detected. This technology is already being
translated into a clinical setting and is used routinely in
some clinics in the UK and elsewhere, and has been
shown to reduce the need for invasive testing by 45% [7].
In addition, several companies currently offer commer-
cial mail-order fetal sexing using cffDNA from a home
finger prick sample.
Since 1997, a number of large studies examining the ac-

curacy of prenatal fetal sex determination using cffDNA
have been published [8,9] as well as many smaller ones
(reviewed by Avent & Chitty [10]). Devaney et al. [11]
have recently published a systematic review and meta-
analysis documenting the overall test performance of
non-invasive fetal sex determination using cffDNA in-
cluding data from 57 studies and approximately 6,500
pregnancies. This review was limited however to English
language publications and only searched for journals
listed in PubMed. Here we report our review and
meta-analysis of the wider literature in order to fur-
ther evaluate the use of cffDNA in the maternal cir-
culation for non-invasive prenatal determination of
fetal sex.

Methods
Eligibility of studies
We sought all studies in which Y chromosome cell-free
fetal DNA (not fetal cells) was extracted from a maternal
blood sample and used for sex determination. Pregnant
women participating in the studies had to be greater
than 5 weeks gestation [4]. The gold standard against
which non-invasive prenatal diagnosis of fetal sex is
measured is the baby’s sex on examination at birth, al-
though we also included studies in which it was deter-
mined during pregnancy by amniocentesis or CVS. We
considered only studies in which data were presented
that allowed a cross-tabulation of sex determination for
cffDNA against the reference standard, permitting esti-
mation of sensitivity and specificity.

Search strategy
We applied a sensitive search of multiple bibliographic
databases in March 2010 using text words and MeSH
terms, adapting them for each different database. The
databases searched and the search terms used in PubMed
are listed in the supplementary information. The search
was not limited to English language publications or publi-
cation type. A filter for diagnostic studies was not applied.
Investigators in the field were also contacted for any data
not explicitly included in the publications. No reference
was made to gender or sex in our search strategy, as many
studies that focus on using cffDNA for alternative diagno-
ses (e.g. RhD, aneuploidy, inherited single-gene disorders,
pre-eclampsia, etc.) also test for fetal sex as part of their
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protocol. However, we excluded the small number of stud-
ies using massively parallel sequencing for Down Syn-
drome [12,13] or fetal profiling [6] and looked only at
targeted tests.
We attempted to identify cumulative papers which

reported data from the same dataset, and contacted
authors to obtain clarification of the overlap between data
presented in these papers, in order to prevent test data
from the same women being analyzed more than once.

Study selection
All relevant articles identified by the search were
scanned on the basis of title, keywords and abstract
(where available). Articles were rejected on the initial
screen if the reviewer (CW) could determine that the
article clearly did not match the eligibility criteria or if
the study was published before cffDNA was discovered
(1997) [3]. Where a title or abstract could not be
rejected with certainty, the full text of the article was
obtained for evaluation. The full texts of all relevant arti-
cles identified by reference searching were also obtained.
Two reviewers (CW and GS) then independently
assessed the eligibility of studies for inclusion in the re-
view. If disagreements were not resolved by discussion, a
third reviewer (JH) was consulted. Figure 1 presents the
number of articles identified by our search strategy along
with the process of selecting studies into our review.

Data collection
We followed methods suggested by the Cochrane Screen-
ing and Diagnostic Tests Methods Group [14]. The
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Some of the test results were recorded with specified
trimester (1, 2 or 3) and a few of the data were recorded
every prenatal week from the 5th to 13th week. The
remaining (majority) test results were recorded without
specifying in which trimester or week the test was
undertaken. The primary dataset contained one 2 × 2
table from each study.

Data analysis
We performed meta-analysis to estimate summary sensi-
tivity and specificity using a bivariate model [15]. This
jointly analyses each sensitivity and specificity pair, in-
corporating the anticipated negative correlation between
them through a random-effects approach [15]. The
model has two levels. At the first level, the numbers of
true positives and true negatives are assumed to follow
independent binomial distributions with parameters
representing sensitivity and specificity, respectively; at
the second level, the logit transformations of sensitivity
and specificity are assumed to follow a bivariate normal
distribution across studies, which allows for heterogen-
eity and for the correlation between sensitivity and speci-
ficity. We derived prediction intervals from the results of
the analysis [16]. Forest plots of sensitivity and specificity
used an asymptotic standard error and an assumption of
normality on the logit scale. We used these approximate
results to assess the contribution of each study to the
total heterogeneity for sensitivity and specificity separ-
ately, as described by Thompson [17], in order to inform
sensitivity analyses.
We performed further bivariate meta-analyses to in-

vestigate whether the accuracy of cffDNA testing
changes over time during a pregnancy. A second dataset
was constructed to examine the possible effect of trimes-
ter on test accuracy. Only studies providing specific in-
formation on trimester of test were included in this
dataset. We analyzed data from each trimester separ-
ately, and compared formally them using a meta-
regression analysis with a categorical covariate repre-
senting trimester. A third dataset was constructed to
examine the possible effect of week on test accuracy.
Only studies providing specific information on the week
of the test within the first trimester were included in this
dataset; 2 × 2 tables in which there were no true males
or no true females were omitted. We again used bivari-
ate meta-regression, with a linear effect of week on the
logit scale. We used posterior summary statistics for
coefficients in the regression to illustrate fitted changes
in sensitivity and specificity from five to 13 weeks.

Investigation of heterogeneity
To investigate the variation in diagnostic accuracy across
the studies, we performed meta-regression by incorpor-
ating covariates into the bivariate model. In order to
assess different techniques used for testing, we used as
covariates blood sample (recorded as plasma or serum),
sequence detected (SRY or DYS14 or other), detection
technique (qPCR or other), extracted blood volume,
publication year. Covariates were incorporated into the
model through the second level, such that the logit sen-
sitivity and logit specificity were separately regressed on
the available covariates. We chose plasma, SRY, and
qPCR as baselines for the categorical covariates; the
coefficients for these covariates are therefore the com-
parison of other categories with the baseline. We per-
formed the analyses both with all covariates included
simultaneously in the model, and with each covariate
included one at a time. Although there were very few
instances of multiple versions of the test being used
within a study, if women were tested on more than one
covariate, we selected data from plasma in preference to
serum, and SRY in preference to DYS14 as they were
the most commonly reported. We did not evaluate these
differences, due to a combination of lack of power and
lack of cross-tabulated data.
There were some missing data in both categorical and

continuous covariates. We employed multiple imput-
ation techniques to impute the missing, making a ‘miss-
ing at random’ assumption. A missing value for a
categorical variable was imputed from a categorical dis-
tribution with parameter p ¼ 1=c , where c is the total
number of different categories of the variable. A missing
value for a continuous variable was imputed from a nor-
mal distribution with mean and standard deviation equal
to those observed for that variable from non-missing
values.

Implementation
The estimates of sensitivity and specificity from the bi-
variate model as well as the coefficients for the covari-
ates were computed in a Bayesian framework using
Markov chain Monte Carlo simulation with publicly
available software (WinBUGS) [18]. We added 0.1 to
empty cells in the 2 × 2 tables. Prior distributions were
selected so as to be vague in order to emulate a frequen-
tist analysis: normal with mean 0 and precision 0.00001
for means and coefficients, and wishart(R, df ), with R =
identify matrix and df = 2 for between-study covariance
matrices. For the main analyses we report results based
on 10,000 draws of the Markov chain, of which the first
10% were discarded as burn-in. For meta-regression ana-
lyses we used 50,000 draws, of which the first 10% were
discarded. In all analyses, trace plots for the Markov
chain show good mixing of the chains, confirming the
convergence of Markov chains to their posterior distri-
butions. Credible intervals from these analyses may be
interpreted approximately as confidence intervals. Forest
plots were drawn using Review Manager [19].
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Results
Study characteristics
Ninety studies [3,4,7-9,13,20-103], incorporating 9,965
pregnancies, were identified that met the eligibility cri-
teria (Additional file 2: Table S1). Fifty studies were
located in Europe [3,7,8,20,25-27,29-32,35,37-40,42,46-
48,50,52,53,57,59-81,94,98,103], 26 from Asia [4,9,23,24,
28,34,36,44,54-56,58,82-86,88,89,91-93,96,100-102], eight
from North America [13,21,22,43,51,87,97,99], two from
multiple locations [49,90] and a further four from around
the rest of the world [33,41,45,95]. Gestational ranges for
the pregnant women varied across the studies, as did the
amount of blood taken and the volume actually used for
extracting DNA (see Additional file2: Table S1). The vast
majority of studies extracted DNA from blood plasma
(n = 74), with nine studies using blood serum [20,23,35,
50,59,64,77,78,97], five studies using both plasma and
serum [3,4,65,95,103], and two studies not stating which
was used [7,62]. Real-time quantitative (q) PCR was the
most commonly applied detection technique (n = 61),
with nested PCR used in 15 studies [25,28,34,45,56,58,
62,72,76,85,93,96,100,102,103], standard PCR used in a
further eleven studies [3,20,23,24,29,31,65,84,88,95,101],
and other methods used in three studies [47,55,82]. SRY
alone was used for fetal sex determination in 49 studies,
DYS14 alone in 17 studies [3,9,13,23,28,33,41,42,46,49,
57,58,65,68,76,100], both SRY and DYS14 in a further five
studies [7,27,32,40,69], with 19 other studies [20,21,24,
31,43,51,62,63,72,77,82,84,87,88,91,94,97,101,102] using
different markers including amelogenin (n = 6) [31,62,63
,72,91,102] or a combination of markers. Only four stud-
ies specifically recorded inconclusive results or failed
tests [7,27,29,52]. We excluded from the meta-analysis
data from studies that had no record on foetus sex.
In total we had available 115 2 × 2 contingency tables

from the 90 independent studies, containing 10,587
fetal sex test results. In order to create our primary
data set of one table per study, we made the following
decisions. First, where trimester information was avail-
able for a study but when different women were tested
in different trimesters, we summed cell counts across
trimesters to obtain the total (82 studies). In one study,
results for the same women were reported for each tri-
mester separately. For this study we selected data from
the first trimester only. In seven studies, more test
results were reported than there were women (i.e. at
least some women contributed multiple tests) and we
were unable to obtain woman-specific test results. For
these studies, we included all test results in the ana-
lysis, assuming independence of test results within the
study. We acknowledge that this may have resulted in
some spurious precision, but the proportion of infor-
mation in the meta-analysis to which this applies is
small.
The second dataset (investigating the effect of trimes-
ter) comprises 52 2 × 2 tables of test results from 35
studies incorporating 4,467 fetal sex test results where
the trimester of testing was specified: 26 studies contrib-
uted tables from the first trimester, 15 from the second
and nine from the third. The third dataset (investigating
the effect of week) comprises 55 2 × 2 tables from 13
studies covering 1,001 fetal sex test results where the
week of testing during the first trimester was specified.
Sensitivity and specificity
Study-level estimates of sensitivity and specificity for all
studies are presented in Figure 2. Figure 3 gives a graph-
ical display of these results, with sensitivity (true-positive
rate) on the vertical axis and the 1− specificity (false-
positive rate) on the horizontal axis. Most of the points
cluster around the top left of the graph, indicating the
high accuracy of the test. The prediction interval illus-
trates the upper and lower limits of where any future
pair of sensitivity and specificity is expected to lie.
In the primary bivariate meta-analysis, involving 90

studies with 10,587 tests, average sensitivity was 96.6%
(95% CI from 95.2% to 97.7%) and average specificity
was 98.9% (95% CI from 98.1% to 99.4%). Table 1
shows the summary estimates from these bivariate
meta-analyses, along with corresponding results from
separate analyses for each trimester when this informa-
tion was available. Average sensitivity and specificity did
not vary markedly by trimester (see Table 1). Test ac-
curacy was marginally higher in the second trimester,
but no statistically significant differences were found in
the meta-regression.
Two studies contributed substantially to heterogeneity

in sensitivities across studies [22,26]. After excluding
these studies from the bivariate analysis, overall sensitiv-
ity and specificity were very similar. A more marked ef-
fect was seen for the third trimester on omission of
these studies, in which sensitivity increased from 96.6%
to 97.8% (95% CI from 92.2% to 99.7%; prediction inter-
val from 65.4% to 100.0%), and specificity from 99.0% to
99.4% (95% CI from 96.4% to 100.0%; prediction interval
from 87.7% to 100.0%).
A small, but not statistically significant, improvement

in diagnostic test accuracy can be seen over prenatal
week (from 5th to 13th) in Additional file 2: Table S2,
based on the limited data available. At week 5, the
sensitivity and specificity are 93% (95% CI from 84%
to 98%) and 95% (95% CI from 87% to 99%) respect-
ively; at week 13, the sensitivity and specificity are 98%
(95% CI from 95% to 99%) and 99% (95%CI from 96%
to 100%) respectively. The odds ratio for sensitivity
and specificity are 1.19 and 1.21 per additional week
respectively.



Figure 2 Individual study estimates of sensitivity and 1-specificity of cffDNA diagnosis of fetus sex, ordered by year of publication.
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Of the four studies that reported inconclusive results
or failed tests, failures represented 11-24% of tests, these
pregnancies were generally re-tested at a later gestational
age using a second sample [7,27,29,52]. There were sev-
eral reported reasons for inconclusive, false negative and
false positive results including blood samples not being
processed appropriately within 48 hours of collection,
poor quality blood serum or plasma, variable or low
concentrations of cffDNA within the maternal blood
Table 1 Summary sensitivity and specificity based on bivariat

Data Median Sensitivity
(95% CI) [95% PI]

Primary analysis
(n = 10,587, 90 studies)

96.6 (95.2, 97.7) [64.4, 99.8

Breakdown by trimester
(n = 4,467, 35 studies)

First trimester
(n = 2,244, 26 studies)

95.0 (92.2, 97.3) [71.7, 99.4

Second trimester
(n = 1,662, 15 studies)

98.2 (95.2, 99.6) [64.9, 100

Third trimester
(n = 561, 9 studies)

96.6 (86.6, 99.7) [28.0, 100

CI = credible interval.
PI = prediction interval.
SD = standard deviation.
samples collected and tested, and the diagnostic thresh-
old used to determine fetal sex.
Investigation of covariates
Summary statistics for the analyses of covariates and
results of the meta-regression analyses investigating
other covariates in the primary data set (one 2 × 2 table
per study) are shown in Additional file 2: Table S3. The
use of serum for DNA extraction rather than plasma may
increase the accuracy of the test; in unadjusted models,
the odds ratios for serum versus plasma are 4.8 (95%CI
1.2 to 20.7) and 6.2 (95%CI 0.84 to 77) for sensitivity and
specificity, respectively. These correspond to improve-
ments in sensitivity from 96% to 99%, and in specificity
from 99% to virtually 100%. There was no discernable
difference between using SRY or DYS14 as the DNA
marker for fetal sex. The use of qPCR improved specifi-
city compared with other lab-based detection techniques
(though note that no studies using next generation se-
quencing platforms were included). The other lab techni-
ques (including conventional PCR and nested PCR)
decrease the sensitivity and specificity to 95% and 96%,
respectively. Increasing the volume of blood that DNA is
extracted from may increase both the specificity and sen-
sitivity. Finally, there is an indication of an improvement
in sensitivity over time.
Discussion
This review and meta-analysis of non-invasive prenatal
determination of fetal sex using cffDNA in maternal
blood, incorporates 10,587 tests and demonstrates the
test to be highly accurate in terms of both sensitivity
and specificity. The overall average sensitivity of using
cffDNA to determine fetal sex is 96.6% and the overall
specificity is 98.9%. These vary very little with trimester
or week of testing, indicating that the performance of
the test is reliably high. The most commonly used
method for detection and identification of cffDNA
e model with no covariates

Median specificity
(95% CI) [95% PI]

Heterogeneity SD
on logit

scale (sens)

Heterogeneity
SD on logit
scale (spec)

] 98.9 (98.1, 99.4) [75.8, 100.0) 1.4 1.7

] 98.8 (97.0, 99.7) [64.0, 100.0) 1.0 1.7

.0] 99.5 (98.2, 100.0) [77.0,100] 1.6 1.6

.0] 99.0 (95.4, 99.9) [70.6, 100.0] 1.8 1.3
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specific to the Y chromosome was qPCR, which
demonstrated increased specificity when compared
with other methods. A number of Y chromosome mar-
kers are available for detection purposes. Our analyses
did not show a discernable difference between SRY
and DYS14, but did suggest that these lead to slightly
better specificity than the other markers that had been
used in the studies. The majority of studies also used
fetal DNA extracted from plasma, and there is some
evidence that using fetal DNA extracted from serum
may produce slightly higher sensitivity and specificity.
However, although these findings produced statistically
significant 95% credible intervals, the confidence inter-
vals were very wide and so we would caution against
over-interpretation of the findings. Previous work has
shown that similar levels of cffDNA are detected in
both plasma and serum [4] and laboratories often use
automated and optimized methods for DNA extraction
regardless of whether they use serum or plasma. La-
boratories are also likely to try both the DYS and SRY
markers and settle with the marker that gives them
the most reliable and reproducible result in their
setting.
When compared to the systematic review and meta-

analysis published recently by Devaney et al. [11] the
current review utilized data on an additional 33 studies
and ~3,500 pregnancies (90 studies v 57 studies and
9,965 pregnancies v 6,541 pregnancies). Both reviews
show test performance to be reliably high with the in-
crease in data presented in the current review showing
small increases in both sensitivity (96.6% compared with
Devaney’s 95.4%) and specificity (98.9% compared with
Devaney’s 98.6%).
One limitation of this study was our inability to prop-

erly evaluate the proportion of inconclusive or uncer-
tain results, which we know to be problematic with this
technique and may vary with gestational age [7,104].
However, in the case of an inconclusive test result per-
formed early in pregnancy, it would still be possible to
retest at a later date. In addition, all literature-based
reviews are at risk of publication bias due to the sup-
pression of unwanted findings. We searched extensively
for studies and contacted experts in the area, but can-
not rule out the possibility that our sample of studies is
not fully representative.
The main implications for this test in relation to the

current clinical pathway would be that invasive testing
can be avoided in the case of a diagnosed female fetus. If
a female were to be incorrectly classified as male (false
positive), there would be no change to the current clin-
ical pathway. If a male fetus is incorrectly classified as a
female (false negative), or if a fetus is unclassified after
the first test, then invasive testing would be delayed
potentially resulting in reduced quality of care.
Genetic testing of DNA extracted by amniocentesis or
chorionic villus sampling is currently routine for pre-
natal testing. Both of these procedures take place later in
pregnancy than would be required by a methods using
cffDNA, and both carry a small but significant risk of
miscarriage, something that cffDNA does not. The
results of both this review and meta-analysis and the
analysis by Devaney et al. [11] show that the diagnostic
test of fetal sex determination using cffDNA is expected
to be close to 100%, it can be done early in pregnancy,
and that the test itself carries no risk of miscarriage sug-
gesting that we should seriously consider adopting this
test as the new gold standard first-line test for pregnan-
cies at risk of an X-linked condition. The test has been
successfully used from 7 weeks of gestation in some
NHS laboratories in the UK since 2003 following audit
results [104,105], where it has already reduced the need
for invasive diagnostic testing in high risk pregnancies.

Conclusions
Based on the updated data provided in this review and
meta-analysis we conclude that fetal sex can be deter-
mined with a high level of accuracy by analyzing cffDNA
after 5 weeks of gestation. It is hoped that use of this
method for non-invasive prenatal diagnosis could also
be extended for single gene disorders and although test-
ing is being developed, it is not currently offered on any
routine basis within Europe. Advances in genomic meth-
odology and technology continue to make tremendous
progress and these advances need faster and timelier
translation into clinical practice in order to provide cou-
ples with greater reproductive choice. Further research
is needed into the logistical requirements, the economic
considerations (including a possible value of information
analysis) and the ethical implications of offering an early
non-invasive test for fetal sex [106].
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