
Minkley et al. BMC Research Notes 2014, 7:466
http://www.biomedcentral.com/1756-0500/7/466
RESEARCH ARTICLE Open Access
Suffix tree searcher: exploration of common
substrings in large DNA sequence sets
David Minkley1, Michael J Whitney1, Song-Han Lin1, Marina G Barsky1,2, Chris Kelly1 and Chris Upton1*
Abstract

Background: Large DNA sequence data sets require special bioinformatics tools to search and compare them.
Such tools should be easy to use so that the data can be easily accessed by a wide array of researchers. In the past,
the use of suffix trees for searching DNA sequences has been limited by a practical need to keep the trees in RAM.
Newer algorithms solve this problem by using disk-based approaches. However, none of the fastest suffix tree
algorithms have been implemented with a graphical user interface, preventing their incorporation into a feasible
laboratory workflow.

Results: Suffix Tree Searcher (STS) is designed as an easy-to-use tool to index, search, and analyze very large DNA
sequence datasets. The program accommodates very large numbers of very large sequences, with aggregate size
reaching tens of billions of nucleotides. The program makes use of pre-sorted persistent “building blocks” to reduce
the time required to construct new trees. STS is comprised of a graphical user interface written in Java, and four C
modules. All components are automatically downloaded when a web link is clicked. The underlying suffix tree data
structure permits extremely fast searching for specific nucleotide strings, with wild cards or mismatches allowed.
Complete tree traversals for detecting common substrings are also very fast. The graphical user interface allows the
user to transition seamlessly between building, traversing, and searching the dataset.

Conclusions: Thus, STS provides a new resource for the detection of substrings common to multiple DNA
sequences or within a single sequence, for truly huge data sets. The re-searching of sequence hits, allowing wild
card positions or mismatched nucleotides, together with the ability to rapidly retrieve large numbers of sequence
hits from the DNA sequence files, provides the user with an efficient method of evaluating the similarity between
nucleotide sequences by multiple alignment or use of Logos. The ability to re-use existing suffix tree pieces
considerably shortens index generation time. The graphical user interface enables quick mastery of the analysis
functions, easy access to the generated data, and seamless workflow integration.

Keywords: Suffix tree, Genome, Substring, DNA sequence, STS
Background
Not only have Next Generation Sequencing (NGS) tech-
nologies made good on promises of cheap, high-throughput
DNA sequencing, but we are poised on the brink of a 3rd

generation of sequencing technologies [1,2]. Among the
new avenues of investigation enabled by these new tech-
nologies are: 1) a new wave of transcriptomics research
[3], 2) a dramatic expansion of the catalogue of organisms
for which a complete genome sequence is available, and
3) re-sequencing of multiple individual genomes for a
* Correspondence: cupton@uvic.ca
1Department of Biochemistry and Microbiology, University of Victoria, Ring
Road, Victoria, BC V8W 3P6, Canada
Full list of author information is available at the end of the article

© 2014 Minkley et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
species. Amazingly, the growth in DNA sequencing cap-
acity and databases has been faster than the growth of
computing capacity (cpu speed, or storage capabilities),
which has approximately doubled every 2 years; it is there-
fore not surprising that the analysis of such data sets de-
mands specialized bioinformatics tools. Equally important
in the design of bioinformatics tools is the inclusion of in-
tuitive interfaces so that researchers from both computer
science and biology fields can easily use them (i.e. the
software abstracts away as much underlying machinery as
possible). For example, often life scientists will shy away
from bioinformatics tools that are accessible only through
command-line interfaces (CLIs), have steep learning
curves, or don’t provide some kind of functionality for
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:cupton@uvic.ca
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Minkley et al. BMC Research Notes 2014, 7:466 Page 2 of 9
http://www.biomedcentral.com/1756-0500/7/466
further interaction with the initial results, i.e. they prefer
to use tools that function as “interactive pipelines”.
In comparative genomics, common analyses include

simple DNA alignments, searches for short sequence
motifs, and gene content comparisons that look for the
presence/absence of the genes in genomes being com-
pared. Each has limitations, for example: 1) in long DNA
sequences, rearrangements, including transpositions and
inversions, can make alignments impossible, 2) gene pre-
dictions may miss annotating some genes and promoters
(due to sequencing errors or poorly annotated reference
genomes), 3) motif searches are too often performed
using pre-existing databases of sequence patterns (no
potential to find novel patterns). Therefore, to supple-
ment these approaches in genome analysis, we have been
investigating a different type of query, one that searches
for short DNA sequences that are shared among a
variety of long DNA sequences without the need for the
sequences to be aligned. Our first tool, JaPaFi [4],
searches multiple sequences (up to about 500 kb) for
substrings, common to all sequences, of length S that
have no more than K differences between them, how-
ever, this is limited by the length of the sequences and
the diversity of the queries. After reviewing an approach
akin to short-read alignment in which the “short-reads”
would be extracted from a long query sequence, we con-
sidered a suffix-tree approach because this seemed likely
to work better when large numbers of sequences needed
comparing.
The suffix tree is a data structure that indexes a given

string (DNA sequence) such that many important string
operations can be performed very quickly. In particular,
suffix trees provide extremely fast searching for nucleo-
tide sub-strings, regardless of sequence size, once the
trees have been constructed. While the time required for
the initial construction of the suffix trees is proportional
to the size of the input sequence, the constructed trees
can be searched in time proportional to the length of the
query sequence (i.e. search times are independent of the
size of the dataset) [5]. Existing suffix tree-based search
tools, such as Mummer [6], STAN [7], and Vmatch [8],
are constrained by the need to maintain the constructed
suffix tree(s) in RAM. Such a restriction is important
because suffix trees are many times the size of the input
sequence, meaning that, for example, even a single
mammalian genome could generate suffix trees that
exceed the memory capacity of the average desktop
computer. Faster suffix tree tools, such as TRELLIS + [9],
DiGeST [10] (developed by MGB), and ERa [11] solve
the tree size limitation, but are accessible only through
the command line, and provide little to no pipelining
features, thus decreasing their appeal to life scientists.
Our tool, Suffix Tree Searcher (STS) allows the analysis

of large numbers of unaligned long DNA sequences
through the application of disk-based partitioned suffix
trees (based on MGB’s DiGeST). In the development of
STS, we have continued with the goal of providing po-
werful software for the bench scientist with minimal com-
puter science experience. Accordingly, the program is
accessed through a Java Web Start link on a web page,
which automatically installs or updates the program files
for the user. Interaction is conducted through a graphical
user interface (GUI) that allows the user to construct in-
dexes of the input sequences and quickly perform a variety
of queries on the sequence data. Results are presented to
the user in tabular form, can be sorted based on multiple
criteria, and are easily integrated into subsequent queries
with a mouse click, providing for a natural analysis work-
flow (see case studies). In addition, since the initial con-
struction of suffix trees is computationally expensive, STS
allows the user to load previously constructed suffix trees
for analysis. Thus, once the suffix tree forest has been
constructed for a given data set, future analyses can be
run much more quickly by skipping the most time-
consuming step.

Methods
Organization of the STS program
STS is comprised of four separate C modules, fastaST,
ssortST, mergeST, and searchST, which implement the
functionality, and a Java GUI. When the GUI is launched
via a Java Web Start link, the C programs are automa-
tically downloaded, and installed in a directory called exe
within the user’s home directory. The programs and GUI
are updated, if needed, each time STS is initiated. The
GUI (Figure 1) includes a text area that is used by the C
programs for reporting execution progress (and errors). It
is important to note that the underlying C programs are
hidden by the GUI, so that in normal usage the user does
not require any knowledge of their implementation. Cur-
rently, STS runs on Linux and OS X operating systems.
Users should also be aware that STS does not automatic-
ally search the reverse complement of sequences.
In order to analyse a data set, the sequence(s) must

first be imported, and then the trees must be built. Be-
hind the scenes, each GUI action invokes one or more
of the C modules to do the work. Specifically, the import
command invokes the fastaST module, and the build
tree command invokes the ssortST and mergeST modules
in order, while searches and traversals are conducted
through the searchST module.

fastaST
This module reads one or more FASTA formatted files,
each containing one or more of the DNA sequences to
be analyzed. fastaST is invoked when the user clicks the
Import fasta button in the Input window of the STS
GUI. All characters except A, C, G, and T are ignored

Figure 1 STS graphical user interface. Panel A: Input window. Panel B: Output window.

Minkley et al. BMC Research Notes 2014, 7:466 Page 3 of 9
http://www.biomedcentral.com/1756-0500/7/466
(Figure 1). However, non-ACTG characters are counted
and reported to the user. Imported sequences are asso-
ciated with a unique number that is displayed in the
Input window along with sequence names, lengths, seg-
ments from the beginning and ends of the sequences,
and whether the sequence contained any ‘N’ characters.

ssortST
This module uses in-memory “lightweight” suffix sorting
routines to sort individual or multiple nucleotide se-
quences so as to maximize use of computer memory
and minimize the disk-intensive merge phase that fol-
lows (implemented by mergeST). We use Mori’s suffix
sorter for this task [12], which has a memory usage of
5n bytes, where n is the sum size of the sorted input se-
quences. The sorter is modified to handle sorting of
multiple sequences, and also to calculate the longest
common prefix (LCP) values of adjacent suffixes, using
an algorithm due to Manzini [13]. The LCPs calculated
here help the subsequent merge to run much faster
when the data is repetitive (e.g. due to closely related
sequences).

mergeST
This module is a modified version of the DiGeST algo-
rithm, and forms the core of the suffix merge algorithm
mentioned above. Here, chunks of the sorted sequences
are merged together into a large lexicographically parti-
tioned suffix tree. Each partition is of a size that fits the
cache capacity of current computers, but can be adjusted
by the user, like most other STS parameters. One draw-
back of previous suffix tree construction algorithms was

Minkley et al. BMC Research Notes 2014, 7:466 Page 4 of 9
http://www.biomedcentral.com/1756-0500/7/466
the requirement for the constructed suffix trees to fit
into main memory. However, disk-based approaches
such as the DiGeST algorithm require only that the in-
put sequence fit into main memory. In addition, since
DiGeST compresses the input sequence to use only 2
bits per nucleotide, the amount of main memory, which
can be virtual memory, used is actually 1/4 the size of a
normal FASTA sequence encoded using 8 bits per cha-
racter (e.g. UTF-8 or ASCII).
The mergeST function offers speed improvements over

the original DiGeST algorithm when dealing with highly
similar sequences, such as those resulting from a com-
parison of the two human sex chromosomes. The merge
phase of DiGeST requires LCP values between lexico-
graphically adjacent suffixes when adding these strings to
a growing suffix tree. In DiGeST, these LCPs are generally
calculated using the first 32 nucleotide bases of each of
the two suffixes; these 32 bases are stored in memory
for each suffix. When two suffixes are sufficiently similar
(sharing at least their first 32 bases), the merge phase of
DiGeST must utilize a time-consuming disk read ope-
ration to retrieve subsequent nucleotides and calculate the
LCP. The mergeST function of STS utilizes LCP values
which were previously calculated by the ssortST function
when disk I/O was already taking place. As a result, STS
receives a modest increase in speed when processing very
similar sequences.

searchST
The purpose of this module is to examine the suffix trees
and provide result tables to the user. Results are catego-
rized as search results, or traversal results (Figure 1).
Searches can either be for an exact match to a provided
pattern, or for matches with some allowed number of base
substitutions from the pattern. Query patterns may con-
tain wildcard characters (‘*’) that will match any nucleo-
tide. Exact matches to patterns containing no wildcards
are found by following a single path from the root of a
suffix tree and are performed very quickly in time propor-
tional to the length of the query sequence. Searches for
patterns containing wildcards or allowing some number of
dissimilar bases between the query and a match will
analyze all permitted paths in the suffix tree. For example,
if a single wildcard exists in a query pattern, up to four
paths of the suffix tree (corresponding to the four stan-
dard nucleotide bases) will be explored. As a result, search
time has the potential to increase exponentially with re-
spect to the number of wildcards added or non-matching
bases permitted.
Traversal results require visiting the entire suffix tree

(a bottom-up tree traversal), which can take a significant
amount of time for very large trees. Much of this is file
access time, since the suffix tree is disk-based. Traversal
results report on the number of times patterns of various
lengths occur in the suffix tree dataset. An example of a
traversal result set is a report of the longest exact matches
among a set of inputs for each n, where n is the number
of times the exact sequence is found in all sequences in
the dataset.

Re-use of existing data
Since the trees generated from large data sets take signifi-
cant time to build, STS provides the option to save and
re-load trees using the Import tree button and to save and
re-load individual Results sets using the respective buttons
in the ‘Output’ view. STS does not support the ability to
incrementally add sequences to previously created suffix
trees.

User interface
The STS Java GUI consists of a single window with tabs
to navigate between the Input and Output views. The user
toggles between tabs using buttons at the top of the win-
dow. The Input screen is used to select sequence files for
analysis, initiate tree building, initiate the tree traversal
analysis for collecting common subsequence data, and run
tree searches for specific nucleotide strings. Results are
presented in panels in the Output screen, with new panels
added for each additional search. An important feature of
the Results window is the ability to sort the results by the
various attributes in the different columns; multiple sort-
ing rules can be combined, and individual results sets can
be exported into their own windows.
Sequences in the Results window, corresponding to rows

of the tables, can be used directly in subsequent searches
through a right-mouse-click menu. We have found this to
be a very useful feature, permitting the user to quickly and
intuitively gather more exact data about a particular sub-
string when needed. This function also works for a set of
substrings, as STS supports searches for multiple sub-
strings at once. The column sorting facilities enable the
user to assemble and then select the table rows of interest
for further analysis. The menu also permits users to view
one or more selected substrings in the context of their
surrounding sequences.

Tree traversals
Tree traversals create a complete summary of the rela-
tionships among all of the strings of nucleotides to identify
common patterns, and require examination of all nodes in
the suffix trees. We found this function to have a variety
of research applications, which are discussed below.
A basic tree traversal provides results in two tables. The

Standard N Results table provides information about the
different longest common substrings (LCS) that occur
exactly n times, for n = 2,3,4… without regard to which in-
put sequences they occur in. The single LCS that occurs
in exactly k inputs, for k = 2,3,4… is shown in the

Minkley et al. BMC Research Notes 2014, 7:466 Page 5 of 9
http://www.biomedcentral.com/1756-0500/7/466
Standard K Results table. The traversal analyses are modi-
fied using parameters accessed from the Settings button,
and the display of results is controlled using the Traverse
section of the Input window (Table 1).

Searching trees
One of the most important features of STS, and of suffix
trees in general, is that searching for specific sequences is
extremely fast. With the exception of selecting a query
sequence directly from the Results window, all other
searches are initiated from the Input window, which
contains a search box that is used to specify a variety of
queries (see Table 2 for query options). Multiple queries
can be searched in one run by entering the search terms
for each individual query sequence into the search box,
separated by semicolons. In addition, the user can specify
the maximum number of results desired, as well as the
number of mismatches and the location of any wildcards.
A mismatch allows a difference between the search se-
quence and the dataset sequences at any position in the
search sequence, while a wildcard is a difference at a
single, specific position within the search sequence. Wild-
cards are represented in the search box with a ‘*’, while
the number of mismatches is specified in a box adjacent
to the search box. The Output window displays the list of
hits, providing the names of sequences and hit position.
Importantly, the user can retrieve and export FASTA files
of the actual hit sequences by simply selecting the re-
quired rows of hits, using a right-mouse-click, and selec-
ting the Export Common Substring(s) option.

Results and discussion
Analysis of randomly generated sequences
In order to evaluate the performance of STS (speed,
maximum sequence lengths, maximum numbers of
Table 1 Parameters for tree traversals and display of traversa

Setting Expla

Traversal settings LCS occurrences Gathe

LCS inputs Gathe
speci

Number of occurrences For e
times

Number of inputs For e

Sets Fetch
settin

All singles Gathe

All pairs Gathe

Traversal results display Threshold length Comm

Display length Displ

Max results For th

Reference genome Gathe
sequences) in a way that was not biased by similarity bet-
ween the particular input sequences, sets of randomly-
generated FASTA-formatted DNA sequences were used
as inputs for testing. These and all other tests men-
tioned in this paper were conducted on an early 2008
iMac with 4GB of DDR2 RAM, a 2.8 Ghz Intel Core2
Duo processor and 6 MB of shared L2 cache. Due to the
significant amount of disk space required to store
on-disk suffix trees for large datasets, an external USB
2.0 hard drive was used in the creation and testing of
two datasets: the “10,000 randomly generated 1Mbp se-
quences” dataset and the human genome dataset. The
disk data transfer speed for these tests is potentially
throttled by the USB 2.0 connection. It is important to
note that the trees for any particular data set need only
be built once, after which point they reside on the hard
disk, and can later be reloaded in seconds at the user’s
discretion.
The maximum number of 10,000 nt sequences that

could feasibly be analyzed in one day was on the or-
der of 100,000 sequences, giving an aggregate size of
1,000,000,000 nt (Table 3). The maximum length of the
individual sequences that could be analyzed in a single
day (tested as a set of 10,000 sequences) was on the
order of 1,000,000 nt, giving an aggregate size of
10,000,000,000 nt (Table 4). Traversals always took lon-
ger than build times for data sets with a total size of
100,000,000 nt or more. The number of sequences in a
data set had a greater affect on traversal times than did
the lengths of individual sequences for a given total
number of nucleotides. However, this difference was
only appreciable when the total size of the data set was
on the order of 1,000,000,000 nt or greater. Search times
for all test datasets were less than one second, and all
used approximately 25 Mb of memory.
l results

nation

r LCSs occurring for n = 2, … up to the number specified by this setting

r the single LCS in k = 2, … input sequences up to the number
fied by this setting

ach number n specified, fetch the p longest LCSs occurring exactly n
, regardless of input sequence

ach number n specified, fetch the p longest LCSs occurring at least once

the p best results for each set of input sequences as specified by this
g. Sets are specified with braces. e.g. {2}{2,3}{2,3,4}{2,4}{5,6}

r a separate result set for each input sequence.

r a separate result set for each possible pair of input sequences

on substrings must be of at least this length to show up in result sets

ay LCSs only up to and including this length in the result sets

e non-standard result sets, restrict table size to this many rows

r result sets only for queries involving this input sequence

Table 2 Example input formats for search sequences

Input pattern Interpretation Comment

acgcgaatccgt Search all input sequences for pattern Multiple patterns are separated with a “;”

ac*cg*atccgt Search all input sequences for pattern.
“*” represents a wildcard, which matches all 4 nucleotides

Multiple patterns are separated with a “;”

“2, 12961, 12” Search input 2 for a 12 nt pattern beginning at position 12961 Multiple patterns are separated with a “;”.
Tandem repeats of the pattern may be
matched if they exist.

Minkley et al. BMC Research Notes 2014, 7:466 Page 6 of 9
http://www.biomedcentral.com/1756-0500/7/466
In order to test the effects of mismatches and wild-
cards on search times, a specific 13 nucleotide sequence
was searched for in a tree of 10,000 randomly generated
sequences of length 10,000 nt, specifying varying num-
bers of mismatches and wildcards (Table 4). Mismatches
affect search times more than wildcards because mis-
matches can occur at any position in the query sequence
whereas wildcards are restricted to specific positions.

Analysis of small genomes
While tests using randomly generated sequences are useful
in providing a general picture of performance relative to
data set size, they cannot accurately predict performance
for real sequences that have significant similarity to each
other. Therefore to provide a more realistic test case, STS
was used to analyze a data set containing every E. coli
genome available from GenBank [14] (62 genomes, June
2014), ranging in size from 3.9 to 5.7 million nt (Table 3).
The traversal time for 62 genomes was approximately
2.5 minutes, whereas the construction time (import + build)
was approximately 22 minutes. In contrast, a data set of 62
randomly generated sequences with the same number of
non-N bases as the E. coli data was constructed in seven
minutes and traversed in approximately 3 minutes. The
Table 3 Sequence summary and resource usage for tree cons

Tree

Dataset Size (Mbp) Time1 Rate (kbp/s)

10 random 10 kbp seqs 0.1 154 ms 649.4

100 random 10 kbp seqs 1.0 733 ms 1,364.3

1,000 random 10 kbp seqs 10.0 9.2 s 1,084.9

10,000 random 10 kbp seqs 100.0 1 m 56 s 861.3

100,000 random 10 kbp seqs 1,000.0 29 m 52 s 558.1

10,000 random 100 bp seqs 1.0 6.0 s 166.4

10,000 random 1 kbp seqs 10.0 13.7 s 732.1

10,000 random 100 kbp seqs 1,000.0 25 m 42 s 648.6

10,000 random 1 Mbp seqs2 10,000.0 12 h 29 m 222.5

62 E. coli genomes 310.5 21 m 55 s 235.7

62 random seqs w/ E. coli lengths 310.5 7 m 3 s 734.0

4 Chlorella virus genomes 0.9 815 ms 1,074.5

Human genome (hg38)2 3,209.3 3 h 58 m 223.7
1Tree construction time includes time to both Import sequences and Build the suffix
2The “10,000 random 1 Mbp” and human genome datasets utilized an external USB
3-fold discrepancy between the build time for the E. coli
and randomly-generated sequences illustrates the need to
supplement testing on randomly generated sequences with
testing on real data sets.
As noted above, traversals find, among other results, the

longest sequences that are present n times in the data set.
Once these or any other sequences have been identified in
the results table, a right-click menu provides the ability to
obtain more specific information, such as identifying the
inputs that contain a selected motif, or highlighting a
motif in the context of the surrounding sequence. Further-
more, any sequence presented in the program window
can be copied for pasting into other sequence analysis
programs, or other parts of STS, to provide a smooth
transition between different analyses.
For example, from traversing a single E. coli genome

[GenBank:FN554766.1], the 3 longest sequences found n
times in the genome, where n = 2, 3, and 4, were 5092 nt
(n = 2), 1292 (n = 3) and 818 nt (n = 4). After a pattern
search of the 5092 nt sequence revealed the two loca-
tions in the genome, further investigation indicated that
these regions corresponded to 16S and 23S rRNA, and
these results were confirmed with BLASTN [15]. Simi-
larly, the 1292 nt and 818 nt patterns were found in 3
truction and traversal of test datasets

construction Full traversal

Peak memory (Gbp) Disk usage Time Peak memory (Mbp)

1.72 4.0 Mb 21 ms 2.3

1.72 39.7 Mb 150 ms 22.9

1.72 397.1 Mb 3.8 s 24.0

1.72 3.9 Gb 5 m 10s 24.1

1.72 38.8 Gb 7 h 23 m 25.2

1.72 111.6 Mb 1.7 s 22.0

1.72 459.7 Mb 25.5 s 24.1

1.72 38.5 Gb 51 m 22 s 24.3

1.72 384.7 Gb 9 h 18 m 24.0

1.72 11.9 Gb 2 m 33 s 24.0

1.72 11.9 Gb 2 m 56 s 24.0

1.72 41.8 Mb 203 ms 24.0

2.07 117.2 Gb 45 m 33 s 24.1

index.
2.0 hard drive.

Table 4 Effect of mismatches and wild cards on search
times

Sequence Mismatches Hits Search time

agtcagtactgga 0 2 461 ms

1 61 1.4 s

2 1075 1.8 s

3 12543 6.8 s

4 98684 18.9 s

agtcagtac*gga 0 4 28 ms

1 234 1.4 s

2 3757 2.5 s

3 39076 8.6 s

4 277422 33.0 s

agt*agtac*gga 0 30 76 ms

1 807 5.9 s

2 12777 6.4 s

3 118420 17.4 s

4 754861 84.3 s

agt*agtac*g*a 0 93 94 ms

1 2923 32.7 s

2 41372 1 m 0 s

3 350292 1 m 27 s

4 19708731 2 m 31 s

Searches were performed on trees constructed from a dataset of 10,000
randomly-generated 10 kbp sequences.

Minkley et al. BMC Research Notes 2014, 7:466 Page 7 of 9
http://www.biomedcentral.com/1756-0500/7/466
and 4 23S rRNAs throughout the genome, respectively.
Although, as used above, the LCS approach to finding
common motifs is inherently superficial – of the 7 listed
23S rRNA in this E. coli genome, only up to 4 were iden-
tified in this process – it provides a quick overview of
repeated regions within a single genome.
To further demonstrate the investigative utility of the

program, STS was used to examine the similarities
among 4 Chlorella viruses: ATCV-1, MT325, NY2A, and
PBCV-1 (sequences obtained from Greengene [16]).
Both PBCV-1 and NY2A infect Chlorella NC64A, while
MT325 and ATCV-1 each infect different Chlorella
hosts, respectively. Therefore, it was hypothesized that
PBCV-1 and NY2A would have more motifs in common
than either MT325 or ATCV-1 [17].
Focusing first on the patterns present in all 4 genomes,

yielded by a traversal (Table 3), we visualized their loca-
tions in the genome using VGO [18], and found that
these motifs were most common between genes, sug-
gesting that they were promoters or other regulatory
motifs. A search for the most frequently occurring 10 nt
pattern common to all 4 genomes, allowing for one mis-
match, resulted in 255 hits, which were then exported to
a single FASTA file through the right-click menu. The
FASTA file was used to draw a logo (figure not shown),
resulting in the consensus pattern TTTGTCGATA, a
motif consistent with a putative promoter previously
suggested by Fitzgerald et al. [17]. In addition, Fitzgerald
et al. identified 3 other potential promoters, two of
which were found in our STS results. The fourth puta-
tive promoter, ARNTTAANA, was likely not found due
to the multiple wildcards (‘R’ and ‘N’) in the sequence. It
should be noted that STS only indexes and searches the
DNA strands given in the input and search sequences,
respectively (i.e. the program does not convert any se-
quence to its reverse-complement). Accordingly, to find
a particular pattern on both strands, the reverse com-
plement of the pattern should be searched; however,
restricting the search to one strand at a time greatly sim-
plifies the evaluation of the output for the user.
Closer analysis of the other results revealed the presence

of DNA patterns encoding PAPK repeats in certain
proteins. This finding has been previously reported by
Onimatsu et al. [19]. These two motifs were found at
much higher frequency in NY2A and PBCV1, supporting
our original hypothesis based on similarity of host dis-
crimination. As shown above, when analyzing multiple
genomes, STS allows for a simple and quick overview of
all types of common motifs between sequences through
traversals, without being restricted by the size or number
of the inputs. This example also demonstrates how STS
facilitates fast pattern searching with mismatches, sorting
of results based on location, and easy exporting of results
for use with other tools. The value of STS in this example
is that these viruses, although related, are so different as
to make the generation of a meaningful multiple sequence
alignment almost impossible.

Analysis of mammalian genomes
With the advent of the “$1000 human genome” on the
horizon and the decreasing costs of sequencing options,
working with data sets as large as the human genome may
soon become a much more frequent occurrence. To simu-
late such a scenario, the human genome was analysed with
STS (Table 3). Importing the FASTA files (containing
3.2 billion nt), sorting the individual chromosomes, and
building the tree, which occupied 117.2 GB of disk space,
took approximately four hours total. Tree traversals re-
quired approximately 45 minutes, depending on the com-
plexity of the search. The longest sequence found to occur
twice in the human genome was a 2,449,175 nt segment
present on the X and Y chromosomes (in the pseudoauto-
somal region).
The LCS found in all 24 chromosomes was 294 nt

long and was present a total of 108 times; finding the
locations of these 108 sequences took approximately
5 seconds and revealed that they were not significantly
clustered (data not shown). This LCS was found to be a
member of the Alu family, highlighting how STS could

Minkley et al. BMC Research Notes 2014, 7:466 Page 8 of 9
http://www.biomedcentral.com/1756-0500/7/466
be used, in this case, to very quickly find any particular
subset of Alu sequences; use of wild cards would also
allow greater variation in the sequences discovered. The
analysis could be modified to find the 500 most fre-
quently occurring sub-sequences common to all chro-
mosomes by setting the Number of Inputs to 24 in the
Traverse Settings. It would then be simple to retrieve
these sequences for further analysis and comparison.
Since most of the time required by traversals is spent

reading the sub-tree files from disk, it is most efficient to
perform fewer, but more comprehensive searches, e.g. by
selecting All singles from the Sets section of the Traverse
Settings, which effectively generates traversal data for the
individual chromosomes. By decreasing the number of
searches, the same amount of information can be yielded,
with reduced disk I/O - and thus time - cost.
Traversal times can be significantly decreased by de-

selecting the LCS inputs setting, which removes the re-
quirement for STS to calculate the LCSs that occur in
exactly k inputs (the second table produced by a traversal
with default settings). In order to produce this table, the
searchST phase of STS must associate each substring in
the suffix tree with all of the input sequences it is present
in. Determining these associations for each node in the
suffix tree results in a significant slowdown that is more
pronounced for data sets with larger numbers of se-
quences. For example, a traversal of a tree of 1,000,000
randomly generated 1,000 nt sequences took 69.8 hours
with default parameters, but de-selection of the LCS
inputs setting reduced this time to 12.7 minutes.

Improvements over other tools
STS was designed with the goal of giving life sciences re-
searchers access to the powerful sequence analysis cap-
abilities provided by suffix trees, while maintaining a
minimum of effort on the part of the researcher. Existing
suffix tree-based analysis tools, such as MUMmer and
STAN require that the suffix trees, which are often many
times the size of the input sequence, fit entirely into
RAM during construction; this places severe limits on
the total size of the input sequences. In comparison,
STS uses a disk-based approach to suffix tree construc-
tion, requiring only that a compressed copy of the input
sequence fit in main memory. As a result, STS requires
only 2 bits of memory per nucleotide, compared to the
minimum 12.5 bytes (100 bits) per nucleotide required
by MUMmer.
Although disk-based suffix tree construction algo-

rithms exist that are faster than the one used by STS
(e.g. B2ST [20], and ERa), the existing implementations
of these algorithms lack analytic capabilities such as LCS
traversals, require manual compilation, and are acces-
sible only through CLIs, making usage more difficult for
the non-technical user. In comparison, STS provides a
GUI, requires no additional set up following download,
and adds a variety of searching and analysis features,
giving researchers who have little computer science know-
ledge an intuitive way to interact with some of the most
powerful suffix tree algorithms available. Users have only
to assemble one or more FASTA-formatted files of their
sequences to be able to search and manipulate very large
sequence data sets on a desktop computer. The STS inter-
face also provides easy access to the results, in a window
with cut/paste features, which enables users to quickly ex-
port data into other sequence analysis programs.

Future improvements
A number of areas have been targeted for improvement in
the next version of STS. One present limitation is the fact
that two files are presently created on disk for each input
sequence – one binary file, and one text file. Although we
encountered no difficulties working with very large data
sets on a basic desktop machine, we did find that using a
dedicated hard drive was useful for large datasets to
1) avoid system problems if STS filled up the drive, and
2) allow rapid reformatting of the drive in order to quickly
delete the millions of files that accrued during testing, ana-
lysis and debugging. We are currently exploring techniques
for decreasing the amount of disk space occupied by the
suffix trees.
Another current limitation is that the traverse function

may identify certain repeating sequences multiple times at
different lengths. For example, a trinucleotide CAG repeat
might also be reported as a hexanucleotide CAGCAG re-
peat if no longer LCS exists for the given n-value. However,
the traversal output reports the number of sequences
present for a given n as NC, and these sequences can
be identified by customizing the number of occurrences
traverse setting. We hope to eliminate this limitation in
future releases.
An additional limitation is presented by the large number

of ‘N’s in mammalian genomes. Converting large blocks of
Ns to wildcards could cause misleading matches to other
LCSs during traversals, potentially eclipsing any given LCS
for a value of n (where n is the number of times that the
LCS occurs in the data set), and otherwise skewing results.
In order to avoid this problem, STS ignores ‘N’ characters
in the input sequences. However, the numbers of individual
‘N’s and blocks of ‘N’s in each input are still counted and
displayed in the Input window. While this approach poten-
tially generates a small number of new sub-sequences (e.g.
ACGT from ACNGT, instead of AC*GT), the method has
been found by Barsky et al. [10] to cause no problems when
using the generated suffix trees .

Conclusion
STS provides a new method to summarize common se-
quence strings and perform a variety of search functions

Minkley et al. BMC Research Notes 2014, 7:466 Page 9 of 9
http://www.biomedcentral.com/1756-0500/7/466
on large DNA data sets without the need for these
sequences to be aligned. Although suffix trees have been
previously used in a variety of bioinformatics applica-
tions, our implementation of disk-based suffix trees al-
lows both the construction and analysis of indices from
very large DNA data sets. The program is web-delivered,
platform-independent, and accessed via a user-friendly
GUI, allowing for a more intuitive workflow, and poten-
tial integration into a genome browser.

Availability and requirements
Project name: Suffix Tree Searcher (STS).
Project home page: http://athena.bioc.uvic.ca/virology-

ca-tools/sts/. A Quick Start Guide and Manual are
available.
Operating System(s): Mac OS X (Intel), Linux.
Programming language: C, Java.
Other requirements: Java 1.6.
License: GNU General Public License.
Any restrictions to use by non-academics: None.

Competing interests
The authors declare that they have no competing interests.

Authors’ contribution
MJW was an initial designer and programmer of the STS tool, which was
based on prior work of MGB; DM continued with programming and
designed, implemented the routines for searching with mismatches and wild
cards, and performed testing and debugging; SHL implemented the Java
interface; CK helped test the tool; CU contributed ideas for features and
display requirements, tested the program and wrote the manuscript with
DM, MJW and CK. All authors have read and approved the manuscript.

Acknowledgements
This work was funded by a Canadian NSERC Discovery grant to CU and by
NIAID grant HHSN266200400036C. We would like to thank all the University of
Victoria Co-op students that have contributed to the Virology.ca Bioinformatics
Resource, and Drs. Ulrike Stege and Alex Thomo for helpful discussions.

Author details
1Department of Biochemistry and Microbiology, University of Victoria, Ring
Road, Victoria, BC V8W 3P6, Canada. 2Current address: Ontario Institute for
Cancer Research, MaRS Centre, Toronto, ON M5G 0A3, Canada.

Received: 12 February 2014 Accepted: 18 July 2014
Published: 23 July 2014

References
1. Bentley S: Taming the next-gen beast. Nat Rev Microbiol 2010, 8(3):161.
2. Metzker ML: Sequencing technologies - the next generation. Nat Rev

Genet 2010, 11(1):31–46.
3. van Vliet AHM: Next generation sequencing of microbial transcriptomes:

challenges and opportunities. FEMS Microbiol Lett 2010, 302(1):1–7.
4. Sadeque A, Barsky M, Marass F, Kruczkiewicz P, Upton C: JaPaFi: A Novel

Program for the Identification of Highly Conserved DNA Sequences.
Viruses 2010, 2(9):1867–1885.

5. Gusfield D: Introduction to Suffix Trees. In Algorithms on Strings, Trees,
and Sequences: Computer Science and Computational Biology. Cambridge:
Cambridge University Press; 1997:89–93.

6. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL: Versatile and open software for comparing large genomes.
Genome Biol 2004, 5(2):R12.

7. Nicolas J, Durand P, Ranchy G, Tempel S, Valin A-S: Suffix-tree analyser
(STAN): looking for nucleotidic and peptidic patterns in chromosomes.
Bioinformatics 2005, 21(24):4408–4410.
8. The Vmatch large scale sequence analysis software. [http://vmatch.de/]
9. Phoophakdee B, Zaki MJ: TRELLIS+: an effective approach for indexing

genome-scale sequences using suffix trees. Pac Symp Biocomput 2008,
13:90–101.

10. Barsky M, Stege U, Thomo A, Upton C: A new method for indexing
genomes using on-disk suffix trees. In CIKM ’08. New York, New York, USA:
ACM Press; 2008:649.

11. Mansour E, Allam A, Skiadopoulos S, Kalnis P: ERA: Efficient Serial and
Parallel Suffix Tree Construction for Very Long Strings. Proceedings of the
VLDB Endowment 2011, 5(1):49–60.

12. Libdivsufsort. [http://code.google.com/p/libdivsufsort/]
13. Manzini G: Two Space Saving Tricks for Linear Time LCP Array

Computation. In Algorithm Theory - SWAT 2004. Berlin, Heidelberg:
Springer-Verlag; 2004:372–383.

14. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J,
Sayers EW: GenBank. Nucleic Acids Res 2013, 41(D1):D36–D42.

15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215(3):403–410.

16. Greengenes. [http://greengene.uml.edu/]
17. Fitzgerald LA, Boucher PT, Yanai-Balser GM, Suhre K, Graves MV, Van Etten JL:

Putative gene promoter sequences in the chlorella viruses. Virology 2008,
380(2):388–393.

18. Upton C, Hogg D, Perrin D, Boone M, Harris NL: Viral genome organizer:
a system for analyzing complete viral genomes. Virus Res 2000,
70(1–2):55–64.

19. Onimatsu H, Suganuma K, Uenoyama S, Yamada T: C-terminal repetitive
motifs in Vp130 present at the unique vertex of the Chlorovirus capsid
are essential for binding to the host Chlorella cell wall. Virology 2006,
353(2):433–442.

20. Barsky M, Stege U, Thomo A, Upton C: Suffix Trees for Very Large
Genomic Sequences. In CIKM’09, November 2–6, 2009, Hong Kong, China.
New York, New York, USA: ACM Press; 2009:1–4.

doi:10.1186/1756-0500-7-466
Cite this article as: Minkley et al.: Suffix tree searcher: exploration of
common substrings in large DNA sequence sets. BMC Research Notes
2014 7:466.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://athena.bioc.uvic.ca/virology-ca-tools/sts/
http://athena.bioc.uvic.ca/virology-ca-tools/sts/
http://vmatch.de/
http://code.google.com/p/libdivsufsort/
http://greengene.uml.edu/

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Organization of the STS program
	fastaST
	ssortST
	mergeST
	searchST
	Re-use of existing data
	User interface
	Tree traversals
	Searching trees

	Results and discussion
	Analysis of randomly generated sequences
	Analysis of small genomes
	Analysis of mammalian genomes
	Improvements over other tools
	Future improvements

	Conclusion
	Availability and requirements

	Competing interests
	Authors’ contribution
	Acknowledgements
	Author details
	References

