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Abstract

Background: The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the
mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association
studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin
resistance, type 2 diabetes mellitus, and metabolic syndrome. The aim of this study was to examine the genetic
association between polymorphisms in UCP2 and UCP3 and metabolic data in dogs.

Results: We identified 10 SNPs (9 intronic and 1 exonic) and 4 indels (intronic) in UCP2, and 13 SNPs (11 intronic
and 2 exonic) and one indel (exonic) in UCP3, by DNA sequence analysis of 11 different dog breeds (n = 119). An
association study between these UCP2 and UCP3 variants and the biochemical parameters of glucose, total
cholesterol, lactate dehydrogenase and triglyceride in Labrador Retrievers (n = 50) showed that none of the UCP2
polymorphisms were significantly associated with the levels of these parameters. However, four UCP3 SNPs (intron
1) were significantly associated with total cholesterol levels. In addition, the allele frequencies of two of the four
SNPs associated with higher total cholesterol levels in a breed that is susceptible to hypercholesterolemia (Shetland
Sheepdogs, n = 30), compared with the control breed (Shiba, n = 30).

Conclusion: The results obtained from a limited number of individuals suggest that the UCP3 gene in dogs may be
associated with total cholesterol levels. The examination of larger sample sizes and further analysis will lead to
increased precision of these results.
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Background
The uncoupling proteins (UCPs) in the mitochondrial
inner membrane are members of the mitochondrial
anion carrier protein family [1,2]. Mammals have five
UCP homologs, of which UCP1, UCP2, and UCP3 are
closely related, while UCP4 and UCP5 are more diver-
gent from the other UCPs [3].
Based on genetic association studies, UCP2, UCP3, or

both are reportedly associated with obesity, insulin re-
sistance, type 2 diabetes mellitus, and metabolic syn-
drome in humans [4-11]. For example, a SNP in the 5′
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untranslated region in human UCP3, the UCP3 -55CT
SNP, is known to be a genetic marker associated with
mRNA expression [12], elevated high density lipoprotein
cholesterol levels, a reduced body mass index (BMI),
weight, waist circumference, waist to hip ratio, fat mass,
low density lipoprotein (LDL) cholesterol, and total
cholesterol (T-Cho) [13-15].
The treatment and prevention of obesity and metabolic-

related diseases are also clinically important in dogs
[16-25]. Our previous report showed that the nucleotide
sequences, predicted amino acid sequences and the gen-
omic structures of human UCP2 and UCP3 are highly
homologous to the canine orthologs [26,27]. In this study,
we investigate whether the dog UCP2 and UCP3 genes
are associated with alterations in metabolism.
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Results and discussion
Figure 1 shows a schematic representation of the canine
UCP2 and UCP3 genes and the identified DNA poly-
morphisms from 119 animals from 11 breeds. For ana-
lysis of the dog UCP2 gene, six regions were individually
amplified from genomic DNA and sequenced. We then
identified 10 SNPs (9 intronic and 1 exonic) and 4 indels
(intronic) in UCP2 (Figure 1, Additional file 1). In the
dog UCP3 gene, 13 SNPs (11 intronic and 2 exonic) and
1 indel (exonic) were revealed by sequencing nine re-
gions of this gene (Figure 1, Additional file 1).
To test the association between the dog UCP2 and

UCP3 genes and metabolic data, we determined the
genotype of 50 Labrador Retrievers for each of 14 poly-
morphic sites (10 SNPs and 4 indels) in the UCP2 gene,
and examined whether any of the genotypes were associ-
ated with biochemical measurements of glucose (GLU),
total cholesterol (T-Cho), lactate dehydrogenase (LDH),
or triglyceride (TG). To exclude any contamination by
disease of the animals, we selected Labrador Retrievers
that had undergone a health examination for breeding
for guide dogs by the Kyushu Guide Dog Association.
The average of measurements was calculated with re-

spect to the genotype group. Nine of the 14 loci in the
UCP2 gene were polymorphic in this population of Lab-
rador Retrievers. None of these DNA polymorphisms in
the UCP2 gene were significantly associated with any of
the biochemical parameters in this study (Additional
file 2). We also subjected the 14 polymorphic sites (13
SNPs and 1 indel) in the UCP3 gene to this association
Figure 1 Schematic representation of the DNA polymorphisms detect
▬: Intron │: SNP or INDEL : PCR Fragment. The position of identified
methionine ATG codon as the +1 revealed in exon. In case of intron, a pos
previous exon, while a negative number indicates the number of nucleotid
analysis. Ten of the 14 sites were polymorphic in this
population of Labrador Retrievers. There were no sig-
nificant differences between genotype and GLU, LDH, or
TG measurements for any polymorphic site. However,
the T-Cho levels differed significantly among the geno-
type groups at four sites: −4399C/T, −4339T/C, −930T/
C and -803C/T in intron 1 of the UCP3 gene (UCP 3 in-
tron1). The average T-Cho levels in dogs carrying CC or
CT at -4399 C/T were 273.5 ± 49.0 and 237.2 ± 53.3, re-
spectively. The average T-Cho levels for the TT, TC, or
CC genotypes at -4339T/C and -930T/C were 264.3 ±
49.6, 276.9 ± 49.5, and 233.5 ± 51.2, respectively. Those
for CC or CT at -803C/T were 271.6 ± 49.5 and 239.1 ±
54.5, respectively (Table 1). The genotype distributions
were in a Hardy–Weinberg equilibrium.
Shetland Sheepdogs are considered to have a predis-

position to primary hyperlipidemia as determined by the
levels of cholesterol, triglycerides, and free fatty acids
[28,29]. Therefore, we investigated the distribution of ge-
notypes for SNPs and indels of the UCP2 and UCP3
genes in a population of Shetland Sheepdogs (n = 30).
Shiba (n = 30) were also tested as a comparative contrast
breed in this study. Statistically significant differences in
allele frequency between the two breeds were found in five
of the 14 polymorphic sites in UCP2 (−3629C/G, −2931A/
T, −748G/A, −636A/G and IVS6-133delTCTCCCC,
Additional file 3). Four SNPs (−4339T/C, −930T/C,
143A/C and IVS3+121T/C) of the 14 UCP3 poly-
morphic sites were significantly different in allele fre-
quency between the two breeds (Table 2). Despite the
ed in the UCP2 and UCP3 genes in dog. □: Exon(UTR) ■: Exon(CDS)
DNA polymorphism was numbered from the A of the initiator
itive number indicates the number of nucleotides away from the
e away from the next exon.



Table 1 Association analysis of UCP3 DNA polymorphisms with biochemical parameters among healthy Labrador
Retrievers

DNA polymorphism Genotype GLU T-Cho LDH TG

UCP3 CC (34) 97.1 ± 8.4 273.5 ± 49.0 55.9 ± 18.0 44.8 ± 21.1

−4399C/T CT (16) 98.8 ± 14.5 237.2 ± 53.3 55.7 ± 13.5 49.4 ± 24.8

TT (0) - - - -

CC vs CT + TT 0.597 0.021* 0.965 0.504

UCP3 TT (8) 94.5 ± 5.4 264.3 ± 49.6 55.3 ± 13.7 40.0 ± 13.5

−4339T/C TC (27) 96.3 ± 11.5 276.9 ± 49.5 58.2 ± 20.9 50.4 ± 24.8

CC (15) 101.7 ± 10.4 233.5 ± 51.2 51.9 ± 5.3 42.3 ± 20.5

TT vs TC + CC 0.366 0.890 0.914 0.388

TT + TC vs CC 0.079 0.011* 0.279 0.408

UCP3 CC (15) 94.4 ± 11.9 255.5 ± 52.6 56.9 ± 16.1 51.2 ± 23.2

−4010C/T CT (29) 98.7 ± 10.2 270.2 ± 52.2 56.5 ± 18.5 43.2 ± 21.5

TT (6) 100.7 ± 8.6 237.7 ± 54.7 50.0 ± 0.0 48.7 ± 24.6

CC vs CT + TT 0.159 0.580 0.763 0.310

CC + CT vs TT 0.462 0.234 0.362 0.782

UCP3 TT (8) 94.5 ± 5.4 264.3 ± 49.6 55.3 ± 13.7 40.0 ± 13.5

−930T/C TC (27) 96.3 ± 11.5 276.9 ± 49.5 58.2 ± 20.9 50.4 ± 24.8

CC (15) 101.7 ± 10.4 233.5 ± 51.2 51.9 ± 5.3 42.3 ± 20.5

TT vs TC + CC 0.366 0.890 0.914 0.388

TT + TC vs CC 0.079 0.011* 0.279 0.408

UCP3 CC (35) 96.9 ± 8.4 271.6 ± 49.5 55.7 ± 17.7 44.5 ± 20.9

−803C/T CT (15) 99.5 ± 14.8 239.1 ± 54.5 56.1 ± 13.9 50.5 ± 25.2

TT (0) - - - -

CC vs CT + TT 0.431 0.045* 0.950 0.388

UCP3 TT (15) 94.4 ± 11.9 255.5 ± 52.6 56.9 ± 16.1 51.2 ± 23.2

IVS3+26T/C TC (29) 98.7 ± 10.2 270.2 ± 52.2 56.5 ± 18.5 43.2 ± 21.5

CC (6) 100.7 ± 8.6 237.7 ± 54.7 50.0 ± 0.0 48.7 ± 24.6

TT vs TC + CC 0.159 0.580 0.763 0.310

TT + TC vs CC 0.462 0.234 0.362 0.782

UCP3 GG (15) 94.4 ± 11.9 255.5 ± 52.6 56.9 ± 16.1 51.2 ± 23.2

IVS3+69G/A GA (29) 98.7 ± 10.2 270.2 ± 52.2 56.5 ± 18.5 43.2 ± 21.5

AA (6) 100.7 ± 8.6 237.7 ± 54.7 50.0 ± 0.0 48.7 ± 24.6

GG vs GA + AA 0.159 0.580 0.763 0.310

GG + GA vs AA 0.462 0.234 0.362 0.782

UCP3 GG (15) 94.4 ± 11.9 255.5 ± 52.6 56.9 ± 16.1 51.2 ± 23.2

IVS5-115G/C GC (29) 98.7 ± 10.2 270.2 ± 52.2 56.5 ± 18.5 43.2 ± 21.5

CC (6) 100.7 ± 8.6 237.7 ± 54.7 50.0 ± 0.0 48.7 ± 24.6

GG vs GC + CC 0.159 0.580 0.763 0.310

GG + GC vs CC 0.462 0.234 0.362 0.782

UCP3 TT (15) 94.4 ± 11.9 255.5 ± 52.6 56.9 ± 16.1 51.2 ± 23.2

IVS5-100T/C TC (29) 98.7 ± 10.2 270.2 ± 52.2 56.5 ± 18.5 43.2 ± 21.5

CC (6) 100.7 ± 8.6 237.7 ± 54.7 50.0 ± 0.0 48.7 ± 24.6

TT vs TC + CC 0.159 0.580 0.763 0.310

TT + TC vs CC 0.462 0.234 0.362 0.782

Udagawa et al. BMC Research Notes 2014, 7:904 Page 3 of 9
http://www.biomedcentral.com/1756-0500/7/904



Table 1 Association analysis of UCP3 DNA polymorphisms with biochemical parameters among healthy Labrador
Retrievers (Continued)

UCP3 II (15) 94.4 ± 11.9 255.5 ± 52.6 56.9 ± 16.1 51.2 ± 23.2

1106delAAG ID (29) 98.7 ± 10.2 270.2 ± 52.2 56.5 ± 18.5 43.2 ± 21.5

DD (6) 100.7 ± 8.6 237.7 ± 54.7 50.0 ± 0.0 48.7 ± 24.6

II vs ID + DD 0.159 0.580 0.763 0.310

II + ID vs DD 0.462 0.234 0.362 0.782

Data are expressed as the mean ± SD.
p-values were calculated by ANOVA. * and bold: p < 0.05.
I: insertion, D: deletion, IVS: intervening sequence.
Loci which were not observed polymorphism in Labrador retriever, or were not detected p-value are not shown.
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different genetic background in each of the dog breeds
[30-32], the different allele frequencies in the UCP2
and UCP3 polymorphic site between the two breeds
may result from the susceptibility of Shetland Sheep-
dogs to hypercholesterolemia in a limited number of
individuals.
The T allele at -4339T/C and -930T/C located in the

UCP3 intron 1 is associated with higher T-Cho levels, as
shown by two different experiments: the association be-
tween polymorphisms and metabolic data (Table 1), and
the distribution of allele of genotype in the breed that is
susceptible to hypercholesterolemia (Table 2). These re-
sults suggest that the dog UCP3 gene might be associated
with T-Cho levels in a limited number of individuals.
It is known that the peroxisome proliferator activated

receptors (PPAR) ligands activate UCP3 expression
[33,34]. The UCP3 intron 1 contains that the putative
binding elements of MyoG/MyoD, PPARγ/RXRα and
SP1/SP3 that enhanced the UCP3 gene transcription
mainly regulated by PPARs in hamster, rat, and mouse
[33]. Recently, we find the similar nucleotide sequences
of the PPARγ/RXRα element in the dog UCP3 intron 1
(Canine Genome Draft, NC_006603.3). These findings
imply that the dog UCP3 intron 1 may be associated
with regulation of UCP3 gene expression. Further stud-
ies will be needed to demonstrate whether PPAR li-
gands bind or not this intronic region in dog.
With each genetic study, a different sample size is used

to identify the candidate gene associating with genotypes
and phenotypes in common diseases (multifactorial dis-
eases) and/or single gene disorders. For instance, genome-
wide association studies (GWAS) have reported the
candidate gene associated with a mild form of dispro-
portionate dwarfism using 23 cases and 37 controls
[35], atopic dermatitis using 91 cases and 88 controls
[36], and the chromosomal region of Patellar Luxation
using 45 cases and 40 controls [37]. Some of the candi-
date genes were also tested using more than a hundred
samples. The examination of larger sample sizes and
further analysis will lead to increased precision of our
results. In addition, because the association analysis in
this study was performed using only polymorphisms
within the UCP2 and UCP3 genes, we cannot exclude
the possibility that a gene that is closely linked to
UCP3 is causal.

Conclusions
A genetic association study between polymorphisms in
the dog uncoupling protein 2 and 3 genes and metabolic
data showed that the SNPs of the UCP3 intron 1 were
associated with T-Cho levels in Labrador Retrievers. Al-
leles associated with high T-Cho levels of these polymor-
phisms were also present at higher frequencies in a
breed that is susceptible to hypercholesterolemia (Shet-
land Sheepdogs), than in the control group (Shiba). The
results obtained from a limited number of individuals
suggest that the UCP3 gene in dogs may be associated
with total cholesterol levels. Therefore, the UCP3 gene
could be an interesting target, not only for lipid metab-
olism, but also for the treatment and prevention of obes-
ity and metabolic-related diseases in dogs.

Methods
Animals and DNA
All animal experiments were approved by The Experimen-
tal Animal Ethics Committee in Nippon Veterinary and
Life Science University. The blood samples were originally
collected at the Veterinary Medical Teaching Hospital at
NVLU with the written consent of each owner or the
Kyushu Guide Dog Association. The collection of sam-
ples was handled by licensed veterinarians only.
Panel 1, for the first SNP discovery, was collected from

11 dogs that represented 11 different breeds: Miniature
Dachshund, Welsh Corgi, Labrador Retriever, Shetland
Sheepdog, Beagle, Yorkshire Terrier, Dobermann, Whip-
pet, Weimaraner, Papillon, and Shiba. Panel 2 was used
for SNP discovery and a study of associations between
SNP variants and biochemical parameters; these samples
were collected from 50 Labrador Retrievers. Panel 3 was
used for SNP discovery and an interbreed analysis was



Table 2 Genotyping data and interbreed analysis of DNA polymorphisms in UCP3

UCP3 DNA
polymorphism

Genotype Number of samples

p Allele

Allele frequency

Shiba Shetland sheepdog Shiba Shetland sheepdog

−4399C/T CC 29 30 NS C 0.98 1.00

CT 1 0 CC vs CT + TT T 0.02 0.00

TT 0 0

−4339T/C TT 0 4 p < 0.05 T 0.07 0.37

TC 4 14 TT + TC vs CC C 0.93 0.63

CC 26 12

−4160G/A GG 30 30

ND

G 1.00 1.00

GA 0 0 A 0.00 0.00

AA 0 0

−4010C/T CC 18 13 NS C 0.75 0.70

CT 9 16
CC vs CT + TT

T 0.25 0.30

TT 3 1

−930T/C TT 0 4 p < 0.05 T 0.07 0.37

TC 4 14 TT + TC vs CC C 0.93 0.63

CC 26 12

−803C/T CC 30 30

ND

C 1.00 1.00

CT 0 0 T 0.00 0.00

TT 0 0

143A/C AA 20 30 p < 0.05 A 0.82 1.00

AC 9 0 AA vs AC + CC C 0.18 0.00

CC 1 0

IVS3+26T/C TT 10 13 NS T 0.57 0.70

TC 14 16 TT vs TC + CC C 0.43 0.30

CC 6 1

IVS3+69G/A GG 18 13 NS G 0.75 0.70

GA 9 16 GG vs GA + AA A 0.25 0.30

AA 3 1

IVS3+121T/C TT 29 14 p < 0.05 T 0.98 0.67

TC 1 12 TT vs TC + CC C 0.02 0.33

CC 0 4

IVS5-115G/C GG 10 4 NS G 0.55 0.37

GC 13 14 GG + GC vs CC C 0.45 0.63

CC 7 12

IVS5-100T/C TT 18 13 NS T 0.75 0.70

TC 9 16 TT vs TC + CC C 0.25 0.30

CC 3 1

838T/C TT 28 30 NS T 0.97 1.00

TC 2 0 TT vs TC + CC C 0.03 0.00

CC 0 0

1106delAAG ins ins 18 13 NS ins 0.75 0.70

ins del 9 16 II vs ID + DD del 0.25 0.30

del del 3 1

I: insertion, D: deletion. IVS: intervening sequence.
p-values were calculated by Fisher’s exact test. p < 0.05 NS:not significance. ND: not detection.
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collected from 30 Shetland Sheepdogs and 30 Shibas
containing each one animals from Panel 1. A list of breeds
and number of individuals are presented in Table 3. Gen-
omic DNA was extracted from whole blood with the
Puregene kit (Qiagen, Valencia CA, USA).
PCR
We used sequences of UCP2 and UCP3 (Canine Gen-
ome Draft, NC_006603.3), to design 15 pairs of primers
for amplification of each exon of the UCP2 and UCP3
genes (Table 4). Each PCR using TaKaRa Ex Taq was
performed in a total volume of 25 μl and contained
20 ng genomic DNA, 2.5 μl 10× Ex Taq Buffer (including
20 mM Tris–HCl, 100 mM KCl, 0.1 mM EDTA, 1 mM
DTT, 0.5% Tween 20, 0.5% Nonidet P-40, 50% Glycerol,
20 mM Mg2+), 0.4 mM of each primer, 200 μM dNTP
(dATP, dTTP, dCTP and dGTP), and 1U TaKaRa Ex Taq
(TaKaRa, Shiga, Japan). Each PCR using FastStart Taq
DNA polymerase (Roche, Basel, Switzerland)) was per-
formed in a total volume of 25 μl and contained 20 ng
genomic DNA, 2.5 μl 10× reaction Buffer (including
500 mM Tris–HCl, 100 mM KCl, 50 mM (NH4)2SO4,
20 mM MgCl2), 0.4 mM of each primer (F12: 0.2 mM
of each primer), 200 μM dNTP (dATP, dTTP, dCTP
and dGTP), and 1U FastStart Taq DNA polymerase. If
Table 3 List of 119 DNA samples from 11 breeds

DNA
samples

Breeds N Sex

Male Female

Panel 1a Miniature Dachshund 1 1

Welsh Corgi 1 1

Labrador Retriever 1 1

Shetland Sheepdog 1 1

Beagle 1 1

Yorkshire Terrier 1 1

Dobermann 1 1

Whippet 1 1

Weimaraner 1 1

Papillon 1 1

Shiba 1 1

Panel 2a,b,d Labrador Retriever 50 27 23

Panel 3a,b,c Shetland Sheepdog 30e 15 15

Shiba 30e 15 15

Total 119f 60 59

N. Number of samples.
a. SNP discovery.
b.SNP genotyping.
c. Interbreed analysis.
d. Association analysis of DNA polymorphisms with biochemical parameters.
e. Include one individual of panel 1.
f. Total numbers of independent individuals.
necessary, we used FastStart Taq for primer pairs that
did not work with TaKaRa Ex Taq. The PCR reactions
were performed on TaKaRa PCR Thermal Cycler Dice
TP600 (TaKaRa). The conditions for PCR are shown in
Table 5.
Sequencing and SNP detection
The PCR products were purified with High Pure PCR
Product Purification Kit (Roche). Cycle sequencing was
then performed with the Big Dye Terminator v3.1 kit (Ap-
plied Biosystems, Foster City CA, USA); each reaction was
run in a 10 μl reaction volume containing 1 μl purified
PCR amplification product, 1 μl Ready Reaction Premix,
1.5 μl 5× Big Dye Sequence Buffer, 1 μl primer (1.6
pmol/μl), and 5.5 μl sterile water. Cycle sequencing reac-
tions were performed with the following conditions: 60 s
at 96°C followed by 25 cycles of 10 s at 96°C, 5 s at 50°C
and 4 min at 60°C. BigDye Xterminator Purification kits
were used according to the manufacturer’s instructions
(Applied Biosystems) to purify dye-labeled fragments. Sam-
ples were analyzed on an ABI PRISM 310 genetic analyzer
(Applied Biosystems). We identified DNA polymorphisms
by comparing each sequence with the reference sequence
(Canine Genome Draft. NC_006603.3) by BLAST in NCBI
(National Center for Biotechnology Information) and
GENETYX program Ver. 11(GENETYX Corporation,
Tokyo, Japan). The position of identified DNA polymorph-
ism was numbered from the A of the initiator methionine
ATG codon as the +1 revealed in exon. In case of in-
tron, a positive number indicates the number of nucle-
otides away from the previous exon, while a negative
number indicates the number of nucleotide away from
the next exon.
Measurement of biochemical parameters
Blood samples were collected into heparinized plastic
tubes at least 12 h postprandial. Plasma was separated
by centrifugation at 1500× g for 10 min. Glucose (GLU),
triglyceride (TG), total cholesterol (T-Cho), and lactate
dehydrogenase (LDH) were measured using a Spotchem
EM SP-4430 (Arkray, Kyoto, Japan) with the manufac-
turer’s reagents.
Statistical analysis
Deviation from the Hardy–Weinberg equilibrium was
assessed by the Chi-squared test. SNPAlyze (Dynacom,
Chiba, Japan) was used to estimate haplotype frequen-
cies. Genotype frequencies were compared using the
Fisher’s exact test. Differences of p < 0.05 were consid-
ered statistically significant. Associations between geno-
type frequencies and metabolic data were analyzed by
one-way analysis of variance (ANOVA).



Table 4 Sequences of primers for PCR

Gene Fragment Primer Primer sequences Range of PCR
amplificationa

size Regionb

(5’-3’) (bp)

UCP2
F1

UCP2F1-F CAGCTCTCGGCTTGTGAGC
24304468-24305048 581

Exon 1, Intron 1

UCP2F1-R CACAACAGTCAGCAGACTGG

F2
UCP2F2-F CCTTGCTGGAGTGTAATCTG

24305288-24306125 838
Intron 1, Exon 2, Intron 2

UCP2F2-R TGGGTTTGCCCAGGTCTTTC

F3
UCP2F3-F TACCAACTCTTCCATACCTC

24307315-24308410 1096
Intron 2, Exon 3

UCP2F3-R ATGCAGGCAGCTGTGCCAG

F4
UCP2F4-F TGAGCAGGACAGGACTGTT

24308186-24308944 759
Exon 3, Intron 3, Exon 4, Intron 4

UCP2F4-R AAAGGAGCTATACAGCAAATCA

F5
UCP2F5-F TCTCAGAGCATTTACTCTGCT

24309392-24310367 976
Intron 4, Exon 5, Intron 5, Exon 6, Intron 6

UCP2F5-R AGAAAAGGCAGTCAGGACTC

F6
UCP2F6-F TCCTCCCCCTCAAACCATCA

24310274-24311183 910
Intron 6, Exon 7, Intron 7, Exon 8

UCP2F6-R GAAAGGGAGGTGGTGGGAA

UCP3
F7

UCP3F7-F ATAGTACTTACCTCATAGGGT
24277647-24278722 1076

5’Fl, Exon 1, Intron 1

UCP3F7-R TATCTGTTCTCCATGGCAGC

F8
UCP3F8-F CTAAGGAGCCTTAAGGGAAC

24278114-24278825 712
Exon 1, Intron 1

UCP3F8-R TTCAGGGAGAGCTCAGGATC

F9
UCP3F9-F ACGCTACAGGTATGTGTGAG

24281537-24282266 730
Intron 1

UCP3F9-R CCTGAAGTGTACAGAGAGCC

F10
UCP3F10-F TAACTAACAGTTTAGGTGAGTC

24282174-24282933 760
Intron 1, Exon 2, Intron 2

UCP3F10-R TGCTCAGAGTTCTGTGTGAAG

F11
UCP3F11-F CAGGTCCTTCTGCACCCAG

24283244-24284111 868
Intron 2, Exon 3, Intron 3, Exon 4, Intron 4

UCP3F11-R TCATTCTGGGAGTTCCCTCC

F12
UCP3F12-F CCTGTGGCCTTGCAACCAGA

24285138-24285396 259
Intron 4, Exon 5, Intron 5

UCP3F12-R TGTTACCTCTGAGTGGTGCC

F13
UCP3F13-F GGCACCACTCAGAGGTAACA

24285377-24286088 712
Intron 5, Exon 6, Intron 6

UCP3F13-R TGGGAAGGGATGTTGGATGC

F14
UCP3F14-F GCACTATCGTTACACTCAAGG

24285748-24286088 341
Intron 5, Exon 6, Intron 6

UCP3F14-R TGGGAAGGGATGTTGGATGC

F15
UCP3F15-F TAACTGCCTAACACAGAACC

24288288-24289004 717
Intron 6, Exon 7

UCP3F15-R TTCAGCCTTTCCTGTACACA

a. Number of nucleotide position is from canine genome draft (CGD) NC_006603.3.
b. Fl: Flanking region Start codon is located in Exon 3 in UCP2 and Exon 2 in UCP3. Stop codon is located in Exon 8 in UCP2 and Exon 7 in UCP3.
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Table 5 Conditions for PCR

Fragment Taqa Initial denature (°C/m)b Denature (°C/m)b Annealing (°C/s)b Extention (°C/m)b Cycle Final extention (°C/m)b

F1 F 95/4 95/1 57/30 72/1 35 72/7

F2 E 95/1 95/1 60/30 72/1 35 72/7

F3 F 95/4 95/1 60/10 72/1 30 72/7

F4 E 95/1 95/1 60/30 72/1 35 72/7

F5 F 95/4 95/1 60/30 72/1 35 72/7

F6 E 95/1 95/1 62/30 72/1 35 72/7

F7 E 95/1 95/1 60/15 72/1 34 72/7

F8 F 95/4 95/1 62/30 72/1 35 72/7

F9 F 95/4 95/1 62/30 72/1 35 72/7

F10 E 95/1 95/1 60/30 72/1 35 72/7

F11 F 95/4 95/1 62/15 72/1 32 72/7

F12 E 95/1 95/1 60/30 72/1 35 72/7

F13 E 95/1 95/1 60/30 72/1 35 72/7

F14 E 95/1 95/1 60/30 72/1 35 72/7

F15 E 95/1 95/1 60/30 72/1 35 72/7

a. Taq polymerase: E = ExTaq (TaKaRa), F = Fast start Taq (Roche).
b. m: minutes s: seconds.

Udagawa et al. BMC Research Notes 2014, 7:904 Page 8 of 9
http://www.biomedcentral.com/1756-0500/7/904
Author details
1Department of Basic Science, School of Veterinary Nursing and Technology,
Faculty of Veterinary Science, Nippon Veterinary and Life Science University,
1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan. 2Department of
Veterinary Nursing, School of Veterinary Nursing and Technology, Faculty of
Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1
Kyonan-cho, Musashino, Tokyo 180-8602, Japan. 3Department of Veterinary
Clinical Pathology, Nippon Veterinary and Life Science University, 1-7-1
Kyonan-cho, Musashino, Tokyo 180-8602, Japan. 4Laboratory of Comparative
Cellular Biology, Nippon Veterinary and Life Science University, 1-7-1
Kyonan-cho, Musashino, Tokyo 180-8602, Japan.

Received: 26 September 2014 Accepted: 25 November 2014
Published: 11 December 2014
References
1. Nicholls DG, Locke RM: Thermogenic mechanisms in brown fat. Physiol

Rev 1984, 64:1–64.
2. Boss O, Muzzin P, Giacobino JP: The uncoupling proteins, a review. Eur J

Endocrinol 1998, 139:1–9.
3. Ricquier D, Bouillaud F: The uncoupling protein homologues: UCP1, UCP2,

UCP3, StUCP and AtUCP. Biochem J 2000, 345:161–179.
4. Schrauwen P, Walder K, Ravussin E: Human uncoupling proteins and

obesity. Obes Res 1999, 7:97–105.
5. Kagawa Y, Yanagisawa Y, Hasegawa K, Suzuki H, Yasuda K, Kudo H, Abe M,

Matsuda S, Ishikawa Y, Tsuchiya N, Sato A, Umetsu K, Kagawa Y: Single
nucleotide polymorphisms of thrifty genes for energy metabolism:
evolutionary origins and prospects for intervention to prevent obesity-
related diseases. Biochem Biophys Res Commun 2002, 295:207–222.

6. Reis AF, Dubois-Laforgue D, Bellanné-Chantelot C, Timsit J, Velho G: A
polymorphism in the promoter of UCP2 gene modulates lipid levels in
patients with type 2 diabetes. Mol Genet Metab 2004, 82:339–344.

7. Yoon Y, Park BL, Cha MH, Kim KS, Cheong HS, Choi YH, Shin HD: Effects of
genetic polymorphisms of UCP2 and UCP3 on very low calorie diet-
induced body fat reduction in Korean female subjects. Biochem Biophys
Res Commun 2007, 359:451–456.

8. Chan CB, Harper ME: Uncoupling proteins: role in insulin resistance and
insulin insufficiency. Curr Diabetes Rev 2006, 2:271–283.
9. Lee HJ, Ryu HJ, Shin HD, Park BL, Kim JY, Cho YM, Park KS, Song J, Oh B:
Associations between polymorphisms in the mitochondrial uncoupling
proteins (UCPs) with T2DM. Clin Chim Acta 2008, 398:27–33.

10. Oktavianthi S, Trimarsanto H, Febinia CA, Suastika K, Saraswati MR,
Dwipayana P, Arindrarto W, Sudoyo H, Malik SG: Uncoupling protein 2
gene polymorphisms are associated with obesity. Cardiovasc Diabetol
2012, 11:41.

11. De Souza BM, Brondani LA, Bouças AP, Sortica DA, Kramer CK, Canani LH,
Leitão CB, Crispim D: Associations between UCP1–3826A/G, UCP2–866G/
A, Ala55Val and Ins/Del, and UCP3–55C/T polymorphisms and
susceptibility to type 2 diabetes mellitus: case–control study and meta-
analysis. PLoS One 2013, 8:e54259.

12. Schrauwen P, Xia J, Walder K, Snitker S, Ravussin E: A novel polymorphism
in the proximal UCP3 promoter region: effect on skeletal muscle UCP3
mRNA expression and obesity in male non-diabetic Pima Indians. Int J
Obes Relat Metab Disord 1999, 23:1242–1245.

13. Hamada T, Kotani K, Fujiwara S, Sano Y, Domichi M, Tsuzaki K, Sakane N:
The common −55 C/T polymorphism in the promoter region of the
uncoupling protein 3 gene reduces prevalence of obesity and elevates
serum high-density lipoprotein cholesterol levels in the general
Japanese population. Metabolism 2008, 57:410–415.

14. De Luis DA, Aller R, Izaola O, De La Fuente B, Conde R, Eiros Bouza JM:
Relation of -55CT polymorphism of UCP3 gene with weight loss and
metabolic changes after a high monounsaturated fat diet in obese non
diabetic patients. Eur Rev Med Pharmacol Sci 2013, 17:2810–2815.

15. Salopuro T, Pulkkinen L, Lindström J, Kolehmainen M, Tolppanen AM,
Eriksson JG, Valle TT, Aunola S, Ilanne-Parikka P, Keinänen-Kiukaanniemi S,
Tuomilehto J, Laakso M, Uusitupa M: Variation in the UCP2 and UCP3
genes associates with abdominal obesity and serum lipids: the Finnish
Diabetes Prevention Study. BMC Med Genet 2009, 10:94.

16. Edney AT, Smith PM: Study of obesity in dogs visiting veterinary practices
in the United Kingdom. Vet Rec 1986, 118:391–396.

17. Jeusette IC, Lhoest ET, Istasse LP, Diez MO: Influence of obesity on plasma
lipid and lipoprotein concentrations in dogs. Am J Vet Res 2005, 66:81–86.

18. Laflamme DP: Understanding and managing obesity in dogs and cats.
Vet Clin North Am Small Anim Pract 2006, 36:1283–1295.

19. Ishioka K, Omachi A, Sagawa M, Shibata H, Honjoh T, Kimura K, Saito M:
Canine adiponectin: cDNA structure, mRNA expression in adipose tissues
and reduced plasma levels in obesity. Res Vet Sci 2006, 80:127–132.



Udagawa et al. BMC Research Notes 2014, 7:904 Page 9 of 9
http://www.biomedcentral.com/1756-0500/7/904
20. German AJ, Hervera M, Hunter L, Holden SL, Morris PJ, Biourge V, Trayhurn
P: Improvement in insulin resistance and reduction in plasma
inflammatory adipokines after weight loss in obese dogs. Domest Anim
Endocrinol 2009, 37:214–226.

21. Zoran DL: Obesity in dogs and cats: a metabolic and endocrine disorder.
Vet Clin North Am Small Anim Pract 2010, 40:221–239.

22. Tvarijonaviciute A, Ceron JJ, Holden SL, Cuthbertson DJ, Biourge V, Morris
PJ, German AJ: Obesity-related metabolic dysfunction in dogs: a
comparison with human metabolic syndrome. BMC Vet Res 2012, 8:147.

23. Axelsson E, Ratnakumar A, Arendt ML, Maqbool K, Webster MT, Perloski M,
Liberg O, Arnemo JM, Hedhammar A, Lindblad-Toh K: The genomic
signature of dog domestication reveals adaptation to a starch-rich diet.
Nature 2013, 495:360–364.

24. Park HJ, Lee SE, Oh JH, Seo KW, Song KH: Leptin, adiponectin and
serotonin levels in lean and obese dogs. BMC Vet Res 2014, 10:113.

25. Kawasumi K, Kashiwado N, Okada Y, Sawamura M, Sasaki Y, Iwazaki E, Mori
N, Yamamoto I, Arai T: Age effects on plasma cholesterol and triglyceride
profiles and metabolite concentrations in dogs. BMC Vet Res 2014, 10:57.

26. Ishioka K, Kanehira K, Sasaki N, Kitamura H, Kimura K, Saito M: Canine
mitochondrial uncoupling proteins: structure and mRNA expression of
three isoforms in adult beagles. Comp Biochem Physiol B Biochem Mol Biol
2002, 131:483–489.

27. Udagawa C, Chong YH, Shito M, Kawakami T, Tada N, Ochiai K, Ishioka K,
Tsuchida S, Omi T: cDNA cloning and expression analysis of canine
uncoupling protein 2 and 3 genes. J Pet Anim Nutr 2011, 14:68–75.

28. Sato K, Agoh H, Kaneshige T, Hikasa Y, Kagota K: Hypercholesterolemia in
Shetland sheepdogs. J Vet Med Sci 2000, 62:1297–1301.

29. Mori N, Lee P, Muranaka S, Sagara F, Takemitsu H, Nishiyama Y, Yamamoto I,
Yagishita M, Arai T: Predisposition for primary hyperlipidemia in Miniature
Schnauzers and Shetland sheepdogs as compared to other canine
breeds. Res Vet Sci 2010, 88:394–399.

30. American Kennel Club Home Page. http://www.akc.org/breeds/shiba_inu/
index.cfm.

31. Sugiyama S, Chong YH, Shito M, Kasuga M, Kawakami T, Udagawa C, Aoki
H, Bonkobara M, Tsuchida S, Sakamoto A, Okuda H, Nagai A, Omi T:
Analysis of mitochondrial DNA HVR1 haplotype of pure-bred domestic
dogs in Japan. Leg Med (Tokyo) 2013, 15:303–309.

32. Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson
GS, DeFrance HB, Ostrander EA, Kruglyak L: Genetic structure of the
purebred domestic dog. Science 2004, 304:1160–1164.

33. Hoffmann C, Zimmermann A, Hinney A, Volckmar AL, Jarrett HW, Fromme T,
Klingenspor M: A novel SP1/SP3 dependent intronic enhancer governing
transcription of the UCP3 gene in brown adipocytes. PLoS One 2013, 8:
e83426.

34. Villarroya F, Iglesias R, Giralt M: PPARs in the Control of Uncoupling
Proteins Gene Expression. PPAR Res 2007, 2007:74364.

35. Frischknecht M, Niehof-Oellers H, Jagannathan V, Owczarek-Lipska M,
Drögemüller C, Dietschi E, Dolf G, Tellhelm B, Lang J, Tiira K, Lohi H, Leeb T:
A COL11A2 mutation in Labrador retrievers with mild disproportionate
dwarfism. PLoS One 2013, 8:e60149.

36. Tengvall K, Kierczak M, Bergvall K, Olsson M, Frankowiack M, Farias FH,
Pielberg G, Carlborg Ö, Leeb T, Andersson G, Hammarström L, Hedhammar
Å, Lindblad-Toh K: Genome-wide analysis in German shepherd dogs
reveals association of a locus on CFA 27 with atopic dermatitis. PLoS
Genet 2013, 9:e1003475.

37. Lavrijsen IC, Leegwater PA, Wangdee C, van Steenbeek FG, Schwencke M,
Breur GJ, Meutstege FJ, Nijman IJ, Cuppen E, Heuven HC, Hazewinkel HA:
Genome-wide survey indicates involvement of loci on canine
chromosomes 7 and 31 in patellar luxation in Flat-Coated Retrievers.
BMC Genet 2014, 15:64.

doi:10.1186/1756-0500-7-904
Cite this article as: Udagawa et al.: The genetic association study
between polymorphisms in uncoupling protein 2 and uncoupling
protein 3 and metabolic data in dogs. BMC Research Notes 2014 7:904.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.akc.org/breeds/shiba_inu/index.cfm
http://www.akc.org/breeds/shiba_inu/index.cfm

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Conclusions
	Methods
	Animals and DNA
	PCR
	Sequencing and SNP detection
	Measurement of biochemical parameters
	Statistical analysis

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgement
	Author details
	References

