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Abstract 

Drought and Pierce’s disease are common throughout many grapevine-growing regions such as Mexico 
and the United States. Yet, how ongoing water deficits affect infections of Xylella fastidiosa, the causal agent of Pierce’s 
disease, is poorly understood. Symptoms were observed to be significantly more severe in water-stressed plants 
one month after X. fastidiosa inoculation, and, in one experiment, titers were significantly lower in water-stressed 
than well-watered grapevines. Host chemistry examinations revealed overall amino acid and phenolic levels did 
not statistically differ due to water deficits, but sugar levels were significantly greater in water stressed than well-
watered plants. Results highlight the need to especially manage Pierce’s disease spread in grapevines experiencing 
drought.
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Introduction
Xylella fastidiosa (Xf) is a xylem-limited bacterium and 
results in damaging leaf scorch diseases including Pierce’s 
disease (PD) of grapevine [1]. In addition to threats from 
PD, grapevines are expected to face cultivation changes 
due to lack of water resources [2]. The physiological 
mechanisms underlying both PD and water deficit stress 
include synthesis of phenolic metabolites in plants [3, 
4]. These phenolics include the compounds flavonoids 
and stilbenoids, which are antioxidants, alleviate cel-
lular stresses, and form polyphenols that fortify cell 
walls [5–7]. In addition to phenolics, some amino acids, 
including proline, are involved in fortifying cell walls to 

protect plants against both pathogens and drought [8, 9]. 
Indeed, amino acids and sugars were found to be corre-
lated with Xf tolerance in olives [10]. Contrarily, amino 
acids and free sugars were correlated with susceptibility 
to PD in grapevine [11]. To complement previous studies 
that evaluated the impact of simultaneous drought and 
Xf infection on PD development, this study was designed 
to specifically detail how pre-emptive water deficits affect 
Xf infection and subsequent PD development. Previ-
ous studies showed water stress exacerbates Xf-induced 
symptoms and is a central component in PD progression 
[10, 12, 13]. However, despite correlations between water 
stress and PD, these stressors cause distinct symptoms 
when applied separately [12, 13], and PD progression is, 
at least during the initial stages, unrelated to vascular 
occlusions [14]. Ultimately, other factors, such as sys-
temic Xf-derived toxins or plant-derived signals, likely 
also facilitate PD [12, 13, 15]. Thus, there remains a need 
to further examine the interactions between water stress 
and infections by Xf, and examine physiological changes 
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associated with each. Thus, this study measured pheno-
lics, amino acids, and free sugars to better elucidate the 
mechanisms underlying effects of pre-emptive water 
stress on Xf infection and PD. These results further the 
understanding of the association between water availabil-
ity and PD.

Main text
Methods
Two separate replicate experiments, in June 2018 or 
May 2019, were performed to analyze the effect of pre-
emptive drought on Xf infection and PD. In both experi-
ments, 48 two-year-old ‘Cabernet Sauvignon’ grapevines 
on ‘101-14MG’ rootstocks were planted in a 1:1 auto-
claved field soil: potting mix media, Sunshine Mix #1 
from Sungro (Agawam, MA, USA), in 20 L pots and kept 
in a greenhouse under controlled conditions [4]. After 
two weeks, 24 grapevines each were either watered to 
capacity three times a week or exposed to a water defi-
cit to cause water stress. This were placed into two spa-
tial blocks in a completely randomized block design. 
For the water stressed plants, water was withheld until 
soil moisture levels dropped below 5%, as monitored by 
a Watchdog Soil Moisture Sensor (Spectrum Technolo-
gies, Aurora, IL, USA), and then kept there an additional 
minimum of seven days. Pre-dawn water potentials using 
a Model 615 Pressure Chamber from PMS Instrument 
Company (Albany, OR, USA) confirmed water stress 
with measured values below −700  kPa (compared to 
−400 kPa for well-watered vines). Once the water-stress 
on the associated grapevines was obtained, 12 well-
watered or water-stressed plants were mock-inoculated 
or pin-pricked inoculated with the Stag’s Leap isolate 
of Xylella fastidiosa subsp. fastidiosa (GenBank Acces-
sion# LSMJ00000000), a commonly utilized strain [16]. 
After inoculation, all plants were then kept well-watered 
to avoid the simultaneous combination of drought and 
PD. One month after Xf inoculation, all plants were pho-
tographed to analyze PD symptoms, and 10–20 cm seg-
ments of the apical end of a branch were harvested to 
assess Xf titers and analyze metabolites [4], just before the 
inoculation treatments and at the end of the experiment.

PD symptoms were assessed on a 0–5 scale with 0% 
damage as “0”. 1–10% leaf damage/necrosis rating as 
“1”, 10–25% damage rating as “2”, 25–50% rating as “3”, 
50–100% damage rating as “4”, and complete plant death/
collapse as “5” [17]. Minor damage may be recorded as 
symptoms even in non-infected control plants because 
symptoms are rankings of necrosis and not necessarily 
due to PD [4].

For Xf titer and chemical analyses, stem segments 
were debarked to better isolate xylem tissues and were 
then ground under liquid nitrogen using a mortar and 

pestle [4]. DNA was extracted from 100 mg using the 
Plant DNA Kit from Macherey–Nagel (Allentown, 
PA, USA). Xf titers were then assessed using a QX200 
droplet digital PCR EvaGreen Supermix from Bio-Rad 
(Hercules, CA, USA) and a QX200 droplet digital PCR 
system (Bio-Rad), also using the primers as present in 
Wallis et al. [18]. None of the control plants tested pos-
itive for Xf.

Phenolics were extracted from 100 mg tissue in 1 
mL of methanol and sugars and amino acids were 
extracted from 100 mg tissue in phosphate-buffered 
saline according to the procedures of Wallis et  al. [4]. 
Methanol extracts then had phenolic compounds ana-
lyzed on a Shimadzu (Columbia, MD, USA) LC-20AD 
high performance liquid chromatography (HPLC) sys-
tem, equipped with a Ascentis RP C18 column (Sigma-
Aldrich, St. Louis, MO, USA), connected to Shimadzu 
PDA-20AD photodiode array detector, with conditions 
outlined by Wallis et al. [4]. Peak areas were converted 
to gram amounts by running standard curves of refer-
ence standards within the same compound subclass, 
such as catechin for flava-3-ols, procyanidin B2 for pro-
cyanidins, quercetin glucoside for flavonoid glycosides, 
or resveratrol for stilbenoids [4]. To measure amino 
acids, 100  µL of the PBS extract was used in the EZ-
FAAST Physiological Amino Acid Kit from Phenom-
enex (Torrance, CA, USA), and then run on a Shimadzu 
GC-2010 gas chromatograph utilizing the kit-provided 
column and flame ionization detection utilizing hydro-
gen as the carrier gas. Kit instructions were followed 
and utilized both internal and external standards to 
identify and quantify compounds [19]. Sugars were 
analyzed by a Shimazu LC10-AD HPLC, equipped with 
a Supelcogel H column (Sigma-Aldrich), connected to a 
Shimadzu RID-10 refractive index detector, with stand-
ards of fructose and glucose from Sigma-Aldrich used 
to make standard curves [19].

IBM (Armonk, NY, USA) SPSS ver. 24 was utilized 
for all statistical tests with α = 0.05. Non-parametric 
Kruskal–Wallis tests with follow-up Mann–Whitney 
U pairwise comparisons were used to determine water-
deficit and inoculation treatment effects on symptom 
expression and Xf titers. Analyses of variance (ANOVAs) 
and least significant differences (LSD) tests determined 
whether the water deficit-inoculation treatment affected 
compound amounts. Multivariate analyses or variance 
(MANOVA) was used to analyze effects on all individual 
amino acids or phenolics as well, with follow-up ANO-
VAs and LSDs performed when appropriate [10]. Spatial 
block effects were included in all statistical models ini-
tially and removed if non-significant. Spearman’s cor-
relations determined associations between Xf titers or 
symptoms with compound levels.
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Results
PD symptoms were significantly greater in Xf-infected 
plants that were pre-emptively drought stressed 
compared to those that were well-watered (Fig.  1). 
Well-watered and infected plants displayed mild PD 
symptoms, which were not statistically different than 
non-infected plants. Infected well-watered plants had 
significantly greater Xf titers than infected droughted 
plants in 2018 but not 2019 (Fig.  2). These results sug-
gest that prior water status facilitates PD progression, 
but inhibits, or at least has no effect on, Xf proliferation 
within grapevine.

The total amount of phenolics, flavonoids, and stilbe-
noids did not differ due to water deficit or inoculation 
status (Fig.  3). MANOVA using the individual phenolic 
compounds observed a significant effect of treatments 
(Pillai’s trace = 2.243; F3,44 = 1.680; P = 0.023). Follow-up 
ANOVAs were significant only for pallidol (F3,44 = 3.042; 
P = 0.039), and a piceatannol derivative (F3,44 = 3.088; 
P = 0.037). Levels of pallidol were higher in droughted 
mock-inoculated plants relative to other treatments, and 
water deficit treatments induced greater amounts of the 
piceatannol derivative than well-watered treatments. 
Pallidol was negatively associated with levels with Xf 
titers (ρ = -0.353; P = 0.016; N = 46), and the piceatannol 
derivative was positively associated with PD symptoms 
(ρ = 0.404; P = 0.004; N = 48).

Total amino acid levels did not differ due to drought or 
inoculation treatment (Fig. 3). However, MANOVA using 
individual amino acids observed a significant effect of the 
treatments (Pillai’s trace = 1.723; F3,44 = 2.174; P = 0.001). 
Follow-up ANOVAs were significant for alanine 
(F3,44 = 3.831; P = 0.016; greater in droughted plants com-
pared to well-watered plants), glutamic acid (F3,44 = 3.623; 
P = 0.020; greater in droughted plants, regardless of 
infection status, compared to uninfected well-watered 
controls), phenylalanine (F3,44 = 2.838; P = 0.049; lower 
in infected plants than in uninfected well-watered con-
trols), tryptophan (F3,44 = 3.682; P = 0.019; lower in all 
treatments relative to uninfected well-watered controls), 
and valine (F3,44 = 4.787; P = 0.006; greater in uninfected 
droughted plants than well-watered plants, regardless of 
Xf infection). Of these amino acids, only phenylalanine 
levels were negatively correlated with Xf titers (ρ = -0.471; 
P = 0.001; N = 46) and symptoms (ρ = -0.331; P = 0.022; 
N = 48).

Analysis of free sugars revealed that fructose lev-
els were greater in Xf-infected droughted plants com-
pared to well-watered plants, and greater in uninfected 
droughted plants relative to well-watered Xf-infected 
plants (F3,44 = 4.552; P = 0.007) (Fig.  3). Glucose lev-
els were greater in droughted Xf-infected plants than 
in well-watered plants, regardless of infection status 
(F3,44 = 4.666; P = 0.006) (Fig. 3). Both fructose (ρ = 0.289; 

Fig. 1 Representative photographs of plants receiving different water or Xf inoculation treatments. Two photographs are provided for each 
treatment combination from the 2019 experiment
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P = 0.046; N = 48) and glucose levels (ρ = 0.324; P = 0.025; 
N = 48) were positively correlated with symptoms but not 
Xf titers.

Discussion
Previous studies have investigated the role of drought 
during Xf infection and found that drought exacerbates 
PD symptom development [12, 13]. However, water avail-
ability is often temporally dynamic, resulting in fluctu-
ating periods of drought. This necessitated the need to 
investigate how preemptive drought and recovery affects 
subsequent Xf infection and PD progression. This study 
has revealed that prior water deficits also can enhance 
development of PD symptoms upon subsequent Xf infec-
tion. Conversely, it appeared, albeit not consistently sig-
nificant, that plants that were previously droughted had 
lower Xf titers by the end of the experiment than those 
that were previously well-watered. This lack of correla-
tion between PD symptoms and Xf titers was also evident 
by comparing the overall PD scores and Xf titers of the 
2018 and 2019 experiments, which show much lower 

Xf titers, but greater PD scores, in 2018 relative to 2019. 
Taken together, it seems that while water stress wors-
ens PD symptom development and plant health, it also 
affects Xf proliferation and survival. Though Xf titers are 
usually correlated with symptom severity, Ingel et al. [14] 
revealed that tylose formation in a particular vessel ele-
ment is independent of the presence of Xf in that vessel. 
This suggest that tylose formation and symptom develop-
ment may be caused by additional factors, such as plant 
or Xf-derived systemic signals and/or the amplitude of 
systemic host grapevine responses to these signals.

Metabolite analysis revealed few differences among dif-
ferent treatments in this study. Phenolic levels appeared 
only minorly affected by Xf infections. However, amounts 
of several specific amino acids and sugars were signifi-
cantly altered in response to different combinations of 
drought and Xf infection. For instance, glucose and fruc-
tose accumulated to even greater amounts in droughted 
Xf-infected plants than just the droughted plants alone. 
De Pascali et  al. [20] recently found these sugars were 
associated with resistant to Xf in olive. Furthermore, 

Fig. 2 Pierce’s disease symptoms and Xylella fastidiosa titers. A Mean (± SE) Pierce’s disease symptom ratings (on a 0 to 5 scale) and B mean (± SE) 
Xylella fastidiosa titers for the 2018 and 2019 experiments. Kruskal–Wallis statistical test statistics provided. Different letters represent significantly 
different pairwise comparisons as determined by Mann–Whitney U tests. C = well-watered controls; D = water deficit treated; N = non-infected 
controls; X = Xf-infected
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these are known osmoregulatory compounds [21], so it is 
logical that these metabolites would be elevated in plants 
that previously lacked adequate water.

In conclusion, the results from this experiment add to 
the understanding of how drought may impact Xf and 
PD development, emphasizing the potential for prior 
drought to facilitate PD. These results have particular sig-
nificance for newly transplanted grapevines in areas that 
are prone to water shortages. Efforts to ensure adequate 
watering and vector management in young vineyards 

should be a priority to prevent mortality caused by Xf 
infections.

Limitations

• All assessments in this study were taken only once, 
whereas an expanded time-course would be appro-
priate in future studies to observe gradual changes in 
symptoms, titers, and physiology over time.

Fig. 3 Plant biochemistry levels in response to drought and Xylella fastidiosa infection. A Mean (± SE) total phenolic levels, B mean (± SE) total 
flavonoid levels, C mean (± SE) total stilbenoid levels, D mean (± SE) total amino acids levels, E mean (± SE) fructose levels, and F mean (± SE) glucose 
levels for the 2019 experiment. ANOVA test statistics provided. Different letters represent significantly different pairwise comparisons as determined 
by LSD tests. C = well-watered controls; D = water deficit treated; N = non-infected controls; X = Xf-infected
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• The use of different grapevine cultivars, Xf strains, 
and watering regimes would expand upon the finding 
of this study.

• Additional measurements would be warranted in 
similar studies such as assessing shifts in transcripts 
and proteins in different tissues.

• Consideration of adding a water deficit recovery 
period prior to Xf inoculation also could be impor-
tant to understanding long-term drought stress 
effects on PD development.
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