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Abstract
Background: The human restriction factor TRIM5α may play an important role in regulation of
the human immunodeficiency virus (HIV). It is unclear whether non-synonymous single nucleotide
polymorphisms (nsSNP) in TRIM5α affect the clinical course of HIV infection.

Findings: We surveyed the literature for TRIM5α nsSNPs and used comparative sequence analysis
to predict the effect of each polymorphism on protein function. Twenty-eight nsSNPs were
identified with available functional data, clinical data, or both. The four comparative method
programs assessed included SIFT, PolyPhen, A-GVGD, and average BLOSUM62 pairwise score.
Two common polymorphisms, H43Y and R136Q, were predicted to be benign based on
comparative sequence analysis. The nsSNPs P323R, K324N, I328M, G330Q, R332P, I348V, and
T369S were all predicted to affect protein function.

Conclusion: Comparative sequence analysis offers a functional tool to analyze unknown nsSNPs
in TRIM5α.

Background
Human immunodeficiency virus type 1 (HIV-1) infection
depends on both viral and human genetic factors [1]. Sin-
gle nucleotide polymorphisms (SNP) in different
immune-modulation genes have been shown to affect
susceptibility and progression of disease. Of these, the
restriction factors APOBEC3F [2], APOBEC3G [3], and
TRIM5α [4] are innate immune proteins that affect
postentry steps in HIV-1 replication and confer resistance
to retroviruses in other species.

The tripartite motif restriction factor TRIM5α is a cytoplas-
mic and nucleolic protein that restricts viral infection by
interfering with the capsid protein, promoting premature
disassembly [5]. TRIM5α has been studied in primates
where it has been shown to be extremely effective at inhib-

iting HIV-1 and other lentiviruses [6,7]. The restriction
factor is composed of several regions: the RING domain,
B-boxes, a coiled-coil domain, and a carboxy-terminal
SPRY (B30.2) domain [8]. The SPRY domain defines
antiretroviral activity of TRIM5α and amino acids in this
region show a high degree of positive selection based on
sequence comparison in primates [9,10]. The variation in
the SPRY domain is responsible for the specificity of
TRIM5α in primates, but not humans, to effectively
restrict HIV-1. The RING domain contributes to the anti-
viral activity, but the exact function remains unknown
[8,10,11]. Different studies have analyzed TRIM5α nsS-
NPs in both HIV-1 infected and non-infected populations
[12-16]. The affect of TRIM5α polymorphisms on protein
function and clinical course of HIV-1 remains controver-
sial. Studies have revealed conflicting results secondary to
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variations in functional assays, lack of power in clinical
cohorts, and possible linkage disequilibrium between
alleles.

Comparative sequence analysis is a powerful technique
that can predict whether an nsSNP is likely to affect pro-
tein function. These methods rely on the fact that critical
residues for function are conserved across different
genomes and should not vary [17-19]. These amino acids
may directly participate in enzymatic reaction or have an
important role in secondary or tertiary structure. Likewise,
residues that are not vital would be subject to increased
variation with little to no affect on protein function.
Recently, we studied the accuracy of four methods using
comparative sequence analysis to predict the affect of nsS-
NPs on protein function [20]: (1) SIFT (Sorting Intolerant
from Tolerant, http://blocks.fhcrc.org/sift/SIFT.html)
[21]; (2) PolyPhen (Polymorphism Phenotyping, http://
genetics.bwh.harvard.edu/pph) [22]; (3) A-GVGD
(Grantham Variance-Grantham Difference, http://
agvgd.iarc.fr) [19]; (4) Average BLOSUM62 pairwise score
[20].

The accuracy of any one method for predicting a non-syn-
onymous SNP as either deleterious (affecting protein
function) or tolerant (benign) is approximately 80%.
When all four methods agree, the predictive value is
greater than 90% [20]. The goals of this study are to: (1)
Predict the affect of TRIM5α nsSNPs using comparative
sequence analysis and compare our results to known in-
vitro and clinical data; (2) Identify mutations that are
likely to affect TRIM5α protein function and may warrant
further investigation in clinical cohorts and functional
assays.

Methods
Creation of multiple sequence alignments
Amino acid sequence alignments were constructed using
the standard program ClustalW as previously described
[18]. Homologs of genes of interest were retrieved from
GenBank after BLAST searches using the human sequence
as the query. Alignments are available as supplemental
material.

The TRIM5α sequence alignment consisted of 40
sequences: Homo sapiens (gi 48994821), Pan paniscus (gi
122145800), Pan troglodytes (gi 60593103), Gorilla gorilla
(gi 56480705), Pongo pygmaeus (gi 122143969), Pongo
abelii (gi 75060761), Symphalangus syndactylus (gi
122143726), Nomascus leucogenys (gi 156079722), Hylo-
bates lar (gi 122143029), Colobus guereza (gi 75060798),
Macaca mulatto (gi 62548080), Bunopithecus hoolock (gi
122144995), Pygathrix nemaeus (gi 75060797), Cercocebus
torquatus (gi 118772044), Macaca fascicularis (gi
75060455), Papio anubis (gi 162951988), Macaca assa-

mensis (gi 122144997), Macaca nemestrina (gi
122146076), Erythrocebus patas (gi 75060791), Chloroce-
bus aethiops (gi 48994825), Cercopithecus tantalus (gi
47559193), Chlorocebus pygerythrus (gi 75060767), Eryth-
rocebus patas (gi 58379053), Callithrix jacchus (gi
167427342), Callithrix pygmaea (gi 75060793), Pithecia
pithecia (gi 75060790), Saguinus oedipus (gi 122145799),
Saguinus labiatus (gi 75060764), Callicebus donacophilus (gi
75060786), Saimiri boliviensis (gi 58379043), Saimiri sciu-
reus (gi 75060788), Ateles geoffroyi (gi 75060789),
Lagothrix lagotricha (gi 75060785), Aotus trivirgatus (gi
51317461), Alouatta sara (gi 75060794), Equus caballus (gi
149719383), Bos taurus (gi 77736574), Mus musculus (gi
31982207), Rattus norvegicus (gi 109459178), and Gallus
gallus (gi 150247142).

TRIM5α nsSNPs were evaluated by four publicly available
methods as previously described [20]: 1) Average
BLOSUM62 pairwise; 2) SIFT; 3) PolyPhen; 4) A-GVGD.
These computational methods were applied to known
clinical and functional data. Literature containing
TRIM5α nsSNPs was identified by searching PubMed
[12,13,15,16,23]. The agreement of the four methods was
assessed for overall consistency using Fleiss' kappa
[24,25].

Results and discussion
Comparative sequence analysis is a powerful tool for the
analysis of nsSNPs in the human genome. A large variety
of organisms selected for sequence analysis means fewer
sequences will be needed to make inferences secondary to
long divergence times and increased number of mutations
[20,26]. Too little variation can cause residues to be overly
conserved with 'false positive' results, i.e. a residue may
seem to be critical for protein function when it is not. In
our study population, organisms were not highly diversi-
fied, but there was sufficient variation for comparative
analysis [18,26]. With proper alignment, comparative
sequence alignment programs have been shown to be
accurate over 90% of the time [20]. The TRIM5α sequence
alignment was based on available BLAST data of 40 spe-
cies with 2550 variants. This met the previous threshold
for statistical significance [18,26]. All sequences were
eukaryotes and included primates, mouse, rat, and cow
[27].

Twenty-eight amino acid mutations in TRIM5α were iden-
tified in the literature, twenty-one of which are known to
be nsSNPs in the human population (Table 1). Eight
other nsSNPs had in-vitro functional data and are located
in the critical SPRY domain of TRIM5α, but are not found
in humans. The most common nsSNPs found in both
HIV-1 infected and uninfected people were H43Y (fre-
quency 6 to 43%) and R136Q (11 to 38%). Other com-
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mon nsSNPs included V112F (1 to 11%), G249D (6 to
27%), and H419Y (1 to 8%).

The nsSNP H43Y of the RING region may be important in
protein function, specifically E3 ligase activity [13,16,23].
Up to 43% of certain populations carry this polymor-
phism [23]. Functional data have shown that H43Y
retains restriction activity [12,14,15], whereas other
results show decreased activity [13,23]. Individuals
homozygous for the H43Y mutation may develop X4-
trophic virus more rapidly than those who are not and
progress to AIDS at a faster rate [16]. To further investigate
the affect of H43Y and other polymorphisms on protein
function, the twenty-eight TRIM5α mutations were ana-
lyzed using SIFT, PolyPhen, A-GVGD, and average
BLOSUM62 pairwise score (Table 2). Three of the four
computational methods (SIFT, PolyPhen, A-GVGD) sug-
gested that H43Y is a tolerated mutation and does not
affect protein function. Although PolyPhen and SIFT do

not require aligned sequences, we have previously shown
that using a sequence alignment of curated data is supe-
rior to a single query sequence alone [20]. In this case,
regardless of the sequence(s) entered, SIFT classifies the
mutation as tolerant. The BLOSUM62 pairwise program
predicted H43Y as deleterious, but does not distinguish
specific mutations at a given codon and instead makes
general predictions based on overall conservation at a
given position. This may be a less specific algorithm for
detecting individual mutations, but is still as accurate as
the other methods. For H43Y, the agreement between pro-
grams suggests a greater than 70% accuracy of a 'tolerant'
prediction [20]. This supports the evidence that H43Y
does not affect TRIM5α function and is likely a benign
mutation.

Similar to H43Y, data regarding R136Q has shown con-
flicting results (Table 1). This amino-acid resides in the
coiled coil domain and may participate in TRIM5α oli-

Table 1: Observed TRIM5α mutations

nsSNP Domain Observed Frequency In-vitro Functional Assays Affect on Clinical Outcomes

H43Y RING 6–43% [12,13,15,16,23] Functional [12,14,15];
Decreased [13,23]

No effect [12-15];
Accelerated disease progression [16]

C58Y RING < 1% [13] ND ND
V77A Linker 1 < 1% [13] ND ND
D93V Linker 1 < 1% [13] ND ND
G110E B-box 2 < 1 to 2% [13,15] Functional/Slightly decreased [15] No effect [15]
V112F B-box 2 1–11% [12,13,15] Functional [15,23]/Slightly decreased [13] No effect [12,13,15]
R119W B-box 2 < 1% [13,15] Functional [15] No effect [15]
R119Q B-box 2 1% [15] Functional [15] No effect [15]
R136Q Coil 11–38% [12,13,15,16] Functional [12,15,23]/Increased activity [13] No effect [12,13,16];

Slower progression (in X4 variants) [16]; Increased 
haplotype frequency in HIV-1 but no affect on 
disease progression [15];
Suggested protective effect [13]

V140L Coil < 1% [13,15] Functional [15] No effect [15]
Q143R Coil < 1% [13] ND ND
R238W Linker 2 < 5% [23] Functional [23] ND
G249D Linker 2 6–27% [12,13] Functional [12,13,23] No effect [13];

Slower disease progression [12]
P323R SPRY ND Functional [10] ND
K324N SPRY ND Increased activity [10] ND
I328M SPRY ND Functional [10,29] ND
G330Q SPRY ND Functional [10,29] ND
R332P SPRY ND Increased activity [10,29] ND
I348V SPRY ND Functional [29] ND
T369S SPRY ND Functional [29] ND
H419Y SPRY 1–8% [12,13,15] Functional [12,13,15,23] No effect [13,15];

Slower disease progression [12]
V423F SPRY < 1% [13] Functional [13] ND
V438G SPRY < 1% [13] ND ND
Y444C SPRY < 1% [13] ND ND
A446S SPRY < 1% [13] ND ND
I461L SPRY < 1% [13] Functional [13] ND
S470P SPRY < 1% [13] Functional [13] ND
P479L SPRY up to 5% [13] Functional [13] ND

ND: Not determined
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Table 2: TRIM5α mutations and predicted affect on protein function

nsSNP PolyPhen SIFT† A-GVGD B62PW Prediction‡

H43Y BENIGN TOLERATED NEUTRAL DELETERIOUS Likely Tolerated
(Pi = 0.50)

C58Y PROBABLY DAMAGING DELETERIOUS DELETERIOUS DELETERIOUS Deleterious
(Pi = 1.00)

V77A BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

D93V BENIGN DELETERIOUS NEUTRAL DELETERIOUS Unknown
(Pi = 0.33)

G110E BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

V112F POSSIBLY DAMAGING DELETERIOUS NEUTRAL TOLERATED Unknown
(Pi = 0.33)

R119W PROBABLY DAMAGING DELETERIOUS DELETERIOUS DELETERIOUS Deleterious
(Pi = 1.00)

R119Q BENIGN DELETERIOUS POSSIBLY DAMAGING DELETERIOUS Likely Deleterious
(Pi = 0.50)

R136Q BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

V140L BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

Q143R POSSIBLY DAMAGING DELETERIOUS POSSIBLY DAMAGING DELETERIOUS Deleterious
(Pi = 1.00)

R238W PROBABLY DAMAGING DELETERIOUS POSSIBLY DAMAGING DELETERIOUS Deleterious
(Pi = 1.00)

G249D BENIGN TOLERATED NEUTRAL DELETERIOUS Likely Tolerated
(Pi = 0.50)

P323R BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

K324N BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

I328M BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

G330Q BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

R332P BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

I348V BENIGN TOLERATED NEUTRAL DELETERIOUS Likely Tolerated
(Pi = 0.50)

T369S BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

H419Y BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

V423F BENIGN DELETERIOUS NEUTRAL TOLERATED Likely Tolerated
(Pi = 0.50)

V438G PROBABLY DAMAGING DELETERIOUS DELETERIOUS DELETERIOUS Deleterious
(Pi = 1.00)

Y444C BENIGN DELETERIOUS NEUTRAL DELETERIOUS Unknown
(Pi = 0.33)

A446S POSSIBLY DAMAGING DELETERIOUS NEUTRAL DELETERIOUS Likely Deleterious
(Pi = 0.50)

I461L BENIGN TOLERATED NEUTRAL DELETERIOUS Likely Tolerated
(Pi = 0.50)

S470P BENIGN TOLERATED NEUTRAL TOLERATED Tolerated
(Pi = 1.00)

P479L PROBABLY DAMAGING DELETERIOUS NEUTRAL DELETERIOUS Likely Deleterious
(Pi = 0.50)

†SIFT output is based on manually aligned sequences. Query only sequence data is not shown.
‡Predictions are based on Pi, the extent to which SIFT (aligned), PolyPhen, A-GVGD, and BLOSUM62 pairwise agree for a given nsSNP. When all 
four methods agree (Pi = 1.00), the overall predictive value exceeds 90% [20].
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gomerization [8,13]. Clinical studies have shown that this
mutation is increased in HIV-infected patients versus non-
infected (OR = 5.49, 95% CI 1.83–16.45, p = 0.002) [15],
but in-vitro data shows R136Q retains functional activity
[15,23]. Furthermore, other clinical studies have shown
that R136Q may have a protective affect against HIV-1
[13]. One reason for the conflicting results may be that
this mutation is in linkage disequilibrium with other alle-
les that do play a role in HIV progression or susceptibility
[15,16]. A questionable protective effect of R136Q has
also been observed in people with X4-trophic virus [16].
Comparative sequence analysis shows that all four meth-
ods agree R136Q would be tolerant with an accuracy of
greater than 90% [20].

Two other nsSNPs, G249D and H419Y, have also shown
ambiguous data with either no effect on clinical outcomes
[13,15] or a slower progression of disease [12]. Functional
data show that both of these nsSNPs have no affect on
TRIM5α function [12,13,15,23]. Three of four methods
using comparative sequence analysis suggest G249D is a
benign polymorphism, and all four agree that H419 is
benign (Table 2).

Several other TRIM5α nsSNPs of interest were also identi-
fied. The polymorphisms C58Y, R119W, Q143R, R238W,
and V438G are all observed in different human popula-
tions and are all predicted deleterious by the four compar-
ative sequence methods (Table 2). Only R119W has been
evaluated in clinical studies and has no effect on HIV out-
comes [15]. Both R119W and R238W are functional based
on in-vitro studies [15,23]. Given the conflicting data,
these nsSNPs along with C58Y, Q143R, and V438G
should be further studied to assess affect on protein func-
tion and association with clinical HIV disease.

The SPRY region of TRIM5α is a critical region involved in
species-specific restriction of HIV-1 [8,10,28] and con-
tains codons under high degrees of positive selection
[9,28]. A number of TRIM5α mutations have been studied
in the SPRY region of the protein (Table 1). Of interest,
amino acid residues 325 to 344 are in a segment of this
domain which differs from primates [8]. This 'hypervaria-
ble' region has been shown to be responsible, at least in
part, for the ability to specifically target HIV-1 [10].
Although no nsSNPs have yet been observed in this region
in the human population, mutations at this site may con-
fer a protective benefit against HIV-1 infection. In-vitro
studies have demonstrated that single amino acid changes
in this region, specifically R332P and to a lesser extent
K324N, may be able to effectively restrict HIV-1 [10,29].
All methods for these mutations with the exception of
I348V were predicted tolerant mutations in agreement
with the functional data. For I348V, three methods pre-

dicted the mutation as tolerant while only the average
BLOSUM62 pairwise predicted it as deleterious.

Overall, the four computational methods agreed the
majority of the time (κ = 0.53, moderate agreement [25]).
Clinical studies on TRIM5α nsSNPs have shown conflict-
ing results [12,13,15,16], but in-vitro assays clearly dem-
onstrate activity at inhibiting HIV-1. More studies are
needed to define the interaction of TRIM5α with immune
regulatory genes and DNA sequences that may be in link-
age disequilibrium. Focus should be taken to explore the
possibility that TRIM5α may affect certain populations
differently, specifically people with X4-dominant HIV
infection or other ethnic groups.

Two limitations to this study are the paucity of TRIM5α
gene sequences available and the lack of structural data
available on TRIM5α. Although the number of sequences
is sufficient as discussed above, a greater variety of species
would allow better alignments based on sensitivity and
specificity plots [20]. Furthermore, programs such as
PolyPhen rely on structural databases of which there is
none presently for TRIM5α.

Conclusion
Comparative sequence analysis suggests that neither
H43Y nor R136Q affect TRIM5α protein function. We
identified other nsSNPs that may affect TRIM5α activity
and should be analyzed in further clinical and laboratory
studies.
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