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Abstract
Background: Fruit normally develops from the ovary after pollination and fertilization. However,
the ovary can also generate seedless fruit without fertilization by parthenocarpy. Parthenocarpic
fruit development has been obtained in tomato (Solanum lycopersicum) by genetic modification using
auxin-synthesising gene(s) (DefH9-iaaM; DefH9-RI-iaaM) expressed specifically in the placenta and
ovules.

Findings: We have performed a cDNA Amplified Fragment Length Polymorphism (cDNA-AFLP)
analysis on pre-anthesis tomato flower buds (0.5 cm long) collected from DefH9-iaaM and DefH9-
RI-iaaM parthenocarpic and wild-type plants, with the aim to identify genes involved in very early
phases of tomato fruit development. We detected 212 transcripts differentially expressed in auxin-
ipersynthesising pre-anthesis flower buds, 65 of them (31%) have unknown function. Several
differentially expressed genes show homology to genes involved in protein trafficking and protein
degradation via proteasome. These processes are crucial for auxin cellular transport and signaling,
respectively.

Conclusion: The data presented might contribute to elucidate the molecular basis of the fruiting
process and to develop new methods to confer parthenocarpy to species of agronomic interest. In
a recently published work, we have demonstrated that one of the genes identified in this screening,
corresponding to #109 cDNA clone, regulates auxin-dependent fruit initiation and its suppression
causes parthenocarpic fruit development in tomato.

Introduction
Tomato (Solanum lycopersicum) fruit represents an impor-
tant component of the human diet due to high content in
fibres, vitamins and antioxidants. The identification of
genes that control growth and maturation of tomato fruit
will allow their manipulation, by breeding and/or genetic

engineering, to improve fruit quality. Biochemical and
genetic aspects of late stages of fruit development, in par-
ticular ripening, have been widely investigated [1-4],
while initial phases of fruit development have received
less attention, despite their importance for both basic and
applied research. Until now, few studies have been per-
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formed to investigate tomato fruit set and early develop-
ment (1 to 15 days post anthesis) [5-7].

In Angiosperms, once a flower is pollinated and fertiliza-
tion successfully takes place, ovary starts to grow and this
is the first visible sign of fruit development [8]. The earli-
est phase of fruit growth is referred to as fruit set or fruit
initiation.

In parthenocarpic plants, fruit set and development
occurs without fertilization leading to the production of
seedless fruits. The first phytohormone shown to trigger
parthenocarpic fruit development was auxin applied
exogenously to tomato flowers [9]. It is extensively dem-
onstrated that one of the possible methods for achieving
parthenocarpic fruit development, employing genetic
engineering, is based on the ovary-specific expression
(driven by DefH9 promoter) of iaaM and RI-iaaM genes,
which code for an enzyme of the auxin biosynthetic path-
way [10-13]. The two chimeric genes, DefH9-iaaM and
DefH9-RI-iaaM, differ in vitro in their translational poten-
tial, and in planta in the level of auxin (total IAA) content
in flower buds [12]. RI-iaaM is an iaaM derivative, modi-
fied in its 5'ULR in order to down-regulate the level of
expression. Both DefH9-iaaM and DefH9-RI-iaaM parthe-
nocarpic tomato flower buds are characterised by an
increased content of auxin in female gametophyte as com-
pared with wild-type [10-12], but DefH9-iaaM-expressing
flower buds contain 5 times higher IAA than DefH9-RI-
iaaM-expressing flower buds [12]. At pre-anthesis the
iaaM-parthenocarpic flower buds appear morphologically
identical to those of wild-type, except for an early enlarge-
ment of the ovary [14], indicating that high levels of auxin
can derepress ovary growth before fertilization. Therefore,
iaaM-parthenocarpic plants show precocious fruit growth.
It is reasonable to assume that in parthenocarpic flower
buds, the genetic program for fruit development has been
already switched on during early stages of flower develop-
ment, well before anthesis. On this premises, the iaaM-
parthenocarpic flower buds represent a suitable experi-
mental model to study molecular events taking place dur-
ing the early phases of fruit growth, monitoring
expression changes that occur mainly within the ovary.

Results and discussion
A cDNA-AFLP approach [15] was used to generate expres-
sion profiles of young flower buds isolated from four
independent parthenocarpic UC82 tomato lines, two
transgenic for DefH9-iaaM (#3 and #2; see [12] for a
description of the lines) and two for DefH9-RI-iaaM gene
(#s5 and #s6; see [12] for a description of the lines), and
from wild-type plants. Flower buds under analysis (0.5 cm
in length) were at a very early stage of development (6–7
days before anthesis).

Using 32 different primer combinations (BstT/C+n –
Mse+n, where n represents selective nucleotide) more
than 3000 cDNA fragments were generated. The AFLP
fragments ranged in length from 50 to 500 bp; for each
primer combination, approximately 100 bands were
observed on polyacrylamide denaturing gel (Figure 1).
The differentially expressed fragments were excised from
the gels, re-amplified by PCR and sequenced. Good qual-

Portion of a typical cDNA-AFLP gelFigure 1
Portion of a typical cDNA-AFLP gel. An example of gel 
showing selective amplification with 3 different primer com-
binations (BstTA/MseT; BstTA/MseG and BstTA/MseC). 
Expression profiles of flower buds (0.5 cm long) from wild-
type plants, two independent DefH9-iaaM lines (#3, # 2), and 
two independent DefH9-RI-iaaM lines (#s5, #s6) are 
reported. PCR products were size-fractionated on a 6% 
urea-polyacrylamide gel.
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ity and unique sequences were obtained for 212 cDNA
fragments (Additional files 1 and 2).

The expression profiles of the isolated fragments were
reproducible in the independent transgenic lines chosen
for the analysis (Figure 1). One hundred and thirty cDNAs
out of the 212 differentially expressed were induced in
iaaM-parthenocarpic lines as compared to wild-type,
whilst the remaining 82 cDNAs were down-regulated.

We performed quantitative RT-PCR analysis to validate
some of the differentially expressed gene (Additional file
3) representative of the different functional categories
(Additional file 2), using RNA extracted from independ-
ent parthenocarpic lines different from those tested by
cDNA-AFLP. The sequences of the 212 differentially
expressed genes were compared with those in GenBank
database http://www.ncbi.nlm.nih.gov, DNA Data Bank
of Japan database http://www.ddbj.nig.ac.jp/searches-
e.html and DFCI Tomato Unique Gene Indices http://
www.tigr.org/tdb/tgi, using BlastN or BlastX homology
search tool [16]. The differentially expressed cDNA-AFLP
clones are listed in additional file 2; for each clone the
accession number, if available, and the e-value of the
sequence that produced the highest identity score,
together with the best S. lycopersicum Tentative Consensus
(TC) sequence (DFCI Tomato Unique Gene Indices), are
reported. A tentative annotation was assigned to about
70% of the cDNA-AFLP clones following GenBank and
DFCI Tomato Unique Gene Indices databases. The cDNA
clones were grouped in 10 functional categories (Figure 2)
according to Universal Protein Resource (UniProt) http://
www.uniprot.org and TAIR database http://www.arabi
dopsis.org.

The two most represented categories "metabolism" and
"unknown function" contain 47 genes (22%) and 65
genes (31%), respectively (Figure 2 and additional file 2).
The majority of genes of the first category include enzymes
with primary metabolic roles (e.g. phospholipid, carbo-
hydrate and amino-acid metabolism). Other genes
belonging to this category code for enzymes involved in
secondary metabolism, such as spermidine synthase
(#376) and ornithine decarboxylase (#216) that are up-
regulated in iaaM-parthenocarpic flower buds and partic-
ipate in the polyamine biosynthetic pathway. This finding
is consistent with previous data showing that polyamines
play a role in early fruit development [17] and it is in
accordance with the experimental evidence demonstrat-
ing that polyamine metabolism is affected by exogenous
auxin treatment of tomato ovaries [18].

In the functional category "Cell rescue, Defense and Cell
fate" most of the genes involved in biotic stress showed a
decreased expression in parthenocarpic flower buds. This

is in accordance with the observation that tomato unpol-
linated flowers are actively protected against pathogens
whereas after induction of fruit growth the expression of
defence genes is reduced [7].

iaaM-parthenocarpic tomato flower buds have higher
auxin levels compared with wild-type flower buds [12].
The increased indole-3-acetic acid (IAA) content in ova-
ries and placenta is considered to mimic the burst of
auxin, which occurs in the carpel after pollination [19].
Interestingly, one of the genes in the category "metabo-
lism", cDNA clone #436 induced in iaaM-parthenocarpic
flower buds, codes for a molybdenum cofactor sulfurase
protein-like, an enzyme taking part in the molybdenum
cofactor biosynthetic pathway [20]. The molybdenum
cofactor sulfurase ABA3 from Arabidopsis thaliana is neces-
sary for post-translational activation of aldehyde oxidase
(AOs) and xanthine dehydrogenase (XDH) [21]. In
plants, AOs form a multigene family whose members
have broad substrate specificity for several aldehydes
including indole-3-acetaldehyde and abscisic aldehyde
suggesting for AOs a role in the biosynthesis of IAA and
abscisic acid (ABA). Other experimental evidences linked
AO activity to the biosynthesis of IAA. AO1 activity in IAA-
overproducing Arabidopsis plants is 5 times higher as com-
pared to wild-type plants [22]. The up-regulation of #436
might contribute to increase IAA content observed in
iaaM-parthenocarpic flower buds. However, we cannot
exclude that the modulation of this gene might be related
to ABA biosynthetic activity. In this regard, genes involved
in ABA biosynthesis were shown to be strongly expressed
in tomato ovary collected from flowers at anthesis [7].

The molecular events underlying the auxin-mediated
derepression of ovary growth have not been fully eluci-
dated. The augmented synthesis of auxin could affect IAA
signaling pathway and/or modify the expression and
localization of auxin transporters [23].

Auxin is perceived by intracellular located TIR1/AFB1–3
receptors that mediate the ubiquitination of AUX/IAA
proteins that are then degraded by 26S-proteasome [23-
25]. Most of the differentially expressed genes present in
the "protein fate" functional category show homology to
genes involved in proteolytic degradation via ubiquitina-
tion.

The establishment of auxin gradients in tissue/organs is
crucial for auxin action [26-28] and requires the polar dis-
tribution of transporters in the plasma membrane. There
is experimental evidence proving that the flexible asym-
metric localization of IAA transporters is assured by
cycling of these proteins between plasma membranes and
endosome compartments [26-28], however many aspects
of this regulatory process are still elusive.
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In this regard, in the category "Plasmamembrane and cel-
lular transport" a number of differentially expressed tran-
scripts are homologous to genes implicated in
intracellular protein transport. cDNA-AFLP clone #163 is
similar to Rab8 of Nicotiana tabacum, putatively involved
in protein movement between Golgi apparatus and the
plasma membrane; #438 is homologous to SEC61 a pro-
tein translocator of endoplasmic reticulum (RE); #877 is
similar to synthaxin-71, a component of the SNARE com-
plex which functions in vesicles trafficking; #408 is anno-
tated as μ-subunit of the clathrin adaptor complex.
Furthermore, #303 clone encodes for a protein with not
yet identified function, characterised by the clathrin-box

motif (L [IVLMF]X [IVLMF] [DE]) (Eukaryotic Linear
Motif (ELM) http://elm.eu.org). It would be interesting to
investigate whether the differentially expressed genes
found to be implicated in intracellular protein trafficking,
play a role in the distribution of auxin transporters during
early stage of fruit development. In fact, the treatment of
tomato flower buds with inhibitors of polar auxin trans-
port induces parthenocarpic fruit development [8].

Genes involved in fruit set and/or early fruit development
are often transcriptionally regulated during the first
phases of ovary growth. We have investigated in wild-type
tomato plants the expression of some genes identified in

Functional distribution of differentially expressed genesFigure 2
Functional distribution of differentially expressed genes. Genes were classified into 10 functional categories based on 
their putative function.
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this screening (cDNA clones #70, #855, #805 reported in
Figure 3; #109, see [14]; #216 and #904, see [13]) at dif-
ferent stages of flower and fruit development. These genes
show a drastic increase (#855, and #805) or decrease
(#70, #109, #216, and #904) in transcript level at the
stage of open flower. Considering their expression pro-
files, it would be reasonable to test these genes for their
putative role in fruit development. For instance, cDNA
clone #109 (named by us SlAucsia-1 gene; [14]) and the
homologous gene SlAucsia-2 are highly expressed in
flower buds and decrease dramatically (97%) after polli-
nation/fertilization. Their suppression by RNA silencing
causes parthenocarpic fruit development in tomato [14].
Furthermore, Aucsia-silenced tomato plants exhibit other
alterations such as reduced polar auxin transport in roots
and increased sensitivity to 1-naphthylphthalamic acid,

an inhibitor of polar auxin transport. In Arabidopsis thal-
iana Aucsia genes [GenBank:AK224828, Gen-
Bank:AK224647] are annotated as components of the
endomembrane system. This finding argues in favour of
the hypothesis that also other genes here presented can be
candidate genes playing a role in fruit set.

In conclusion, this dataset represents a starting tool for the
study of genes involved in fruit set in tomato and in other
crops bearing fleshy fruits and could contribute to
develop new methods to confer parthenocarpy.

Methods
Plant Material
The two transgenes DefH9-iaaM and DefH9-RI-iaaM were
introduced in UC82 tomato plants. The UC82 is a typical
cultivar used by the processing industry. Two independent
DefH9-iaaM parthenocarpic UC82 lines (#2 and # 3) and
two independent DefH9-RI-iaaM parthenocarpic UC82
lines (#s5 and #s6) were used in this work (for a descrip-
tion of the lines see [12]).

cDNA-AFLP analysis
For a detailed description of the method used, see [14].

qRT-PCR Quantitative PCR Analysis
100 mg of pooled flower buds (collected from 4–5 plants)
were ground in liquid nitrogen and total RNA was iso-
lated. Starting from DNase-treated total RNA, first-strand
cDNA was synthesized with oligo-dT primer and Super-
script II (Invitrogen). The cDNA clones were amplified
with gene-specific primers designed to give amplification
products ranging from 100 to 150 bp, according to
Applied Biosystem guidelines. Experiments were carried
out using Platinum SYBR Green QPCR Supermix-UDG
(Invitrogen) in ABI Prism 7000 Sequence Detection Sys-
tem (Applied Biosystems). The following cycling condi-
tions were used: 2 min at 50°C, 2 min at 95°C, 40 cycles
of 95°C for 30 sec, 56°C for 30 sec, 72°C for 30 sec and
finally 72°C for 3 min. All quantitations were normalized
to actin gene as endogenous control gene. Forward (F)
and reverse (R) primers used for actin amplification are
the following: F 5'-CCCGTTCAGCAGTGGTGGT-3' and R
5'-TACGAGGGTTATGCTTTGCC-3'. For each amplifica-
tion reaction, the analysis of the product dissociation
curve was performed to exclude the presence of non-spe-
cific amplification. Data from qRT-PCR experiments were
analysed according to [29].

Northern Blot Analysis
Total RNAs were isolated with Trizol reagent (Invitrogen)
and then 20 μg were separated on 1% agarose-formalde-
hyde denaturing gels. The gels were blotted overnight on
Hybond N+ membrane (Amersham Biosciences) in 10×
SSC. The DNA probes were labeled with [32P]CTP using

Expression pattern of differentially expressed transcripts at different stages of wild-type flower developmentFigure 3
Expression pattern of differentially expressed tran-
scripts at different stages of wild-type flower develop-
ment. (Upper panel) a, b, c: flower buds at 6–7, 4–5 and 1–3 
days before anthesis, respectively; d: open flower (approxi-
mately 2 days after anthesis); e: flower 4–5 days after anthe-
sis. (Bottom panels) Northern blot analysis of mRNAs 
corresponding to #70, #805 and #855 cDNA-AFLP clones. 
The filter was also hybridised to an actin probe.
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"Ready to go DNA labeling beads (-dCTP)" (Amersham
Biosciences). The membranes were hybridised overnight
at 42°C in ULTRAhyb buffer (Ambion) in presence of 106

cpm mL-1 of labelled probe. The membranes were washed
2 times in 2× SSC containing 0.1% SDS for 5 min and 2
times in 0.1× SSC containing 0.1% SDS for 15 min at
42°C. Autoradiography was then performed using Kodak
X-AR5 film. For each c-DNA AFLP clone tested, the probe
was obtained by amplification of cDNA with the same
primers adopted for qRT-PCR.
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