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Abstract
Background: Recent evidence suggests erythropoietin (EPO) and the erythropoietin receptor
(EPOR) may play a direct role in the pathogenesis of diabetic retinopathy. Better characterization
of the EPO-EPOR signaling system in the ischemic retina may offer a new therapeutic modality for
ischemic ophthalmic diseases. This study was performed to identify EPOR mRNA expression in the
human diabetic eye.

Findings: EPOR antisense RNA probes were validated on human pancreas tissue. In the normal
eye, EPOR was expressed in the retinal ganglion cell layer. Minimal expression was observed in the
inner and outer nuclear layer. Under conditions of diabetic retinopathy, EPOR expression shifted
to photoreceptor cells. Increased expression was also observed in the peripheral retina.

Conclusion: EPOR expression may be a biomarker or contribute to disease mechanisms in
diabetic retinopathy.

Background
Human erythropoietin (EPO) is the primary regulator of
erythropoiesis, stimulating growth and promoting differ-
entiation of red blood cell progenitors[1]. The primary
stimulus for EPO release is decreased oxygen delivery,
most often due to anemia or hypoxia[2]. EPO is an acidic
glycoprotein hormone that is produced by the kidney and
to a much lesser degree (<10 percent) the liver. EPO binds
to transmembrane epogen receptors (EPOR), which are
expressed primarily by hematopoietic progenitor cells but
also by nonhematopoietic cells and tissues such as
endothelial cells, cardiomyocytes, and neurons, the liver,
uterus, and retina[3]. EPO also shows angiogenic activity
in vitro by stimulating vascular endothelial cells to prolif-
erate and migrate[4]. EPO is now also known as a potent

antiapoptotic factor for EPOR presenting cells, particu-
larly neural cells[5].

EPO may play a direct role in the pathophysiology of dia-
betic retinopathy. Vitreous levels of EPO are higher in dia-
betic patients, suggesting that EPO may be produced as an
endogenous neuroprotectant against ischemia. Compared
with the proangiogenic vascular endothelial growth fac-
tor, EPO is more strongly associated with proliferative dia-
betic retinopathy than VEGF[6]. In diabetic rats,
intravitreal injection of EPO upregulated EPOR in the
neurosensory retina and had a protective effect on vascu-
lar and photoreceptor cells[7]. In a mouse model of oxy-
gen-induced retinopathy inhibition of EPO by injection
of intravitreal EPO siRNA suppressed retinal neovascular-
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ization[8]. Inhibition of systemic EPO production has
been clinically observed in early diabetic nephropathy
and results in anemia that is associated with an aggravated
course of DR[9]. Intravenous administration of EPO to
treat azotemia-induced anemia in diabetic patients dem-
onstrated a beneficial effect on macular edema and
improved visual outcome[10]. In a cross-sectional study
of 1691 diabetic patients, the severity of anemia corre-
lated with the severity of PDR[11]. Friedman reported 5
cases in which patients with severe anemia and PDR had
substantial reduction of macular hard exudates after treat-
ment with systemic EPO[12].

Identifying the target cells and conditions regulating
EPOR expression is important when considering thera-
peutic intervention. In a study of post-mortem retinas of
9 patients with diabetes but without diabetic retinopathy,
EPOR was detected in the neuroretina and in the retinal
pigment epithelium. No difference in expression of EPOR
between diabetic eyes and non-diabetic was observed
eyes[13]. However, they did not report which layers of the
neuroretina they detected expression.

Evidence for EPOR localization in mice has been contra-
dictory. Chen et. al showed EPOR to be expressed in all
layers of the inner retina and predominantly in the gan-
glion cell layer[14]. Kilic and associates also showed local-
ization to the ganglion cell layer[15]. However, Grimm
and associates have evidence of its localization to pho-
toreceptors[16]. Hypoxia is a potent trigger for EPO and
EPOR expression, and a growing body of evidence sug-
gests hypoxia may induce changes in the expression of
EPOR in the eye. Compared with age-matched controls,
EPO mRNA expression levels are greatly increased in the
retinas of mice under hypoxic conditions[14].

While antibodies suitable for EPOR detection in mouse
tissues exist, they lack specificity for human EpoR[17]. For
this reason mRNA in situ hybridization experiments were
performed to identify cellular EPOR expression in the
human diabetic retinopathy eye.

Results
Gross examination of the diabetic eye showed extensive
photocoagulation scars throughout the peripheral retina.
The vitreous was collapsed and there was a membrane
overlying the posterior pole. The macula appeared edema-
tous. (Figure 1A) These findings were consistent with
prior treatment of proliferative diabetic retinopathy where
the surviving retinal cells would have been subjected to
severe ischemia, especially in the peripheral retina. A rep-
resentative fluorescein angiogram of retinopathy from
diabetes is shown. In such cases, there is extensive capil-
lary loss, which is more pronounced in the retinal periph-
ery[18]. (Figure 1B) The eye was sectioned and

histological examination of the posterior retina showed
preretinal fibrosis, nerve fiber layer edema, variable cell
loss especially in the photoreceptor layer, tractional reti-
nal detachment, and retinal pigment epithelial hyperpla-
sia. (Figure 1C) The retina became thinner in the
periphery and there was cell loss and abnormal tissue and
cytoarchitecture. (Figure 1D)

To better understand EPOR expression in the ischemic ret-
ina, an in situ hybridization assay was developed. To vali-
date the assay, EPOR antisense probes were first applied to
human pancreatic sections where EPOR is highly
expressed. Expression was seen in the acinar cells and ves-
sel lumen endothelial cells as previously described[4,19]
(Figure 2). Only a minimal, non-specific signal was
observed with the sense probe (Figure 2) or unlabeled
probe (data not shown).

The posterior retina was then examined. In the normal
human eye, EPOR was expressed in the retinal ganglion
cell layer. No expression was observed in the inner or
outer nuclear or plexiform layers. (Figures 3A - C) In con-
trast, the diabetic retina showed increased expression in
the photoreceptor cells in addition to expression in the
retinal ganglion cell layer. (Figures 3D - F)

In the retinal periphery, the retinal thickness and number
of cells normally decreases. In the normal eye there was a
corresponding decrease in EPOR signal. (Figures 4A - C)
In the diabetic retina, however, there was a significantly
higher increase in EPOR signal. This did not correspond to
increased numbers of cells or thicker tissue. Rather, there
was loss of cells and disruption of the normal tissue and
cytoarchitecture, and it was not possible to assign this
expression to a specific cell type or layer (Figures 4D-F).
Comparison to control sense probe sections suggested the
hybridization signal was not due to increased back-
ground.

Discussion
Reports of expression of EPOR in the human diabetic ret-
ina in diabetics is limited without indication of cellular
origin. One report detected EPOR in human epiretinal
membrane of proliferative diabetic retinopathy[20].
EPOR was detected in retinal and RPE extracts of patients
with diabetes, but these patients had no evidence of
ischemia or retinopathy[13].

Our results reveal EPOR mRNA is expressed primarily in
the ganglion cell layer of the human retina under normal
conditions[14,15]. Although absent from in human pho-
toreceptors under normal conditions, our results suggest
that EPOR is upregulated in photoreceptors during dia-
betic retinopathy. The high metabolic rate of dark-
adapted photoreceptors can lead to borderline hypoxic
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levels in the normal retina, so photoreceptors may be par-
ticularly susceptible to hypoxia[21]. Our finding of
increased EPOR expression in the peripheral retina most
likely indicates increased hypoxia/ischemia in these areas.
This is consistent with current understanding of the
pathogenesis of diabetic retinopathy, in which retinal cap-
illary non-perfusion results in retinal ischemia initially in
the mid-retinal periphery[22]. The distortion of the
cytoarchitecture of the human diabetic retina in our study

is likely a consequence of extensive panretinal photocoag-
ulation treatment. Increased EPOR expression may reflect
increased hypoxia, and may be an endogenous attempt by
the body to protect the retina from hypoxia with the neu-
roprotective properties of EPO.

Hypoxia is a potent stimulus of increased EPO produc-
tion. Retinal EPO mRNA levels were increased in mice in
a dose-dependent manner following hypoxia[16]. It is

Regressed Proliferative Diabetic RetinopathyFigure 1
Regressed Proliferative Diabetic Retinopathy. A, Gross view of eye. There was a membrane (arrow) overlying the mac-
ula and optic nerve head (ON). Peripheral to this were laser photocoagulation scars. Dotted lines show the posterior and 
peripheral retina. B, Representative fluorescein angiogram showing capillary dropout (arrows) and peripheral ischemia. C, H&E 
section of the posterior retina shows variable cell and photoreceptor segment loss (arrow). D, H&E section of the peripheral 
retina shows extreme cell loss and disorganized cytoarchitecture. Abbreviations: H&E, heamotoxylin and eosin; ON, optic 
nerve; RGC, retinal ganglion cell layer; INL, inner nuclear layer; ONL outer nuclear layer; RPE, retinal pigment epithelium layer; 
PS, photoreceptor segments.
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thought that EPO may function as an endogenous neuro-
protectant. In a mouse-model of retinal detachment, in
which photoreceptors die from ischemia, Xie and col-
leagues demonstrated that there is upregulation of the
EPO-EPOR system[23]. Other studies demonstrated in a
mouse-model that levels of both EPO mRNA and EPOR
mRNA increased in the retinas of mice during hypoxia-
induced retinal neovascularization[8]. The angiogenic
properties might be relevant in the peripheral retina,
which is the site of neovascularization in proliferative dia-
betic retinopathy. Increased expression is found in other
organ systems, including the spleen and brain, where the
EPO/EPOR signaling system is upregulated under condi-
tions of hypoxia[24,25].

The EPO/EPOR signaling system may contribute to the
survival of neurons through a variety of mechanisms
including inhibition of apoptosis, a reduction in reactive
oxidative species, a reduction in proinflammatory
cytokines, recruitment of stem cells and maintenance of
vascular autoregulation lending protection from ischemic
damage[26]. Transcriptional regulation of EPO expres-
sion by hypoxia-inducible factor-1 (HIF1α) maintains
survival of cone photoreceptors against genetic
insults[27]. EPO promotes neural outgrowth from retinal
ganglion cells in a dose-dependent manner and preserves
their survival after axotomy[28]. Additionally, hypoxia-
induced retinal EPO expression appears to protect retinal
neurons from transient global ischemic and reperfusion

EpoR probe validation in human pancreatic tissueFigure 2
EpoR probe validation in human pancreatic tissue. A, A section of human pancreatic tissue with sense RNA probes for 
EpoR. B, Same tissue with anti-sense RNA probes for EpoR, demonstrating increased expression in islet of Langerhans cells. C, 
A section of human pancreatic tissue showing a vein adjacent to an acinar cell, with sense RNA probes. D, The same tissue 
with anti-sense RNA probes for EpoR, demonstrating expression in the endothelium of the vein (arrows). Abbreviations: ac, 
acinar cells; ar, artery; isl, islet of Langerhans.
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injury through an anti-apoptotic pathway[29]. There is
evidence that systemic EPO administration may protect
retinal photoreceptors from light-induced apoptotic path-
ways in retinal degeneration models.

Pathologic angiogenesis is a final common pathway in
ischemic ocular diseases. In proliferative diabetic retinop-
athy, catastrophic vision loss is often the result of neovas-
cular membranes that lead to hemorrhage, fibrosis, and
retinal detachment[30]. The destruction of retinal tissue
with laser photocoagulation is thought to mitigate retinal
ischemia, and remains the established treatment for dia-
betic retinal neovascularization[30]. The molecular mech-
anisms underlying the ischemic drive for proliferative
diabetic retinopathy are poorly understood, and develop-
ment of more effective and less destructive therapy is nec-
essary.

Conclusion
Our findings suggest in the human retina, EPOR mRNA is
primarily expressed in the ganglion cell layer. Under con-
ditions of ischemia such as diabetic retinopathy, there
may be up-regulation of EPOR expression in the photore-
ceptors and in the peripheral retina.

Future studies with additional samples may lead to more
conclusive answers regarding the potential role of EPO in
diabetic retinopathy. Nevertheless, our results support the
concept that a dynamic EPO-EPOR signaling system is
present in the ischemic retina and may offer a new thera-
peutic modality for ischemic ophthalmic diseases. Given
its neurotrophic properties, EPO may be an ideal candi-
date to signal retinal ganglion cells or photoreceptors in
anterior ischemic optic neuropathy or central retinal
artery occlusion where there are currently no effective
treatments. Careful inhibition of EPO may prove to be an
effective way to treat or prevent diabetic retinopathy and
other forms of angiogenesis. Ultimately, clinical applica-
tion and regulation of the EPO/EPOR system will require
careful dosing so that vessel proliferation is inhibited
without impairment of neuronal survival.

Methods
This study adhered to the tenets of the Declaration of Hel-
sinki and was approved by the Institutional Review Board.
Post-mortem retinas from two eyes were obtained from a
68 year-old male with regressed proliferative diabetic
retinopathy and end-stage renal disease and peripheral
vascular disease. This was compared to two retinas form

EpoR mRNA expression in the posterior normal (A-C) and diabetic (D-F) retinaFigure 3
EpoR mRNA expression in the posterior normal (A-C) and diabetic (D-F) retina. A, Phase contrast micrograph of 
a normal human retina. B, Anti-sense RNA probes for EpoR in normal retina. C, Control sense RNA probes for EpoR in nor-
mal retina demonstrates expression in the retinal ganglion cell layer. D, Phase contrast micrograph of a diabetic human retina 
with an artifactual detachment. E, Anti-sense sense RNA probes for EpoR in diabetic retina. F, Control sense RNA probes for 
EpoR shows decreased expression in the RGC layer and an increase in the photoreceptor segments. Abbreviations: RGC, ret-
inal ganglion cell layer; INL, inner nuclear layer; ONL outer nuclear layer; RPE, retinal pigment epithelium layer; PS, photore-
ceptor segments.
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an age and sex-matched donor eyes without diabetes or
other ophthalmic pathology. Human retina and archived
human pancreatic sections were fixed overnight, dehy-
drated and infiltrated with paraffin. Serial 5 to 8 μm sec-
tions were mounted on gelatin-coated slides,
deparaffinized in xylene and rehydrated in a series of eth-
anols and PBS. The sections were digested with proteinase
K, treated with triethanolamine/acetic anhydride, washed
and dehydrated.

The cRNA transcripts were synthesized in vitro according
to manufacturer's conditions (Ambion) and labeled with
35S-UTP (> 1000 Ci/mmol; Amersham). Sections were
hybridized overnight at 55°C in 50% deionized forma-
mide, 0.3 M NaCl, 20 mM Tris-HCl pH 7.4, 5 mM EDTA,
10 nM NaPO4, 10% dextran sulphate, 1 × Denhardt's, 50
μg/ml total yeast RNA, and 50-80,000 cpm/μl 35S-labeled
cRNA probe. The tissue was subjected to stringent washing
at 65°C in 50% formamide, 2 × SSC, 10 mM DTT and
washed in PBS before treatment with 20 μg/ml RNAse A
at 37°C for 30 minutes. Following washes in 2 × SSC and
0.1 × SSC for 10 minutes at 37°C, slides were dehydrated,
exposed to x-ray film for 5 days, then dipped in Kodak
NTB nuclear track emulsion and exposed for 18 days in

light-tight boxes with desiccant at 4°C. Photographic
development was carried out in Kodak D-19. Slides were
counterstained lightly with hematoxylin and eosin and
analyzed using both bright- and darkfield optics. Sense
control cRNA probes (identical to the mRNAs) always
gave background levels of hybridization signal.
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