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Abstract
Background: Genetic transformation of the malaria mosquito Anopheles gambiae has been
successfully achieved in recent years, and represents a potentially powerful tool for researchers.
Tissue-, stage- and sex-specific promoters are essential requirements to support the development
of new applications for the transformation technique and potential malaria control strategies.
During the Plasmodium lifecycle in the invertebrate host, four major mosquito cell types are
involved in interactions with the parasite: hemocytes and fat body cells, which provide humoral and
cellular components of the innate immune response, midgut and salivary glands representing the
epithelial barriers traversed by the parasite during its lifecycle in the mosquito.

Findings: We have analyzed the upstream regulatory sequence of the An. gambiae salivary gland-
specific apyrase (AgApy) gene in transgenic An. gambiae using a piggyBac transposable element vector
marked by a 3xP3 promoter:DsRed gene fusion. Efficient germ-line transformation in An. gambiae
mosquitoes was obtained and several integration events in at least three different G0 families were
detected. LacZ reporter gene expression was analyzed in three transgenic lines/groups, and in only
one group was tissue-specific expression restricted to salivary glands.

Conclusion: Our data describe an efficient genetic transformation of An. gambiae embryos.
However, expression from the selected region of the AgApy promoter is weak and position effects
may mask tissue- and stage- specific activity in transgenic mosquitoes.

Background

The mosquito Anopheles gambiae is the main vector of the
human malaria parasite Plasmodium falciparum in sub-
Saharan Africa. Within the insect, the parasite undergoes a

complex life-cycle that includes fertilization, midgut inva-
sion, sporozoite maturation, avoidance of the mosquito
innate immune response and, as prerequisite for a suc-
cessful transmission, recognition and entrance into the
salivary glands [1]. The development of tools for mos-
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quito genetic manipulation have provided evidence that
Plasmodium development can be modified in the anophe-
line vector and opened new perspectives for studies on
vector biology and on parasite-vector-host interactions
[2,3].

Several studies in the last decade reported the successful
use of tissue-specific promoters for directing the expres-
sion of exogenous genes in different mosquito target
organs (primarily midgut, hemocoel and salivary glands),
mainly in the yellow fever vector Aedes aegypti and in the
Asian malaria vector Anopheles stephensi [4-7]. As far as the
main African malaria vector An. gambiae is concerned,
after the initial successful transformation [8] only one
additional study with transgenic An. gambiae has been
reported so far [9]. In both cases, low transformation effi-
ciencies were observed.

One of our specific interests has been the analysis of An.
gambiae salivary gland-specific promoters. We have previ-
ously analyzed the putative promoter regions of the An.
gambiae salivary gland-specific D7-related 4 (D7r4) and
apyrase (AgApy) genes in the fruitfly and in An. stephensi
[10-12]. We reported that a short region (~800 bp) from
the An. gambiae AgApy promoter was able to drive stage-
and tissue-specific expression of the reporter gene in trans-
genic An. stephensi. Compared to the endogenous expres-
sion pattern of the AgApy gene in An. gambiae, however,
the level of expression in transgenic An. stephensi was low
and the transgene was expressed in the proximal-lateral
rather than distal-lateral lobes [12,13]. We concluded that
additional regulatory information, possibly located
upstream, was missing in the short fragment used. It was
also clear that the putative An. gambiae promoter needed
to be examined directly in this species before more firm
conclusions could be drawn. In this context, we should
mention that while this work was in progress, robust sali-
vary gland specific expression of a reporter gene in An.
stephensi was reported using a promoter fragment from the
An. stephensi aapp gene [14].

Methods
If not otherwise indicated, experimental procedures were
according to Sambrook and colleagues [15]. The
sequences of the oligonucleotide primers used in this
study are listed in the Additional file 1.

Plasmid construction
pBac(3xP3RED)AgApy was constructed by amplification
of a 2454 bp fragment from the AgApy promoter followed
by cloning into a shuttle bluescript-based vector upstream
of the E. coli LacZ coding region and the bovine growth
hormone (bgh) terminator. The resulting cassette was
transferred into the pSLfa1180fa plasmid vector [16] and
then inserted in the pBac [3xP3-DsRed] vector containing

the DsRed coding sequence regulated by 3xP3 promoter
and SV40 terminator [17]. The resulting
pBac(3xP3RED)AgApy construct was purified using the
QIAGEN Plasmid Midi kit (QIAGEN, Germany),
sequenced and used for embryo microinjection after mix-
ing with phspBac [18], ethanol precipitation and resus-
pension at 500 μg/ml (3.5:1.5 vector:transposase).

An. gambiae germline transformation
Embryonic injections were performed essentially as
described by Lobo N.F. and colleagues [19]. The detailed
protocol used to perform An. gambiae embryos injections
is reported in the Additional file 2.

Southern hybridization
Eight micrograms of genomic DNA from each transgenic
group were digested with HindIII, fractionated on a 0.8%
agarose gel and transferred on to a nylon membrane.
Hybridization and washings were performed at 65°C
under high stringency conditions. The pBac probes (pBacL
and pBacR, spanning the pBac arms) were obtained by
PCR, whilst the AgApy 1,8 kbp promoter fragment used as
probe was obtained by EcoRI digestion of the
pBac(3xP3RED)AgApy transformation plasmid.

RNA Extraction and RT-PCR
Total RNA was extracted using the TRIZOL Reagent (Invit-
rogen, Carlsbad, CA, USA), treated with RNase free-DNa-
seI (Invitrogen) and approximately 80 ng used to
synthesize cDNA for PCR amplification using the Super-
Script one-step RT-PCR system (Invitrogen) according to
manufacturer instructions. Reverse transcription (50°C,
30 minutes) and heat inactivation of the reverse tran-
scriptase (94°C, 2 minutes) were followed by 25 (rpS7
mRNA) or 35 (LacZ and DsRed mRNA) PCR cycles: 30 sec-
onds at 94°C, 30 seconds at 55°C, 1 minute at 72°C.
Control PCR amplifications without the reverse transcrip-
tion step were also performed. All the reactions were per-
formed at least twice using different batches of RNA
preparations.

Results and discussion
We describe here the in vivo analysis of a large 5' regulatory
region taken from the AgApy gene of An. gambiae. A frag-
ment of ~2.4 kb, including the short 5'UTR (16 nucle-
otides) of AgApy was ligated in front of the LacZ reporter
gene and the bgh terminator. This expression cassette was
inserted into the 3xP3/DsRed marked piggyBac vector [17]
and the resultant plasmid (Fig. 1A) used to generate trans-
genic An. gambiae.

In three injection periods carried out over consecutive
days on egg batches taken from the same pool of blood
fed adults, 796 embryos were injected. From these, 102
larvae hatched and 71 G0 adults (8.9%, 35 males and 36
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females) emerged (Table 1). Selection of transformants
was carried out following mating G0 adults in small
groups. Briefly, according to the day of emergence five
male and three female pools (A to H) were established
and out-crossed to the parental wild type strain. Screening

of the G1 progeny for DsRed expression in early larval
stages allowed the identification of two pools yielding flu-
orescent progeny: pool D (15 G0 females) and pool E (8
G0 males) (Table 2). After the first oviposition, the nine
surviving females of group D were forced to lay eggs indi-

Transformation construct and Southern blot hybridizationFigure 1
Transformation construct and Southern blot hybridization. (A) Schematic representation of the transformation vec-
tor pBac(3xP3RED)AgApy used for the An. gambiae germ line transformation. The piggyBac left (pBacL) and right (pBacR) 
arms, the 3xP3 promoter, the DsRed transformation marker, the SV40 terminator, the AgApy promoter, the LacZ reporter 
gene and the bgh terminator are shown. Bars represent the hybridization probes: probe B, hybridizing to the left and right 
inverted terminal repeats, and probe P, corresponding to a fragment of the AgApy promoter. E and H indicate EcoRI and HindI 
restriction sites. (B and C) HindIII digested genomic DNA from the different An. gambiae transgenic lines are indicated on the 
top. (B) Hybridization with probe B (Fig. 1A), which detects the piggyBac arms: each insertion is expected to yield two bands of 
variable size. (C) Hybridization with probe P (Fig. 1A), which detects the AgApy promoter: here, each insertion is expected to 
yield four bands of fixed size irrespective of transgene copy number, two from the endogenous AgApy gene (end) and two from 
the transgene (tra). The numbers on the left refer to the molecular weight marker (Kbp).
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vidually, allowing the identification within this pool of at
least two independent founders. In total, groups D and E
yielded 48 fluorescent larvae out of approximately 1000
screened (~4.8%) and 223 fluorescent larvae out of ~3500
screened (~6.3%), respectively (Table 2). G1 progenies
were grouped considering the different depositions and
the independent founders, when possible (D group), and
then were out-crossed to the wt strain. Single ovipositions
from fifteen females of the different G1 groups were
screened in order to identify, if present, different inser-
tions. Indeed, the pattern and the intensity of the red flu-
orescence in G2 individuals showed variability between
and within pools D and E, suggesting the presence of dif-
ferent integration events, in terms of both position and/or
number (data not shown).

Southern blot hybridization was performed on G3 prog-
eny from each of the 15 transgenic groups. This analysis
distinguished 13 different genotypes, the majority (8 out
of 13) of which corresponded to multiple insertions (Fig.
1B). More specifically, five lines (D2, D5, D7, D8 and E9
= E11) showed a single integration of the transgene; four
groups (D1, D3, E10 and E14) carried a double integra-
tion; three groups (D6, E12 and E13 = E15) included three
copies of the transgene and one (D4) had four or more
integrations. Hybridization with a labeled region of the
AgApy promoter (probe P, Fig. 1A) indicated the presence

of fragments of the expected size both for the endogenous
and recombinant AgApy promoter (Fig. 1C) in virtually all
cases. The only exception was line D2 in which the recom-
binant promoter was not detected, suggesting that trans-
gene rearrangement, involving loss of this region, most
likely took place. In the remaining 14 genotypes, the
expected correlation between transgene copy number, as
estimated from the total of transposon arms (Fig. 1B), and
intensity of signal corresponding to the recombinant
AgApy promoter (Fig. 1C), was observed.

Three transgenic groups carrying alternative numbers and
sites of transgene insertion were selected for further anal-
ysis: the E9 line, with a single insertion, and groups D4
and D6, carrying multiple copies of the transgene. It
should be noted that the selection of groups was influ-
enced significantly by the loss, shortly after initial selec-
tion, of a number of the thirteen genotypes originally
obtained.

Analysis of the three transgenic lines revealed that beta-
galactosidase activity was not detectable using colorimet-
ric assays in either salivary glands or carcasses of adult
females. In addition, immuno-staining of whole female
salivary glands and western blot analysis of salivary gland
extracts both failed to detect beta-galactosidase protein
(data not shown).

LacZ reporter gene expression analysis was therefore per-
formed by RT-PCR. Initially, the primers LacZF1 and
LacZR2, previously employed to characterize LacZ expres-
sion in transgenic An. stephensi, were used [12]. However,
amplifications indicated significantly lower expression
levels in transgenic An. gambiae (see Additional file 3),
explaining also the inability to detect beta-galactosidase
activity or protein in these lines. For this reason, a novel,
better performing primers pair (LBF and LBR) was selected
and employed for the following RT-PCR amplifications.

Stage and tissue expression analysis indicated that each of
the three transgenic families analyzed exhibited a differ-
ent temporal and spatial expression pattern of reporter
gene expression (Fig. 2). Only in group D6 (carrying three
copies of the transgene), were LacZ transcripts detected
specifically in the adult female salivary glands and not in
the female carcasses. However, reporter gene expression
was also observed in males, indicating that sex-specificity
of expression was not conserved. In group D4, which car-
ries multiple copies of the transgene, LacZ transcripts were
detected in all developmental stages. As such, it is likely
that at least one transgene copy comes under the effect of
surrounding genomic region, which confers a constitutive
pattern of expression. In E9 line, carrying a single inser-
tion, the LacZ gene was found highly expressed during lar-
val and pupal stages and also clearly detectable in adult

Table 1: Injected embryos, hatched larvae and G0 adults

Injection Embryos Larvae G0 adults

Inj. 1 184 38 (20,6%) 17
Inj. 2 336 18 (5,3%) 14
Inj. 3 276 46 (16,6%) 40

Total 796 102 (12,8%) 71 (8,9%)

Table 2: Mating and screening strategy

Pools G0* f/wt G1
§

A (4 M) 0/1800 (3)
B (5 F) 0/800 (3)
C (7 M) 0/3000 (3)
D (15 F) 48/1000 (2)
E (8 M) 223/3500 (3)
F (9 M) 0/4000 (3)
G (16 F) 0/700 (3)
H (7 M) 0/2400 (3)

Total (71: 35M, 36F) 271/16700

* Mating groups (A-H) and number of G0 males (M) or females (F) per 
group are indicated.
§ Number of fluorescent (f) and wild type (wt) G1 larvae found during 
the screening. The number of ovipositions per each mating group is 
indicated in brackets.
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males, whereas expression in female salivary glands was
barely detectable. This expression pattern is also probably
conferred by 'position effect' of transgene insertion.

In conclusion, we report the efficient genetic transforma-
tion of An. gambiae and the characterization of an
extended regulatory region of the salivary gland-specific
AgApy gene. The transformation frequency (i.e. the per-
centage of G0 survivors producing fluorescent offspring)
was estimated between 4 and 18% taking into considera-
tion the potential occurrence of integration events early or

late during germ-line development and the possible segre-
gation of multiple insertions on different chromosomes.
Since 71 G0 adults were batch mated, a minimum of 3
founders (two from group D and one from group E) iden-
tified and 13 distinct genotypes differentiated by Southern
analysis, we calculated that from 3 to 13 independent
integration events might have occurred. This transforma-
tion frequency is significantly higher as compared to those
previously reported in primary research articles respec-
tively by Kim W. and colleagues (1.2%, with 2 independ-
ent insertions out of 163 G0 adults) and Grossman G.L.
and colleagues (0.6%, with only one transgenic founder
out of 172 G0 crossed) [8,9]. Indeed, our report represents
the first research paper validating the improvements and
modifications introduced in the last few years and
reviewed by Lobo N.F. and colleagues, where a transfor-
mation frequency range between 5 and 17% is observed
[19]. We should also note the high number of multiple
integrations obtained in our experiment (eight out of thir-
teen transgenic pedigrees). Insertion of multiple copies of
the transgene is not always desirable because it can com-
plicate line analysis and interpretation of the results, par-
ticularly since advanced genetic tools such as balancer
chromosomes are not available for mosquitoes. It is
widely documented that arthropod transformation by pig-
gyBac yields multiple genomic insertions of the transgene
[20]. The variability of its occurrence in different transfor-
mation experiments may depend from several factors and,
among these, a primary role may be played by the ratio
between transposon and helper plasmid and the timing
(and temperature) of injections in relation to embryo
development. However, there appears to be no simple
correlation between transposon/helper ratio and occur-
rence of multiple insertions in the transformation experi-
ments of anopheline mosquitoes documented to date (see
Additional file 4).

Several hypotheses can be made to explain the lack of cor-
respondence between the endogenous expression profile
of the AgApy gene and the weak expression achieved in our
transgenic mosquitoes (e.g. the construct misses enhanc-
ers or other regulatory regions, transcript instability or
poor translational level), however it would remain specu-
lative. Certainly, the results obtained both in An. stephensi
[12] and in An. gambiae indicate that the control of sex-
and tissue-specific expression by the AgApy promoter is
more complex than originally anticipated. The selection
of a longer portion of the AgApy promoter in comparison
to the one analyzed in An. stephensi mosquitoes and the
genetic transformation of the endogenous organism did
not improve the efficacy of the putative AgApy promoter
in transgenic insects. In particular, while a basal stage- and
tissue-specific transcriptional activity is observed at least
in one An. gambiae transgenic family, elements able to
confer the typical strong and female-specific expression
profile are again lacking. In conclusion, the AgApy salivary

Developmental- and tissue-specific LacZ expression analysis of three An. gambiae transgenic linesFigure 2
Developmental- and tissue-specific LacZ expression 
analysis of three An. gambiae transgenic lines. Total 
RNA from wild-type and transgenic mosquitoes was used to 
synthesize cDNA which was then amplified by PCR; as a con-
trol, PCR amplification of RNA templates without Reverse 
Transcriptase treatment was performed. The transgenic 
lines/families analyzed are indicated on the left. LacZ, RT-
PCR amplification with LacZ-bghT specific primers, 35 cycles; 
rpS7, RT-PCR amplification with rpS7-specific primers, 25 
cycles in order to keep the amplification below the satura-
tion level; control, PCR amplification with LacZ-bghT-specific 
primers, 35 cycles. L, third and fourth instar larvae; P, pupae; 
sg, adult female salivary glands; c, carcasses (whole female 
body without salivary glands); m, males.
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gland promoter described here, which is the only one
examined in An. gambiae so far, was not capable to drive
the expected strong tissue-specificity of expression,
although it may be still useful when low levels of expres-
sion of the transgene are needed. Further efforts have to be
addressed toward the identification and characterization
of a strong salivary glands specific promoter in transgenic
An. gambiae. The use of classical transposon-mediated
approach in combination with insulators [21] or with
site-specific integrases [22] to minimize variation pro-
duced by position effect would enhance research focused
on this topic.
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An. gambiae embryos injection protocol. In this file is reported the 
detailed protocol adopted in this work to microinject An. gambiae 
embryos.
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Additional file 3
LacZ expression analysis in transgenic adult mosquitoes. In this file is 
documented the comparison by RT-PCR between LacZ expression in trans-
genic An. gambiae and in transgenic An. stephensi mosquitoes, trans-
formed with a shorter fragment of the same AgApy promoter.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-24-S3.pdf]

Additional file 4
piggyBac-mediated genetic transformation of Anophelinae mosqui-
toes. A table listing the reports to date available in literature of genetic 
transformation of mosquitoes of the sub-family Anophelinae with piggy-
Bac-based constructs is presented. Essential features from each transorma-
tion analysis are compared and references are indicated.
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