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Abstract
Background: Achromobacter sp. AO22 (formerly Alcaligenes sp. AO22), a bacterial strain isolated
from a lead-contaminated industrial site in Australia, was previously found to be resistant to
moderate to high levels of mercury, copper and other heavy metals. However, the nature and
location of the genetic basis for mercuric ion resistance in this strain, had not been previously
identified.

Findings: Achromobacter sp. AO22 contains a functional mer operon with all four essential genes
(merRTPA) and shows >99% DNA sequence identity to that of Tn501. The mer operon was present
on a transposon, designated TnAO22, captured by introducing a broad-host-range IncP plasmid into
Achromobacter sp. AO22 and subsequently transferring it to E. coli recipients. The transposition
frequency of TnAO22 was 10-2 to 10-3 per target plasmid transferred. Analysis of TnAO22 sequence
revealed it belonged to the Tn21 subgroup of the Tn3 superfamily of transposons, with the
transposition module having >99% identity with Tn5051 of a Pseudomonas putida strain isolated
from a water sample in New York.

Conclusion: TnAO22 is thus a new variant of Tn5051 of the Tn3 superfamily and the transposon
and its associated mercury resistance system are among the few such systems reported in a soil
bacterium. Achromobacter sp. AO22 can thus be exploited for applications such as in situ mercury
bioremediation of contaminated sites, or the mobile unit and mer operon could be mobilized to
other bacteria for similar purposes.

Findings
Mercury-resistance encoding mer operons have been
reported from many bacterial species isolated from
diverse environments including pristine soils, ancient per-
mafrost samples, mercury ores as well as contaminated
soil or water samples and enterobacteria [1-6]. These are
commonly located on mobile genetic elements such as
plasmids, transposons or modules of recombinant struc-

tures, although some reside chromosomally [6,7]. mer
transposons frequently belong to the Tn3 family where
the members are typically flanked by 38 bp inverted
repeats (IRs) and contain two genes, tnpR and tnpA,
encoding the enzymes resolvase and transposase, respec-
tively, and a resolution (res) site at which site-specific
recombination occurs to resolve the cointegrates formed
during transposition [8]. Two archetypal transposons of
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this family, Tn21, isolated from plasmid pNR1 from a
clinical strain of Shigella flexneri from Japan [9], and
Tn501, from pVS1 from a Pseudomonas aeruginosa isolate
from Australia [10], have provided in-depth information
on the transposition modules as well as functions of indi-
vidual mer genes and regulation of the operon (reviewed
in [7,11]). Many of the mer-transposons are closely related
and share characteristics of the Tn21 subgroup of Tn3,
with genes arranged as res-tnpR-tnpA, tnpR and tnpA sepa-
rated by only 2 or 3 bp and transcribed in the same direc-
tion, away from res [12].

A number of variations on the genetic organisation of mer
operons from Gram negative bacteria have been reported,
but most contain the essential genes merRTPA with
optional accessory genes (merB, C, D, E, F, G) and open
reading frames (ORFs). merR encodes the transcriptional
regulator of the operon, merT and merP encode a Hg (II)
transport system across the cell membrane and merA
encodes mercuric reductase that reduces the toxic Hg(II)
to elemental Hg(0) in the cytoplasm which is released
into the environment (reviewed in [7]). The mer operons
are being prospected intensely for use in developing bio-
sensors for detecting mercury contamination [13,14], and
bioremediation/phytoremediation systems [15]. We have
previously reported a soil bacterial strain Achromobacter
sp. AO22 (initially called Alcaligenes sp. AO22) from a dis-
used battery-manufacturing site in Melbourne [16], which
was tolerant to heavy metals including lead, copper and
mercury. This work reports the presence and characteriza-
tion of a transposon in this strain, with a functional mer
operon located on it.

Strain AO22 is identified as Achromobacter sp. AO22
The strain AO22 had been previously identified as Alcali-
genes sp. based solely on metabolic tests [16]. In order to
confirm the identity of strain AO22, sequencing of its 16S
ribosomal RNA gene was carried out. Amplification of
genomic DNA of AO22 with primers fD1 and rP2 based
on 16S rDNA of E. coli [17] led to a 1,500 bp PCR product.
DNA sequencing and blastn analysis indicated that this
1463 bp sequence (GenBank number EU696789) exhib-
ited >99% identity to the corresponding regions of 16S
rDNAs of Alcaligenes faecalis, Achromobacter xylosoxidans
and other Alcaligenes spp. and 100% identity with that of
A. faecalis strain 5659-H (AJ509012). A phylogenetic tree
based on the alignment of 16S rDNA of AO22 with that of
select type strains of Achromobacter spp., Alcaligenes spp.
and several other β-Proteobacteria indicated AO22 and
5659-H belong to the cluster of Achromobacter spp. which
is relatively distant from Alcaligenes spp. (results not
shown). Alignment of the AO22 16S sequence with the
Ribosomal Database Project http://rdp.cme.msu.edu/
index.jsp analysis tool also assigned it to the genus Achro-
mobacter with 100% confidence. Indeed, the GenBank

entry of 5659-H is 16S rDNA of A. xylosoxidans subsp.
Xylosoxidans, as pointed out by Wellinghausen et al. [18].
The AO22 sequence was then aligned with all other type
strains of Achromobacter spp. and Alcaligenes faecalis subsp.
faecalis, Bordetella brochiseptica and Cupriavidus necator
were included for comparison. From the phylogenetic tree
(Additional file 1 Fig. S1), AO22 appears to be most
closely related (99.7% identity) to Achromobacter spanius
and is henceforth designated as Achromobacter sp. AO22.
As 16S rDNAs of several Achromobacter species are >97%
identical, DNA-DNA hybridization may be required to
further test the relatedness.

Identification and isolation of TnAO22
Achromobacter sp. AO22 was found to carry certain mer
gene sequences which were more than 90% similar to
those in Tn501[16]. In order to test whether an active
transposon was present in this strain, an approach
described by Mindlin et al. [19] was used to mobilize it.
This involved a two-step conjugation: (i) introduction of
a broad-host-range plasmid from an E. coli host to AO22;
(ii) determining transposition of the mercury transposon
(if present) by mating of AO22 containing this plasmid
with an E. coli recipient and selecting for transconjugants
with linkage of the plasmid marker to mercury resistance.
In the first step, a tetracycline (Tc) resistant broad-host-
range IncP plasmid pVS520 [20] (Additional file 1: Table
S1) was introduced into AO22 by conjugation performed
by the spot mating method [21] with modifications. The
donor E. coli LT104 (pVS520) and recipient (AO22) cul-
tures were grown overnight at 37°C and 30°C respectively
in Luria Bertani (LB) broth, with Tc (10 μg ml-1) and Hg
(HgCl2: 0.005 mM) as respective selections. The cultures
were diluted 1:100 in fresh LB broth and incubated for a
further 5 h with shaking. The donor and recipient cultures
were then mixed 1:5, 10 μL aliquots of the mixture spot-
ted on LB agar without selection and incubated for 16–18
h at 37°C. The mixed growth was scraped off the plate,
resuspended in 0.85% saline, the suspension serially
diluted 10-fold with 0.85% NaCl and 20 μL of each dilu-
tion spotted on selective LB agar plates to determine the
number of colonies of donor (Tcr), recipient (Hgr) and
transconjugants (TcrHgr), respectively. The conjugation
experiment was repeated three times. The transfer fre-
quency of pVS520 was expressed as the number of
transconjugants, i.e., AO22 (pVS520) colonies per donor
cell, and found to be an average of 1.26 × 10-6(SD 7.5 ×
10-7) from the three independent experiments. The HgrTcr

transconjugant strain, designated AO22 (pVS520), grew
better at 37°C and the plasmid in it remained stable after
several transfers on selective media. For the transposition
experiment, AO22 (pVS520) was subcultured on LB agar
containing Hg and Tc daily for three days to ensure main-
tenance of pVS520, then mated as above with spontane-
ous rifampicin-resistant mutants of E. coli JIR7062 [22]
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(designated JIR7062R; Additional file 1: Table S1) iso-
lated in-house. The selections used were TcrHgr for donor,
Rifr for recipient (25 μg ml-1 in LB broth, 100 μg ml-1 in LB
agar), TcrRifr for identifying transconjugants with pVS520,
and HgrTcrRifr for identifying transconjugants with
pVS520 carrying the potential mercury transposon (tenta-
tively designated TnAO22) transferred onto it. The trans-
position frequency of TnAO22 was expressed as number
of HgrTcrRifr colonies per TcrRifr colony, as described by
Bogdanova et al. [1]. The transfer frequency of pVS520
from AO22 (pVS520) to JIR7062R averaged 6.9 × 10-1 (±
3.2 × 10-1) per donor cell while the frequency of mercury-
resistant transconjugants (pVS520 with TnAO22) per
pVS520-containing cell (i.e., TcrRifr) was 1.8 × 10-2 (± 1.1
× 10-2). This is similar to that for Tn5044 [23] and slightly
higher than that for other mercury transposons [1,2]. A
total of 8 colonies were picked from the E. coli transconju-
gants and restriction analysis of their plasmids revealed
identical restriction patterns including an insertion of
approximately 8 kb when compared with restriction pat-
tern of pVS520. One of these plasmids (designated
pVS520::TnAO22) was used for characterisation of
TnAO22.

Cloning and sequencing of TnAO22 reveal it has all 
functionally important features and belongs to the Tn21 
subgroup
A 6.7 kb PstI-NcoI fragment of pVS520::TnAO22 was
cloned into pGEM®-T Easy vector (Promega Australia) for
sequencing purposes. This fragment was sequenced ini-
tially using the vector-based primers T7 (5'-GTAATAC-
GACTCAGGGC-3') and SP6 (5'-TT TAG GTG ACACA
GAATC-3'). As data was generated, a further section of
TnAO22 was amplified using pVS520::TnAO22 as tem-
plate and the primers AO22-F (5'-GACGAATACG-
GGCAGCGG-3') designed 70 bp upstream of the NcoI site
and VS520-R (5'-GGCGGCGGTGTGGAAGC-3') designed
100 bp into sequence of pVS520. PCR products were puri-
fied and sequenced as above, using the primers used for
PCR and additional primers designed based on the emerg-
ing sequence data. DNA sequences were assembled and
analyzed using the Bioedit Alignment Editor v.7.0.9 http:/
/www.mbio.ncsu.edu/BioEdit/page2.html. The most
closely related sequences were found using the Basic Local
Alignment Search Tool (BLAST) program http://
www.ncbi.nih.gov, multiple alignments were performed
with CLUSTALW http://www.ebi.ac.uk/Tools/clustalw2/
index.html and phylogenetic and evolutionary analyses
conducted using MEGA version 4 http://www.megasoft
ware.net/. The sequence data indicated that the 6.7 kb
PstI-NcoI fragment of pVS520::TnAO22 contained a 1.1 kb
section of pVS520, followed by one end of the putative
transposon, a putative mer operon, a tnpR gene, and part
of tnpA (Fig. 1A). A primer designed approximately 70 bp
upstream of the NcoI site using these data, in combination

with a primer designed approximately 100 bp into
pVS520, gave a 2.8 kb PCR product from
pVS520::TnAO22 templates isolated from E. coli cells. The
sequences of the 6.7 kb PstI-NcoI fragment and this PCR
product were assembled and showed TnAO22 had a
length of 8230 bp (GenBank number EU696790). It was
inserted 173 bp downstream of the truncated Tn1 in
pVS520 (in pVS520::TnAO22), equivalent to position
10614 of RP1 (BN000925), and had resulted in 5 bp
duplications (TCTAT) of target sequence in the flanking
region of pVS520 (data not shown), the latter being a
characteristic of Tn3 family [12]. TnAO22 was bounded
by 38 bp imperfect IRs differing by only 1 bp (Fig. 2), the
IR adjacent to mer operon being identical to that of Tn21
at the tnpA end. The IRs were highly similar to those of the
ancestral Tn501 except its EcoRI sites and contained con-
served sequences recognized by the Tn21 transposase
[12]. The TnAO22 insertion site in pVS520 (equivalent to
a region between Tn1 and oriV in RP1 or its derivatives)
appears to be a hot spot for insertions, as reported for sev-
eral Tn5041-type elements [24]. Nine ORFs were identi-
fied within TnAO22, the first seven closest to the IR from
insertion point containing sequences homologous to the
mer operon, including a merR that terminated within the
adjacent IR and merTPADEurf2 transcribed divergently,
and the two other ORFs being similar to tnpR and tnpA
genes and separated from the mer ORFs by a 131 bp
sequence similar to the res site (Fig. 1A).

The DNA sequence of the res-tnpR region of TnAO22 had
highest identity (>99%) to this region of Tn5051 isolated
from a P. putida strain in a water sample in New York [19]
(Table 1). For optimum alignment with other related
transposons, gaps needed to be introduced, the most
notable one being a 45 bp gap between the 3' end of res
and start codon of tnpR of TnAO22 compared to Tn501
and other sequences (Fig. 1B). This extra sequence in
Tn501 is suggested to be the remainder of a transposon
belonging to the Tn5041/κ branch of Tn3 [23]. The puta-
tive 186 amino acid TnpR of TnAO22, when aligned with
its closest relatives, revealed only one difference with
Tn5051 (V48L) and conservation of the invariant serine
and the helix-turn-helix DNA-binding motif (Fig. 1C).

The DNA sequence identities of TnAO22 tnpA compared
to its close relatives varied between 70.0% and 99.2%
(Table 1). The start codon of the putative TnpA was 2 bp
after termination of TnpR (data not shown), compared to
3 bp in Tn501, and it terminated within an IR. The puta-
tive TnpA is 988 amino acids long and differs from the
459 residues available for TnpA of Tn5051 at 5 positions.
Alignment of the amino acid sequence of TnAO22 TnpA
with 13 selected Tn3 transposases (Additional file 1 Fig.
S2) and the dendrogram (Fig. 3) confirmed that TnAO22
was closest to the Tn21 subgroup of Gram negative trans-
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Genetic organisation of TnAO22Figure 1
Genetic organisation of TnAO22. (A) Organisation of the mer operon and tnp genes. Select restriction sites are shown (E: 
EcoRI; N: NcoI; P: PstI). IR: inverted repeats. The solid line between the PstI site and left IR indicates a 1.1 kb section of pSV520 
included in the 6.7 kb PstI-NcoI fragment of pVS520::TnAO22 cloned into pGEM-T Easy. (B) Comparison of the res sites: Tn501 
from P. aeruginosa pVS1 (Z00027), Tn21 from S. flexneri R100 (NC_002134), Tn4378 from C. metallidurans CH34 pMOL28 
(NC_006525) and Tn5051 from Pseudomonas sp. (Y17719). Dots indicate nucleotides identical to those of TnAO22; dashes 
indicate gaps introduced to optimise identity. (C) Comparison of the putative amino acid sequences of resolvase of TnAO22 
with those of Tn501 (CAA77327), Tn4378 (ABF13038) and Tn21 from S. flexneri (NP_052901) and Tn5051 (CAC14696). 
Arrow head indicates the presumptive serine involved in recombination. The shaded region indicates the conserved helix-turn-
helix motif of resolvases.
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TnAO22 TAACTTGGCG TCAGACCATC CGGCGCTAAA T-CGTCAGAA TAGAGTTGCC TTCCGAATTG ATTGACATAC GCCGTCAAGG  
Tn501 .....G.AT. ....G.AGGG .C....CGCT .-A....... ......CAT. ..T..C...T -......C.T ...TG.G.A.  
Tn21 ....C..AT. .....T-GC. AT.T.TA..T .G......G. ...GA...AA ..TT.....T .........T CT...TG.A.  
Tn4378  ....CG.AT. ....GGT.GA .T..CTC.C. A-........ ......C.GT .GTGTT...T .......CTA ..T.AA..A.  
Tn5051  .......... .......... .......... .-........ .......... .......... .......... ..........  

TnAO22  GTCATAGATT TCTTCCTGAC ACA------- ---------- ---------- ---------- --------TT TCCCTCAGGA  
Tn501   .......... ..AG...... .G.AACGGGG TTTGAGGCAC AACGGAACAG AAGGAGCACT TAAGCCGCC. ..AAC..A.G  
Tn21   ........G. CT.C...... .T-------- ---------- ---------- ---------- ---------- --TT.GCA.G  
Tn4378  .......... .......... .TT------- ---------- ---------- ---------- ---------. ..GTC....G  
Tn5051   .......... .......... ...------- ---------- ---------- ---------- --------.. ..........  

TnAO22  GGATACCTTG CACGG 
Tn501   A..C.T.G.. ..G.. 
Tn21   .A..T..A.. ACT.. 
Tn4378  A.GC.T.... ..G..  
Tn5051  .......... ..... 

C                         
TnAO22       LHGQRIGYVR VSSFDQNPER QLEQIQVDKV FTDKASGKDT RRPELERLLA FVREGDTVVV HSMDRLARNL 70 
Tn501        MQ.H...... .......... ....T..S.. .......... Q..Q..A..S .......... ..........  
Tn21         MT......I. ..T....... ...GVK..RA .S.......V K..Q..A.IS .A.T...... ..........  
Tn4378       MQ........ .......... ...HVE.G.. .......... Q....DS... .......... ..........  
Tn5051       .......... .......... .......... .......... .......V.. .......... ..........  

TnAO22       DDLRRLVQGL TQRGVRIEFL KEHLTFTGED SPMANLMLSV MGAFAEFERA LIRERQREGI ALAKQRGAYR 140 
Tn501        ........K. .......... ..G.V..... .......... .......... .......... T.........  
Tn21         .....I..T. .....H...V ....S..... .......... .......... .......... ..........  
Tn4378       ........K. .K.......V ..S....... .......... .......... .......... ..........  
Tn5051       .......... .......... .......... .......... .......... .......... ..........  

TnAO22       GRKKSLSSER IAELRQRVEA GEQKTKLARE FGISRETLYQ YLRTDQ 186 
Tn501        ....A..D.Q A.T....AT. ..P.AQ.... .N........ .....D 
Tn21         .......... .......... .......... .......... ...... 
Tn4378       ....A..P.Q V.D....AA. ....A..... ..V....... ...A.. 
Tn5051       .......... .......... .......... .......... ...... 
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posons, separated from Tn3 and the cluster of trans-
posons in Gram positive bacteria.

TnAO22 houses a mer operon that is very similar to that 
on Tn501
The mer operon of TnAO22 had the classical structure mer-
RTPADE, with >99% identity to Tn501 at DNA level
including the length and sequences of intergenic spacers,
and lacked the merC gene noted in Tn21 [11]. As in Tn501,
the putative operator/promoter regions and transcription
start sites of merR and merTPAD were divergent and the
potential binding site of the regulator MerR occurred
between the start codons of MerR and MerT. The putative
mercuric reductase MerA of TnAO22 was 561 amino acids
long, and comparison of its putative N-terminal and C-
terminal sequences to MerA of other organisms (Addi-
tional file 1 Fig. S3) showed the two conserved pairs of
cysteines considered responsible for binding and catalytic

reduction of Hg(II) to Hg(0). Downstream of merD were
sequences similar to orf1 and orf2 of Tn501. The putative
protein encoded by orf1 was homologous to the 78 amino
acid protein now known as MerE and suggested to have a
role in Hg(II) transport similar to MerT [11], while orf2
encodes a 329 amino acid homologue of the diguanylate
phosphodiesterases with the conserved EAL domain
thought to be involved in prokaryotic signal transduction
pathways [25].

With some exceptions, many mercury resistance determi-
nants are located on plasmids. However, no plasmid
could be isolated from AO22 despite numerous attempts
using various volumes of cell culture and alternative pro-
tocols, e.g., standard alkaline lysis, the method of Kado
and Liu [26] and two commercial kits. This, however, does
not rule out the possibility of a megaplasmid in AO22 on
which TnAO22 is located, as it is often difficult to detect

Comparison of terminal IRs of TnAO22 with IRs of Tn501 and Tn21Figure 2
Comparison of terminal IRs of TnAO22 with IRs of Tn501 and Tn21. Boldface bases: conserved positions for the effi-
cient recognition by the Tn21 transposase; shaded sequences: EcoRI sites; t: IRs at the tnpA end and 'm' the mer end.

TnAO22 t     GGGGTCGCCT CAGAAAACGG AAAATAAAGC ACGCTAAG
TnAO22 m     .......T.. .......... .......... ........
Tn501 t      ....GGCT.G .....TT... ....A.TC.T ........
Tn501 m      ....GAA..G .....TT... ....A.TC.T ........
Tn21 t       .......T.. .......... .......... ........
Tn21 m       ....G.A... .......... .......... ........

Table 1: DNA sequence identity between TnAO22 and its closest relatives.

Genome region TnAO22 Tn501 Tn21 Tn4378 Tn5051

TnAO22 mera 100 99.8 73.4 99.8 nab

res-tnpR 100 73.1 79.6 81.3 99.5
tnpA 100 70.0 90.0 92.3 99.2

Tn501 mer 100 73.4 99.8 nab

res-tnpR 100 67.5 75.2 72.9
tnpA 100 68.9 69.6 69.9

Tn21 mer 100 73.4 nab

res-tnpR 100 74.3 79.4
tnpA 100 90.5 89.9

Tn4378 mer 100 nab

res-tnpR 100 81.1
tnpA 100 91.9

Tn5051 mer nab

res-tnpR 100
tnpA 100

amer includes merRTPAD and merE; b% identity with Tn5051 was not calculated for this region, as only 339 bp sequence data is available for Tn5051. 
Accession numbers: Tn501 from Pseudomonas aeruginosa plasmid pVS1 (Z00027), Tn21 from Shigella flexneri plasmid R100 (pNR1) (NC_002134), 
Tn4378 from Ralstonia metallidurans CH34 plasmid pMOL28 (NC_006525) and Tn5051 from Pseudomonas putida (Y17719).
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such plasmids using common methods as well as to
totally exclude them from chromosomal DNA prepara-
tions. The genomic DNA of AO22 showed positive
hybridisation with a tnpR probe (data not shown). Further
work would be required using approaches such as quanti-
tative PCR or Southern hybridisations to test whether
there is more than one mercury transposon in AO22,
located on its main chromosome and/or plasmid, as in
case of Cupriavidus metallidurans CH34 [27];. The fact that
AO22 was receptive to introduction of a broad-host-range
IncP plasmid indicates any resident plasmid(s) is (are)
unlikely to belong to this incompatibility group. The fact
that the mer operon of TnAO22 is functional (and not a
relic) can be inferred from conferral of mercuric ion resist-
ance to the E. coli host in conjugation experiments. Lack
of merB genes suggests narrow spectrum Hg resistance;
confirmed on plates containing organomercurials (Davis
and Bhave, unpublished). Other mercury-resistant Gram-
positive and Gram-negative bacterial genera have been
isolated from the same site [16]; it would be interesting to
explore whether transposons similar to TnAO22 are also
present in these strains.

Based on sequence identities and res-tnpR-tnpA gene
organisation, TnAO22 appears to belong to the Tn21
branch of the Tn3 subgroup of transposable elements
[12]. The structures of the mer operon and transposition
modules of TnAO22 suggest it is a recombinant transpo-
son, probably a variant of Tn5051. The putative resolvases
(TnpR) of both transposons have TTG as the possible start

codon; though rare, this start codon has been reported
among prokaryotes, notably for lacA in the E. coli lac
operon [28]. The mer operon of Tn5051 is nearly identical
to that of Tn501, and based on the proposed evolution of
Tn501 [19], TnAO22 and Tn5051 probably share an
ancestor with Tn501 from which the mer operon origi-
nated. Very closely related mer transposons are reported
from diverse strains and geographical locations, e.g., at
least 10 variants of Tn5053 worldwide [6]. TnAO22
appears to be a new variant of Tn5051 and may be
involved in horizontal transfer of mercury resistance, pos-
sibly giving the host a selective advantage in contami-
nated sites such as the one Achromobacter sp. AO22 was
isolated from. mer-mediated removal of mercury from
sewage and industrial effluent has been described [15,29].
Achromobacter sp. AO22 is one of the few soil bacterial
species to contain mer genes and is thus well suited for in
situ bioremediation or conjugal transfer of mercury resist-
ance to indigenous soil community, as shown for
enhanced degradation of organic contaminants [30].

Abbreviations
IR: inverted repeat; Tn: transposon; Hgr: mercury resistant;
Tcr: tetracycline resistant.
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