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Abstract

Background: The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes
Human African Trypanosomiasis. Its cell cycle is complex and not fully understood at the molecular
level. The T. brucei genome contains over 6000 protein coding genes with >50% having no predicted
function. A small scale RNA interference (RNAI) screen was carried out in Trypanosoma brucei to
evaluate the prospects for identifying novel cycle regulators.

Results: Procyclic form T. brucei were transfected with a genomic RNAI library and 204 clones
isolated. However, only 76 RNAI clones were found to target a protein coding gene of potential
interest. These clones were screened for defects in proliferation and cell cycle progression
following RNAi induction. Sixteen clones exhibited proliferation defects upon RNAi induction, with
eight clones displaying potential cell cycle defects. To confirm the phenotypes, new RNAI cell lines
were generated and characterised for five genes targeted in these clones. While we confirmed that
the targeted genes are essential for proliferation, we were unable to unambiguously classify them
as cell cycle regulators.

Conclusion: Our study identified genes essential for proliferation, but did not, as hoped, identify
novel cell cycle regulators. Screening of the RNA: library for essential genes was extremely labour-
intensive, which was compounded by the suboptimal quality of the library. For such a screening
method to be viable for a large scale or genome wide screen, a new, significantly improved RNAi
library will be required, and automated phenotyping approaches will need to be incorporated.

Background cei remain unidentified, not least because 56% of genes in

The Trypanosoma brucei cell cycle is complex and is regu-
lated differently in the mammalian bloodstream and
insect procyclic life cycle stages. Its regulation also
diverges from mammalian cell cycle regulation, suggest-
ing that some of its regulators might have potential as
novel drug targets [1]. Many cell cycle regulators in T. bru-

the genome are currently annotated as hypothetical open
reading frames (ORFs) http://www.genedb.org. RNAi
screens have previously been used to identify cell cycle
regulators in model organisms [2-8], and to identify
essential genes on chromosome I in bloodstream stage
(BS) T. brucei [9]. In addition, use of a T. brucei RNAi
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genomic library has identified a hexokinase that modu-
lates procyclin expression [10] and a protein p166
involved in kinetoplast DNA replication [11]. We hypoth-
esised that screening this library would allow us to iden-
tify essential novel cell cycle regulators.

Approach

Procyclic form (PF) parasites were screened because of
their greater transformation efficiency compared to BS
parasites. The cell line 427 pLew13 pLew29 [12] was
transfected [13] with the RNAI library [10] and 204 inde-
pendent clones were selected by limiting dilution. Clones
were characterised individually to identify those display-
ing proliferation defects following RNAi induction with
tetracycline, and RNAI library inserts sequenced to iden-
tify the targeted gene. Clones targeting a protein coding
gene and showing a proliferation defect were character-
ised for cell cycle defects using flow cytometry and DAPI
staining analyses [14]. Where potential cell cycle defects
were identified, new RNAI cell lines were generated and
the analysis repeated in an attempt to confirm the original
phenotype in the PF and to determine whether these
genes were involved in cell cycle regulation in BS trypano-
somes.

Results

Identification of RNA:i library inserts

RNAi library vector inserts (integrated into the rDNA
spacer region of the genome) were PCR-amplified from
genomic DNA of clones, sequenced and analysed by

BLAST analysis at GeneDB http://www.genedb.org/
genedb/tryp/blast.jsp or NCBI http://
www.ncbi.nlm.nih.gov/blast/Blast.cgi. Sequence data was

only obtained for 155 clones, but showed them to be
unique [see Additional file 1]. For the rest, either the PCR
or the sequencing failed. Some library plasmids may have
contained no insert, but technical issues relating to the
lack of standard sequencing primer binding sites within
the RNAi plasmid may have also contributed. Of the 155
sequenced inserts, 52 contained sequences of no interest
for this screen (eg VSG/ESAG genes, repeat regions, inter-
genic sequences outside of UTRs etc) and a further 25
inserts could not be identified by BLAST, which, since the
library was made from total genomic DNA, could have
come from intermediate or mini-chromosomes that were
not sequenced in the T. brucei genome project [15].
Hence, about 60% clones obtained using this library were
of no practical use for identifying the essential cell cycle
regulators we sought. It is also worth noting that 18 clones
deemed to be of no practical use nevertheless showed a
proliferation defect following RNAi induction [see Addi-
tional file 1], but we did not study these clones further.

Of the remaining clones, 17 contained sequence from
known, non-VSG/ESAG, genes and 36 represented hypo-
thetical genes. Some targeted 5' or 3' UTRs rather than the
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ORF itself. A further 17 inserts spanned over 2 genes, and
for 8 clones, two PCR products were obtained.

Initial screening

Sixteen of the 76 clones targeting non-VSG/ESAG protein-
coding genes gave proliferation defects following RNAi
induction [see Additional file 2] and [Additional file 3].
Two of these targeted previously studied essential genes:
radial spoke protein 3, RSP3, (clone 33) [16] and a mem-
ber of the exosome complex, RRP44 (clone 45) [17], vali-
dating our primary screen. Twelve clones [see Additional
file 2] and a negative control clone were analysed further
(secondary screening). Growth curves were repeated to
confirm proliferation defects and cell cycle progression
was monitored [14] [see Additional file 4]. As expected,
no defects occurred upon induction of the negative con-
trol (clone 165). Clone 33 (targeting RSP3 [16]) acted as
a positive control and upon induction, displayed prolifer-
ation and cell cycle defects, consistent with previously
published data [see Additional file 4]. Clone 45 (RRP44
[17]) proliferated poorly in the secondary screen, display-
ing cell cycle defects even when non-induced, suggesting
leaky expression from the RNAIi vector [see Additional file
4] [18]. Since RRP44 is required for rRNA processing [17],
its depletion is likely to result in pleiotropic effects on the
cell, and hence the cell cycle defects probably occur indi-
rectly.

For six clones (8, 13, 44, 174, 209 and 211), RNAi induc-
tion confirmed proliferation defects from the primary
screen (except for clone 13, which grew poorly in the
absence of induction) and also revealed cell cycle defects
[see Additional file 4]. Four clones targeted genes of
potential importance for cell cycle progression: clones 8
and 211 (TOR-like 2 and TOR1 kinases, respectively [19]),
clone 13 (putative protein phosphatase 1-like (PP1)) and
clone 209 (hypothetical ORF). The cell cycle defects
observed with clone 174 (dynein heavy chain) were likely
to reflect flagellar motility defects, but as this particular
gene had not been studied previously, it was included in
subsequent analyses. Induction of clone 44, targeting an
electron transfer protein, probably also caused indirect
effects on the cell cycle, and was not analysed further. The
remaining clones were eliminated since either the previ-
ously observed proliferation defects were not reproduced
(clones 135, 153 and 223), or despite the targeted genes
being essential for viability, no cell cycle defects were
observed (clone 187, targeting two conserved hypotheti-
cal genes).

Tertiary screen

To confirm phenotypes observed for each target, a gene-
specific DNA fragment (checked for suitability for RNAi
using RNAit [20]) was cloned into the vector p2T7t [21]
([see Additional file 5] for oligonucleotide details), before
being transfected into PF (427 pLew13 pLew29) and,
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where appropriate, BS (427 pLew13 pLew90) cell lines
[12]. RNAi of TOR1 and TOR-like 2 kinases in BS trypano-
somes have been described elsewhere [9,19]. For PP1,
although we isolated BS clones, no PF transformants were
obtained, despite repeated attempts. Depletion of mRNA
following RNAi induction was confirmed by real time
PCR analysis (Figs. 1 and 2D), and resulted in reduced
proliferation rates in the PF (Fig. 1) and BS (Fig. 2).

The dynein heavy chain Tb927.3.930 is essential for
motility and cell cycle progression

Downregulation of Tb927.3.930 caused a significant
reduction in motility (not shown), accompanied by sig-
nificant cell cycle changes. In the PF, cells with abnormal
complements of nuclei (N) and kinetoplasts (K), includ-
ing ON1K, 2N1K and >2N2K, were observed (Fig. 1A). The
2N 1K cells could have arisen following an aberrant cyto-
kinesis event (e.g. 2N2K cell dividing to give 2N1K +
ON1K daughter cells) or because of defective flagellar/
basal body/kinetoplast replication or segregation. Most
multi-nucleate cells contained fewer kinetoplasts than
nuclei, also suggesting impeded kinetoplast re-replica-
tion/segregation. In the BS, the proportion of 2N2K cells
increased from 9% to 40% over the first 6 hours of induc-
tion (Fig. 2A). Less than 10% of these cells were observed
to be furrowing or undergoing abscission (not shown). At
later time points, these cells re-replicated their DNA, lead-
ing to the appearance of cells with 8C DNA content and
cells containing >2N2K. Approximately half of these cells
had now undergone furrowing and were arrested at
abscission, in some cases, with multiple cell bodies (Fig.
2A).

Despite the cell cycle defects observed, dynein is unlikely
to regulate the cell cycle directly. Dyneins, comprised of
heavy, intermediate, light intermediate and light chains,
are motor proteins that, in the flagellum, generate the
force required for motility, which is known to be essential
for cytokinesis in BS trypanosomes [22]. The dynein
heavy chain targeted here is an outer arm dynein-a heavy
chain [23] that was detected in a T. brucei flagellum pro-
teome [22]. Previously, RNAi of the dynein intermediate
chain, DNAI1, in procyclic T. brucei resulted in cells with
axonemes lacking outer dynein arms that no longer dis-
played forward motility [24]. Downregulation of the
dynein light chain, LC1, lead to procyclic trypanosomes
displaying a jerky swimming pattern, but attempts to
downregulate a dynein heavy chain, DNAH, failed [24].
Our data are therefore consistent with, and extend, previ-
ous functional data on axonemal components.

Depletion of two TOR family kinases disrupts the procyclic
cell cycle

Following RNAi of TOR1 in procyclic T. brucei, 2N2K cells
were almost abolished (Fig. 1B) and 2N1K, ON1K and
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other abnormal cell types appeared, indicating disruption
to cell cycle progression. However, since these cell types
can arise in many ways, further analysis will be required
to establish the origin of these cells and to determine if
TOR1 is really a direct regulator of the cell cycle. In blood-
stream trypanosomes, depletion of TOR1 decreases pro-
tein synthesis, giving rise to smaller sized cells that
accumulate in G, phase [19]. At first glance, TOR1 deple-
tion in procyclic parasites seems to cause very different
effects from those reported for bloodstream trypano-
somes and clearly warrants further investigation.

Downregulation of TOR-like 2 in the PF abolished 1N2K
cells, which could indicate defects in kinetoplast replica-
tion or segregation (Fig. 1C). This is supported by the
reduction of 2N2K cells and concomitant appearance of
2N1K cells. However, other abnormal cell types (ON1K,
multinucleate cells) were also observed, and as above, fur-
ther analysis is required before TOR-like 2 can be classi-
fied as a cell cycle regulator. RNAi of TOR-like 2 has
previously been performed in BS trypanosomes, but no
phenotypes were observed [9].

The hypothetical ORF, Tb927.5.3260, and PPI
(Tb11.01.0450) are essential for proliferation but may not
be required for cell cycle control

In PF parasites, RNAi of the hypothetical ORF
(Tb927.5.3260) caused changes to the cell cycle profile
(Fig. 1D), but these defects only accumulated in signifi-
cant numbers at late time points, suggesting that they
could be downstream effects of another defect. In the BS,
only subtle changes in cell cycle profile were observed fol-
lowing RNAi induction (Fig. 2B). Hence, at present, we
cannot conclude that this protein plays a role in cell cycle
control. However, given that it is essential for prolifera-
tion and there are orthologues in Leishmania major and
Trypanosoma cruzi, its role warrants further investigation.
RNAIi of PP1 also did not lead to significant cell cycle
changes in BS trypanosomes (Fig. 2C), and therefore,
although it is apparently essential for proliferation, it may
not regulate the cell cycle. Previously, depletion of all
seven PP1 genes simultaneously in PF trypanosomes,
reduced proliferation but did not effect the cell cycle [25],
although okadaic acid (a PP1 and PP2A inhibitor) treat-
ment disrupts kinetoplast segregation [26].

Conclusion

We performed an RNAI screen to determine the feasibility
of genome-wide screening for T. brucei cell cycle regula-
tors. We identified genes (mostly previously unstudied)
essential for PF growth. However, we could not demon-
strate any to be direct regulators of the cell cycle. Known
cell cycle regulators such as cyclins and cyclin-dependent
kinases were not identified, although this is likely to be
due to an issue of coverage. There are only 21 cyclin and
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Figure |

Tertiary screening in the procyclic form. Independent RNA. cell lines generated in PF T. brucei for dynein heavy chain
(Tb927.3.930), panel A; TORI (Tb10.6k15.2060), panel B; TOR-like 2 kinase (Tb927.1.1930), panel C and a hypothetical ORF
(Tb927.5.3260), panel D, were analysed for cell cycle progression defects following RNAi induction. Upper left of each panel:
cumulative growth curves for each clone cultured in SDM79 with appropriate selective drugs [13,14] and the absence (-tet) or
presence (+tet) of | pugml-! tetracycline. Lower left of each panel: real time PCR analysis of mRNA levels for each gene (using
oligonucleotides detailed in Additional file 5 and standardised against a GPI8 control) at 96 hrs (dynein heavy chain and hypo-
thetical ORF), 161 hrs (TOR-like 2 kinase) or 212 hrs (TORI) post-induction. Middle of each panel: analysis of nuclei and kine-
toplast numbers as determined over time by DAPI staining. Upper right of panels A and D and right of panels B and C: flow
cytometry profiles of uninduced (-tet) and induced (+tet) cells at the time points indicated. The DNA content of each peak is
given. Lower right panels A and D: examples of abnormal cells generated. Left, DIC image; right, DAPI image. Black bar: 5 um.
The number of nuclei (N) and kinetoplasts (K) in each cell is given.
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Tertiary screening in the bloodstream stage. Analysis of RNAI cell lines generated in BS T. brucei for dynein heavy chain
(Tb927.3.930, Panel A), hypothetical ORF (Tb927.5.3260, Panel B) and protein phosphatase | (Tbl1.01.0450, Panel C). Panels
A and B, upper left and Panel C, left: cumulative growth curves for each clone cultured in HMI9 with appropriate selective
drugs [13,14] in the absence (-tet) or presence (+tet) of tetracycline; Panels A and B, lower left and Panel C, middle: analysis of
nuclei and kinetoplast numbers as determined over time by DAPI staining; Panels A and B, upper right and Panel C, right: flow
cytometry profiles at the time points indicated; Panels A and B, lower right: examples of abnormal cells generated (left, DIC
image; right, DAPI image. Black bar: 5 um. The number of nuclei (N) and kinetoplasts (K) in each cell is given). Panel D: real
time PCR analysis of mRNA levels for each gene (standardised against a GPI8 endogenous control, using oligonucleotides
detailed in Additional file 5) at 6.5 hrs (dynein heavy chain) and 16 hrs (hypothetical ORF and PPI) post-induction.
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CDKs in T. brucei [1,27], and the 76 clones analysed in
this screen target <1% of the protein coding genes in T.
brucei. The screen itself was highly inefficient. Despite iso-
lating over 200 independent clones, only 76 (38%)
(excluding clones that targeted VSG/ESAG genes) were
confirmed by sequence analysis to target protein coding
genes. Although this would not cause too many problems
if carrying out a positive selection screen (eg using pooled
RNAI clones to look for non-essential phenotypes such as
lack of concanavalin A binding [28]), it was a significant
issue here, where clones were screened individually for an
essential phenotype. Significant time was expended in
generating, culturing and analysing clones, which later
turned out to be of no interest. To efficiently screen for
essential genes in the future using a forward genetics
approach, a new RNAI library will be required. As a mini-
mum, this library should be megabase chromosome-spe-
cificc lack highly repetitive sequences and contain
standard sequencing primer binding sites. Ideally it would
also be restricted to containing fragments of protein-cod-
ing genes only, would lack intergenic sequences, and for
the majority of assays, it would be preferable for it to lack
VSG/ESAG gene sequences. For a large scale or whole
genome screen, it would also be necessary to automate the
DAPI staining analysis using, for example, high content
microscopy technology.
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Additional material

Additional File 1

Details of RNAI vector inserts as determined by sequencing.
RNA:i vector inserts (integrated into the ribosomal DNA spacer region)
were PCR-amplified from genomic DNA of procyclic clones analysed in
this study, sequenced and analysed by BLAST.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-2-46-51 xls]

http://www.biomedcentral.com/1756-0500/2/46

Additional File 2

Clones showing proliferation defects upon RNAI induction.

Details of clones targeting non-VSG/ESAG protein coding genes, display-
ing a proliferation defect upon induction are given. The twelve clones for
which secondary screening was performed, as well as the negative control
clone 165, are highlighted in grey.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-2-46-S2.doc]

Additional File 3

Primary screening.

Procyclic library clones were cultured [13] in the absence (-tet) or pres-
ence (+tet) of tetracycline for 216 hours (9 days), and cells were counted
every 48-72 hours using a Coulter counter. Representative cumulative
growth curves for different phenotypic classes of RNAi library clones are
shown. A: no growth defect; B: growth arrest, C: slow growth defect, fol-
lowing RNAi induction. The identities of RNAi clones are given for each
graph. Growth curves for all clones tested can be found at http://

www. gla.ac.uk/centres/wcmp/research/mottram/resources/.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-2-46-S3.ppt]

Additional File 4

Secondary screening.

Selected procyclic library clones were cultured in the absence (-tet) or pres-
ence (+tet) of tetracycline. Cell densities were determined daily using a
Neubauer Improved haemocytometer and phenotype analysis was carried
out at appropriate time points. Cumulative growth curves (left), flow
cytometry profiles at the time points indicated (middle) and nucleus/kine-
toplast configurations as determined by DAPI staining (right) are shown.
Data for the negative control clone sGL165 is included for comparison.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-2-46-S4.ppt]

Additional File 5

Oligonucleotides used in this study.

The sequences, targets and properties of the oligonucleotides used in this
study are given.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1756-
0500-2-46-S5.doc]
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