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Abstract
Background: A widely used approach to reconstruct regulatory networks from time-series data
is based on the first-order, linear ordinary differential equations. This approach is justified if it is
applied to system relaxations after weak perturbations. However, weak perturbations may not be
informative enough to reveal network structures. Other approaches are based on specific models
of gene regulation and therefore are of limited applicability.

Findings: We have developed a generalized approach for the reconstruction of regulatory
networks from time-series data. This approach uses elements of control theory and the state-space
formalism to approximate interactions between two observable nodes (e.g. measured genes). This
leads to a reconstruction model formulated in terms of integral equations with flexible kernel
functions. We propose a library of kernel functions that can be used for the first insights into
network structures.

Conclusion: We have found that the appropriate kernel function significantly increases the
accuracy of network reconstruction. The best kernel can be selected using prior information on a
few nodes' interactions. We have shown that it may be already possible to select models ensuring
reasonable performance even with as small as two known interactions. The developed approaches
have been tested with simulated and experimental data.

Findings
Two sources of experimental data are generally used in the
reconstruction of regulatory networks: steady-state and
time-series experiments. Steady-state data [1,2] are gener-
ated by measuring the expression levels of every gene (or
protein concentrations) when a system relaxes into a
steady state after a perturbation. There are many publica-
tions [3-5] reporting different methods for the network
reconstruction from the steady-state data. Time-series data
represent the expression levels measured at a number of
time points following global or local perturbations of a
system [6,7]. If these perturbations do not bring the sys-

tem far from a steady state, the relaxation into the steady
state is approximated by a set of the first-order, linear ordi-
nary differential equations (LODE) [6,8,9]. Time-series
experiments do not require as many perturbations as
steady-state experiments, thus avoiding perturbations that
may be not easy to design [10,11]. Moreover, analysis of
time-series data allows us to investigate the dynamics of
regulatory interactions, which is not possible from the
steady-state data.

However, it has been shown [4,5] that the network recon-
struction is more difficult from the time-series data than
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from the steady-state data. The authors have envisaged
two possibilities to improve the reconstruction. One is to
collect more time series from additional perturbations.
The other one is to perform time-series experiments where
an investigated system demonstrates richer dynamics. The
latter case is advantageous because it may generate more
informative data without performing extra experiments.
This can be done either by applying stronger perturba-
tions or by monitoring system dynamics controlled by
internal factors (e.g. cell-cycle processes). In both cases,
the LODE models can hardly be justified as it is difficult
to ensure that a system does not strongly deviate from a
steady state. More sophisticated system dynamics needs
more detailed formalizations on gene/molecular interac-
tions. Many attempts to improve the basic LODE model
can be found in recent publications [12-14]. In most
cases, the authors suggest to model the combined regula-
tory effect of a number of regulatory factors by a particular
non-linear function. Additionally, the second-order dif-
ferential equations are sometimes invoked to reproduce
gene expression profiles [14,15].

In this paper, we are looking for a generic approach to
approximate interactions between the observable nodes
in a network. The generic approach allows us to systemat-
ically apply specific models and, eventually, to define the
most appropriate model using available experimental
data and, possibly, prior knowledge on the nodes' interac-
tions. The developed approaches were tested with simu-
lated and experimental data.

Mathematical framework
We apply elements of control theory [16] to develop a
generalized model of the network dynamics. A regulatory
network (Fig. 1) is represented as a bipartite graph with

two types of nodes: observable nodes reproducing meas-
urable characteristics (e.g. gene expression levels), and
non-observable, or control, nodes controlling the interac-
tions between the observable nodes. Each control node i
can be modelled as:

where Fi is a functional reproducing behaviour, YI(·), of a
set of observable nodes I based on signals, YO(·), from a,
possibly different, set of observable nodes O, and Wi is a
vector of "internal" parameters of control node i. Note
that some non-trivial behaviour can be assigned to the
observable nodes as well. It may account for instrumental
distortions, specifics of image processing, normalization,
etc.

The goal of the network reconstruction is to identify
parameters Wi encoding for the interactions between the
observable nodes. For that, functional Fi in (1) has to be
further developed. It is frequently assumed that the coop-
erative regulatory contribution from different observable
nodes is a sum of the contributions from each node, so
that equation (1) can be written as:

where n is the number of observable nodes, yi(t) is the
measured response of observable node i, Fij is a functional
characterized by a set of parameters Wij converting meas-
ured profile, yj(t), at node j to measured profile, yi(t), at
node i, and bi(t, t0) is the output of non-regulated observ-
able node i. We consider pair-wise controls Fij as linear,
continuous, time-invariant, finite-dimensional, single
input-single output control systems that can be modelled
using the state-space formalism:

where Xij(t) is the state vector and Aij is the state matrix,
yj(t) is the input value and Bij is the input vector, yj(t) is the
output value and Cij is the output vector. We also assume
that Fij are in a steady state prior to the input perturbation
yj(t) starting at time t = t0, that is Xij(t0) = 0. Integrating (3)
and combining n regulatory inputs as in (2) yields
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(4)Regulatory network with four observable and two control nodesFigure 1
Regulatory network with four observable and two 
control nodes.
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with wij(t) = Cijexp(tAij)Bij representing the influence of
node j on the regulation of node i. Although every link
(control node) is unique and should be modelled in a
specific way, little prior knowledge on molecular interac-
tions does not allow us to postulate specific models for
every link. Therefore, we are looking for universal models
that can approximate any control node.

The LODE regulatory model is widely used in the network
reconstruction [6,8,9]. It can be obtained from (4), if we
set wij(t) = const = wij and bi(t, t0) = const×t = bit:

This model approximates system relaxation into a steady
state after a small perturbation. However, it is difficult to
confirm that perturbations are small enough to justify
model (5).

Equation (4) allows us to create a number of less restric-
tive models that can cover broader spectrum of dynamical
behaviours. These models can integrate prior knowledge
or can be further refined in experimental data analysis. In
this report, we use the following representations for wij(t):

where L is the number of terms, ul, ij are the coefficients
encoding for the regulation of node i by node j and τl are
the characteristics times that can be either set as prior val-
ues or estimated from experimental data. The background
functions bi(t, t0) can also be developed, but we will keep
them constant as, with little data, more complicated mod-
els for bi(t, t0) can fit the data without identifying any link.

We have devised a library of eight models (Table 1) to be
tested and compared. Rationale for using the selected ker-
nel functions is given in [Additional file 1].

Discussion on the parameter identifiability for the devel-
oped models can be found in [Additional file 2].

Network reconstruction is done by fitting the developed
models to experimental data. Among different fitting

strategies [17], the forward selection (FS) algorithm has
shown reasonable performance, in particular for sparse
networks, and therefore, it has been adopted in this paper.
We refer to [18] for the details on the implementation of
the FS algorithm. A more robust modification of the FS
algorithm has also been tested as described in [Additional
file 3].

We can use prior knowledge on the nodes' interactions to
select the best network reconstruction model from the
pre-defined library (Table 1). We look for the kernel func-
tion wij(t) that reconstructs the prior links with the highest
accuracy. The description of the adaptive model selection
(AMS) algorithm can be found in [Additional file 4].

Testing
We compared the performances of the eight kernel func-
tions from Table 1 as well as the LODE regulatory model
(5) using simulated and experimental data. Three artificial
systems were used for testing: the oscillating network in E.
coli, called repressilator [19], the mitogen-activated pro-
tein kinase (MAPK) cascade [20] and the glycolysis path-
way in yeast [21]. We also used the yeast (Saccharomyces
cerevisiae) cell cycle microarray time-series data [22] to
demonstrate applicability of the developed approach to
real experimental data. The positive predictive value
(PPV) and sensitivity (Se) were applied to estimate the
performance. Further details on the artificial and real sys-
tems used for testing and description of the testing proce-
dure can be found in [Additional file 5].

The dependencies of PPV on the total number of links are
presented in Fig. 2. The Se values at 50 generated links are
collected in Table 2. Among the three artificial systems,
the choice of a model was the most critical for the E. coli
repressilator. In this case, the best reconstruction was

dyi t
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Table 1: Kernel functions

Equation wij(t) Model

(6) u1, ij P1

u1, ij + u2, ijt P2

(7) u1, ijexp{-t/(0.1T)} E1

u1, ijexp{-t/(0.9T)} E2

u1, ijexp{-t/(0.1T)} + u2, ijexp{-t/(0.9T)} E3

(8) u1, ij (1 + t/(0.1T))-1 I1

u1, ij (1 + t/(0.9T))-1 I2

u1, ij(1 + t/(0.1T))-1 + u2, ij(1 + t/(0.9T))-1 I3
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achieved with the bi-exponential E3 model. The LODE
model performed better than random reconstruction but
still worse than E3. All tested kernels were significantly
better than random link assignment for the MAPK cas-
cade. All kernels also outperformed the LODE model in
this case. However, there is still a notable (and statistically
significant) difference between the kernels. The yeast gly-
colysis network (Fig. 2c) was the most difficult to recon-
struct because many times series were similar and hardly
distinguishable by the reconstruction algorithm. Never-
theless, several models (P1, P2, E2, E3, and I2) demon-
strated the performance different from random. The
LODE model could not outperform the random predic-
tion in this case.

For the yeast cell cycle time-series data, the polynomial
models (P1 and P2) were the most powerful. For the alpha
dataset and for the elu dataset, P1 had the highest per-

formance whereas P2 was the most accurate for cdc15.
Note that, in each case, the best performing models (P1
and P2) also outperformed the LODE model. Comparing
different experiments, we see that cdc15 led to less accu-
rate predictions. This indicates that this experiment
requires more elaborated reconstruction models or more
representative datasets.

From Fig. 2 and Table 2, we can conclude that the "opti-
mal" models were different for the artificial and real sys-
tems. The obtained results suggest that no unique model
exists to ensure reasonable performance for different sys-
tems and therefore the most appropriate models should
be searched for each system.

We applied the AMS algorithm [Additional file 4] to the
same three artificial systems and three experimental data-
sets. As at each run the prior links were different, the

The average dependencies of PPV on the total number of links for the three artificial systems and for the three yeast cell cycle microarray time-series datasetsFigure 2
The average dependencies of PPV on the total number of links for the three artificial systems and for the three 
yeast cell cycle microarray time-series datasets. Blue line corresponds to the LODE model and dashed black line corre-
sponds to random prediction. Confidence intervals for the obtained estimates are too narrow to be recognizable in the graphs 
and therefore not shown.
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selected model might also be different. Therefore, we
counted number of times each model from Table 1 was
selected in the 100 runs. The results for 2 and 10 prior
links are shown in Fig. 3. We found that the higher per-
forming models from Fig. 2 were selected more often than
the lower performing ones. Moreover, reasonable model
recognition could be already achieved with only two prior
links. As expected, the increase in the number of prior
links led to better model identification.

However, in some cases with two prior links, the AMS
algorithm relatively often selected the models that were
rather poor as judged by the results presented in Fig. 2. For
example, for the artificial yeast glycolysis pathway or real
alpha dataset, the bi-exponential E3 model was selected
almost as often as other, better performing, models. This
indicates that the E3 model was more adequate just for
certain links and not for any link in the networks. There-
fore, we can conclude that the network reconstruction

The dependencies of PPV on the total number of links for the AMS algorithm (with two prior links)Figure 4
The dependencies of PPV on the total number of 
links for the AMS algorithm (with two prior links). 
Thick line – PPV by the AMS algorithm; thin line – PPV after 
random model selection. Confidence intervals for PPV after 
random model selection are shown as dashed lines.
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Table 2: Se at 50 generated links for the three artificial systems 
(E. COLI repressilator (A), MAPK cascade (B) and yeast 
glycolysis pathway (C)) and three yeast cell cycle microarray 
time-series datasets

Models A B C alpha elu cdc15

LODE 0.46 0.12 0.16 0.23 0.19 0.27
P1 0.32 0.19 0.20 0.35 0.42 0.27
P2 0.41 0.23 0.18 0.35 0.31 0.35
E1 0.47 0.25 0.16 0.38 0.31 0.23
E2 0.32 0.24 0.20 0.31 0.35 0.31
E3 0.60 0.27 0.17 0.15 0.27 0.08
I1 0.35 0.18 0.18 0.31 0.23 0.15
I2 0.32 0.24 0.21 0.27 0.35 0.27
I3 0.59 0.23 0.16 0.19 0.19 0.12

For the artificial systems, the Se values were averaged over 100 runs 
of the simulation procedure. Model definitions (P1, P2, E1, E2, E3, I1, 
I2 and I3) are given in Table 1.

Adaptive model selectionFigure 3
Adaptive model selection. Number of times each model 
from Table 1 has been selected in 100 runs of the simulation 
procedure by the AMS algorithm based on 2 (empty bars) 
and 10 (filled bars) prior links. Confidence intervals for the 
random model selection are indicated by dashed lines.
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model should be link-specific, that is different models
may be assigned to different links.

As the AMS algorithm may select poor performing mod-
els, the overall performance of the network reconstruction
is lower than for the best performing model. However,
even with as small as two prior links, AMS is already better
than random model selection, as illustrated in Fig. 4. If the
performance of different models is not very different (as
for the MAPK cascade), the prediction of the AMS algo-
rithm is close to random. If, however, a certain model
demonstrates clear advantage (as, for example, for the E.
coli repressilator), the AMS algorithm can identify this
model leading to the performance substantially higher
than by random selection.

The performance of the AMS algorithm using independ-
ent set of artificial data described in [5] is presented in
[Additional file 6].

Conclusion
We have presented a generalized approach for the regula-
tory network reconstruction, that gives us an easy possibil-
ity to create and to test different inference models and,
potentially, to identify appropriate models from experi-
mental data. We have shown that even with as small as
two prior links it is already possible to select models
ensuring reasonable performance. Further discussion and
perspectives for further research are given in [Additional
file 7].

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
EN developed the model, performed software implemen-
tation and drafted the manuscript. EB conceived of the
study and participated in coordination. All authors read
and approved the final manuscript.

Additional material

Acknowledgements
This work was supported by the Institut Curie and the Ligue Nationale 
Contre le Cancer. E.N. and E.B. are members of the Equipe Biologie des 
Systèmes from the Service de Bioinformatique of Institut Curie, équipe 
labellisée par La Ligue Nationale Contre le Cancer.

References
1. Wagner A: How to reconstruct a large genetic network from

N gene perturbations in fewer than N2 easy steps.  Bioinformat-
ics 2001, 17:1183-1197.

2. Ideker TE, Thorsson V, Karp RM: Discovery of regulatory inter-
actions through perturbation: inference and experimental
design.  Pac Symp Biocomput 2000, 5:302-313.

3. Werhli AV, Grzegorczyk M, Husmeier D: Comparative evalua-
tion of reverse engineering gene regulatory networks with
relevance networks, graphical gaussian models and bayesian
networks.  Bioinformatics 2006, 22:2523-2531.

4. Soranzo N, Bianconi G, Altafini C: Comparing association net-
work algorithms for reverse engineering of large-scale gene
regulatory networks: synthetic versus real data.  Bioinformatics
2007, 23:1640-1647.

5. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D: How
to infer gene networks from expression profiles.  Molecular Sys-
tems Biology 2007, 3:78.

Additional file 1
Kernel functions. Rationale for using the kernel functions from Table 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-68-S1.pdf]

Additional file 2
Identifiability note. Discussion on the parameter identifiability for the 
developed models.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-68-S2.pdf]

Additional file 3
Modified forward selection (FS) algorithm. Description and testing of 
the modified version of the FS algorithm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-68-S3.pdf]

Additional file 4
Adaptive model selection (AMS). Description of the AMS algorithm to 
identify the kernel function that reconstructs the prior links with the high-
est accuracy.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-68-S4.pdf]

Additional file 5
Simulated and experimental data. Details on the artificial and real sys-
tems used for testing and description of the testing procedure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-68-S5.pdf]

Additional file 6
Independent artificial data. Testing of the AMS algorithm using inde-
pendent set of artificial data described in [5].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-68-S6.pdf]

Additional file 7
Discussion. Discussion and perspectives for further research.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1756-
0500-2-68-S7.pdf]
Page 6 of 7
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1756-0500-2-68-S1.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-2-68-S2.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-2-68-S3.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-2-68-S4.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-2-68-S5.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-2-68-S6.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-2-68-S7.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16844710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16844710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16844710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17485431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17485431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17485431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17299415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17299415


BMC Research Notes 2009, 2:68 http://www.biomedcentral.com/1756-0500/2/68
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

6. Bansal M, Gatta GD, di Bernardo D: Inference of gene regulatory
networks and compound mode of action from time course
gene expression profiles.  Bioinformatics 2006, 22:815-822.

7. MacCarthy T, Pomiankowski A, Seymour R: Using large-scale per-
turbations in gene network reconstruction.  BMC Bioinformatics
2005, 6:11.

8. D'haeseleer P, Liang S, Somogyi R: Genetic network inference:
from co-expression clustering to reverse engineering.  Bioin-
formatics 2000, 16:707-726.

9. Kim J, Bates DG, Postlethwaite I, Heslop-Harrison P, Cho KH: Least-
squares methods for identifying biochemical regulatory net-
works from noisy measurements.  BMC Bioinformatics 2007, 8:8.

10. Basso K, Margolin AA, Stolovitzky G, Klein U, Della-Favera R, Gali-
fano A: Reverse engineering of regulatory networks in human
B cells.  Nature Genetics 2005, 37:382-390.

11. Dojer N, Gambin A, Mizera A, WilczyMski B, Tiuryn J: Applying
dynamic Bayesian networks to perturbed gene expression
data.  BMC Bioinformatics 2006, 7:249.

12. Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS,
Thorsson V: The Inferelator: an algorithm for learning parsi-
monious regulatory networks from systems-biology data
sets de novo.  Genome Biology 2006, 7:R36.

13. Vu TT, Vohradsky J: Nonlinear differential equation model for
quantification of transcriptional regulation applied to micro-
array data of Saccharomyces cerevisiae.  Nucleic Acids Research
2007, 35:279-287.

14. Chang WC, Li CW, Chen BS: Quantitative inference of dynamic
regulatory pathways via microarray data.  BMC Bioinformatics
2005, 6:44.

15. Perrin BE, Ralaivola L, Mazurie A, Bottani S, Mallet J, d'Alché-Buc F:
Gene networks inference using dynamic Bayesian networks.
Bioinformatics 2003, 19:ii138-ii148.

16. Sontag ED: Mathematical Control Theory: Deterministic
Finite Dimensional Systems.  2nd edition. Springer, New York;
1998. 

17. van Someren EP, Wessels LFA, Reinders MJT, Backer E: Searching
for limited connectivity in genetic network models.  Proceed-
ings of the Second International Conference on Systems Biology
2001:222-230.

18. Novikov E, Barillot E: Regulatory network reconstruction using
an integral additive model with flexible kernel functions.
BMC Systems Biology 2008, 2:8.

19. Elowitz MB, Leibler S: A synthetic oscillatory network of tran-
scriptional regulators.  Nature 2000, 403:335-338.

20. Huang CHF, Ferrell JE Jr: Ultrasensitivity in the mitogen-acti-
vated protein kinase cascade.  Proc Natl Acad Sci USA 1996,
93:10078-10083.

21. Pritchard L, Kell DB: Schemes of flux control in a model of Sac-
charomyces cerevisiae glycolysis.  Eur J Biochem 2002,
269:3894-3904.

22. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB,
Brown PO, Botstein D, Futcher B: Comprehensive identification
of cell cycle-regulated genes of the yeast Saccharomyces cer-
evisiae by microarray hybridization.  Mol Biol Cell 1998,
9:3273-3297.
Page 7 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16418235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16418235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16418235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15659246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15659246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11099257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17212835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17212835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17212835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15778709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15778709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16681847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16681847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16681847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16686963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17170011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17170011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17170011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15748298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15748298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14534183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14534183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18218091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18218091
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10659856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10659856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8816754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8816754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12180966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12180966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Findings
	Conclusion

	Findings
	Mathematical framework
	Testing

	Conclusion
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

