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Abstract
Background: In the past, rice genome served as a good model for studies involving comparative
genomics of grass species. More recently, however, Brachypodium distachyon genome has emerged
as a better model system for genomes of temperate cereals including wheat. During the present
study, Brachypodium EST contigs were utilized to resolve orthologous relationships among the
genomes of Brachypodium, wheat and rice.

Findings: Comparative sequence analysis of 3,818 Brachypodium EST (bEST) contigs and 3,792
physically mapped wheat EST (wEST) contigs revealed that as many as 449 bEST contigs were
orthologous to 1,154 wEST loci that were bin-mapped on all the 21 wheat chromosomes. Similarly
743 bEST contigs were orthologous to specific rice genome sequences distributed on all the 12 rice
chromosomes. As many as 183 bEST contigs were orthologous to both wheat and rice genome
sequences, which harbored as many as 17 SSRs conserved across the three species. Primers
developed for 12 of these 17 conserved SSRs were used for a wet-lab experiment, which resolved
relatively high level of conservation among the genomes of Brachypodium, wheat and rice.

Conclusion: The present study confirmed that Brachypodium is a better model than rice for
analysis of the genomes of temperate cereals like wheat and barley. The whole genome sequence
of Brachypodium, which should become available in the near future, will further facilitate greatly the
studies involving comparative genomics of cereals.

Background
Cereals constitute the most important group of cultivated
plants, and are known to have diverged from a common
paleopolyploid ancestor ~45–47 million years ago (Mya)
[1]. Despite this, a remarkable overall structural and func-
tional similarity exists among different cereal genomes
[2,3], although the size of these genomes differs greatly,
ranging from 430 Mb in rice (Oryza sativa) to 16,000 Mb
in hexaploid wheat (Triticum aestivum). Due to its small
size and availability of whole genome sequence, rice has
been used as a model system for a variety of experimental

studies including map-based cloning [4]. However, recent
studies resolved further the dynamic changes in rice
genome sequences, thus questioning the utility of rice as
a model crop [5], and necessitating the need for search of
a more efficient model system.

Brachypodium distachyon, a small temperate grass (sub-
family Pooideae) has recently emerged as a better model
system for the study of temperate grasses. This is particu-
larly, due to several of its desirable biological features and
its phylogenetic position [6,7]. It is postulated that rela-
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tive to rice genome, Brachypodium genome will exhibit a
much higher level of colinearity and synteny to the
genomes of temperate cereal crops. In the present study,
the available Brachypodium EST contigs (bEST contigs) and
supercontigs were utilized to explore further the utility of
the Brachypodium genome as a model for carrying out
comparative genomics studies in cereals in general, and
for wheat genomics in particular. The relationship of
Brachypodium genome with wheat and rice genomes has
been examined for this purpose, and improved criteria of
sequence similarity search were used for more accurate
estimation of similarity [8].

Results
In the present study, EST sequences from Brachypodium
were utilized to find out the degree of similarity of Brach-
ypodium genome with EST/genomic sequences of wheat
and rice. The orthologous wheat sequences thus identified
were also utilized to study the relationship of wheat
genome sequences with Brachypodium supercontigs. We
have also taken note of the comparisons of chloroplast
genomes among eight grass species, which were included
in the report on Brachypodium chloroplast genome
sequence that was recently worked out [9].

Orthology between Brachypodium and wheat
As many as 3,818 B. distachyon EST contigs were blasted
(BLASTN) against the available wheat EST contigs (con-
taining bin-mapped wESTs) to identify matching wESTs.
The analysis revealed that as many as 449 bEST contigs
had orthologs in wheat genome.

Analysis of mapped wEST contigs that matched bEST 
contigs
The above 449 bEST contigs were homologous with a cor-
responding number of wESTs carrying 1,154 bin-mapped
loci or regions giving an average of 2.57 loci per wEST con-
tig (Figures 1, 2). The distribution of ortholoci on the

three wheat sub-genomes (A, B and D) and among the
seven homoeologous groups of chromosomes (Table 1)
was non-random (P << 0.05), when the known chromo-
some lengths and their DNA contents were used as the
basis [10]. The distribution of ortholoci on long and short
arms of the chromosomes (excluding 37 loci, which could
not be assigned to individual arms) was also non-random
(P < 0.05). This non-random distribution of ortholoci is,
however, based on limited data.

Of the above 449 matched wEST contigs (orthologous to
bEST contigs), 77 (17.2%) represented unique loci, and
the remaining 372 (82.8%) detected multiple loci with
283 (76.1%) having multiple loci on homoeologous
chromosomes and 89 (23.9%) having multiple loci on
non-homoeologous chromosomes.

Of the 1,154 orthologous loci with known positions on
wheat chromosomes, 1,094 (94.8%) loci were known to
have earlier been assigned to 159 chromosome bins
defined by deletion break points. The remaining 60
(5.2%) loci could be assigned only to individual chromo-
somes or their arms. A maximum of 386 loci (35.3%)
were mapped in the proximal regions (60% of the arm
length from centromere; C-0.60) followed by 331 loci
(30.3%) mapped to the distal regions (40% terminal arm
length; 0.60–1.00). The remaining 377 loci (34.4%) were
mapped to the interstitial bins having proximal and distal
regions.

The above 449 mapped wheat orthologs were also used
for homology search among Brachypodium supercontigs.
The wheat EST contigs located on homoeologous group 4
chromosomes had maximum homology (54.5% of
mapped contigs) with the Brachypodium super_1 contig. In
contrast, Brachypodium super_0 to 2 contigs had homol-
ogy with wEST contigs dispersed on all the seven homoe-
ologous groups, although no redundancy for wheat
homologues was observed within the above supercontigs
(Table 2).

Orthology between bEST contigs and rice genome 
sequences
The BLASTN results of 3,818 bEST contigs against the rice
genome sequences identified as many as 743 matching
bEST contigs (see methods), which had homologues dis-
tributed on all the 12 chromosomes of rice. On the basis of
relative length (Mb) of chromosomes and their arms [11],
the ortholoci on 12 rice chromosomes/arms were non-ran-
domly distributed (P <<< 0.05) (Table 3; Figure 3).

Conserved orthologous sequences among Brachypodium, 
wheat and rice
In the present study, 183 orthologous sequences were
conserved among all the three species (Brachypodium,

Table 1: Distribution of the orthologous loci according to their 
assignment to wheat chromosomes arranged in two-way 
classification

Sub-genome

Homoeologous group A B D Total

1 36 46 46 128
2 53 51 62 166
3 43 54 52 149
4 59 61 66 186
5 62 65 49 176
6 57 51 41 149
7 59 66 75 200

Total 369 394 391 1,154
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Distribution of orthologous bEST contigs (BdC) on wheat chromosomes belonging to homoeologous groups 1 to 4 (12 chro-mosomes)Figure 1
Distribution of orthologous bEST contigs (BdC) on wheat chromosomes belonging to homoeologous groups 1 
to 4 (12 chromosomes). bEST contigs are shown on the right and arm fraction lengths are given on the left. Vertical lines on 
the right, covering an arm, means that the corresponding bEST contig (shown in bold) could not be assigned to a specific bin 
and was assigned to the arm; vertical lines covering more than one bins means that corresponding wEST was earlier mapped to 
a 'combined bin', rather than to an individual bin. The bEST contigs, which could not be assigned to bins and were assigned to 
individual chromosomes (with no information about arm), are listed at the bottom of each such individual chromosome.
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Distribution of orthologous bEST contigs (BdC) on wheat chromosomes belonging to homoeologous groups 5 to 7 (9 chro-mosomes)Figure 2
Distribution of orthologous bEST contigs (BdC) on wheat chromosomes belonging to homoeologous groups 5 
to 7 (9 chromosomes). bEST contigs are shown on the right and arm fraction lengths are given on the left. Vertical lines on 
the right, covering an arm, means that the corresponding bEST contig (shown in bold) could not be assigned to a specific bin 
and was assigned to the arm; vertical lines covering more than one bins means that corresponding wEST was earlier mapped to 
a 'combined bin', rather than to an individual bin. The bEST contigs, which could not be assigned to bins and were assigned to 
individual chromosomes (with no information about arm), are listed at the bottom of each such individual chromosome.
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Table 2: Homology between Brachypodium supercontigs and homoeologous groups of wheat

Wheat homoeologous group bEST mapped contig Number of Brachypodium supercon-
tigs showing orthology*

Supercontig showing maximum 
homology

1 55 11 (0–4,7–10,12,14) 2 (32.7%)
2 69 11 (0–6,9,10,14,15) 0 (44.9%)
3 63 11 (0–2,4–6,8–10,12,13) 4 (33.3%)
4 77 10 (0–3,6–8,11,15,189) 1 (54.5%)
5 68 11 (0–3,5–8,12,15,525) 0 (27.9%)
6 54 11 (0–9,11) 5 (42.5%)
7 63 15 (0–9,11,13,14,538) 0 (19.0%)

*Designated numbers for supercontigs are given in a parenthesis in each row

Distribution of orthologous bEST contigs (BdC; shown on the right side) on 12 rice chromosomesFigure 3
Distribution of orthologous bEST contigs (BdC; shown on the right side) on 12 rice chromosomes.
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wheat and rice). As many as 126 of the 183 orthologous
sequences also confirmed known homology between
wheat-rice chromosomes. Functional annotation of these
183 orthologous sequences suggested that a majority
(137; 74.8%) of these bEST contigs matched with proteins
of known functions (see Additional file 1; Figure 4).

Conservation of SSRs among the three genomes
The 183 bEST contig sequences shared by three species
(Brachypodium, wheat and rice) were also used for mining
SSRs. A total of 100 (54.6%) bEST contigs contained 137
SSRs. As many as 45 of these SSRs showed conservation in
wheat and 23 of these SSRs showed conservation in rice.
As many as 17 SSRs were conserved across all the three
species.

Transferability of conserved orthologous SSRs
In order to validate experimentally the conservation of
Brachypodium SSRs among the genomes of wheat and rice,
primer pairs for SSRs belonging to 12 orthologs were syn-
thesized and used for PCR amplification of the SSRs
(Table 4). All the 12 primer pairs gave amplification prod-
ucts in wheat and rice (Figure 5).

Discussion
Comparative genomics among grasses initially focused on
the analysis of colinearity (gene order) and synteny (gene
content) among DNA markers mapped on individual
chromosome at a low resolution (10 cM). This led to the
identification of 30 rice-independent linkage blocks

involved in the constitution of all cereal genomes and
allowed identification of a number of rearrangements
within individual genomes [12]. However, due to the
availability of whole genome sequence of rice, and sub-
stantial partial sequences from other cereal genomes,
emphasis shifted to a comparison of nucleic acid
sequences. In particular, sequences of ~7000 bin-mapped
wESTs were aligned with rice genome sequences [13],
allowing improved resolution and discovery of many
more rearrangements.

Although rice worked well as a model for all grasses
including wheat, and generated useful information,
Brachypodium, belonging to subfamily Pooideae (wheat
also belongs to Pooideae), is proposed as a better model
than rice (subfamily Ehrhartoideae). Recent studies have
suggested that relative to rice, Barchypodium is more
closely related to wheat and barley and the colinearity
between Barchypodium and wheat is better than that
between wheat and rice [14,15]. Chloroplast sequence-
based phylogenetic analysis in eight grass species also sug-
gested that Brachypodium is closer to the tribe Triticeae [9].
The possible estimated time of divergence between Brach-
ypodium and Triticeae is also shorter (35 Mya) than that of
divergence between wheat and rice (50 Mya) [16] thus
supporting the view that Brachypodium is more closely
related with the members of Triticeae.

During the present study, orthologous relationship
among bEST contigs, wEST contigs and rice genome
sequences was studied using improved criteria of
sequence comparison. Observation of higher number of
bEST contigs showing orthology with rice genome was

A representative pattern of Brachypodium SSR marker PCR products showing conservation and cross-transferability in the genomes of wheat and riceFigure 5
A representative pattern of Brachypodium SSR 
marker PCR products showing conservation and 
cross-transferability in the genomes of wheat and 
rice. Lane M, 100 bp DNA ladder; lane 1, Brachypodium DNA 
(Bd 21); lane 2, wheat DNA (Chinese Spring); lane 3, rice 
DNA (IR-1). The primers (L/R) used were (A) 
BDEST01P1_Contig9; (B) BDEST01P1_Contig1223; (C) 
BDEST01P1_Contig2416; (D) BDEST01P1_Contig3247; (E) 
BDEST01P1_Contig3747 (Table 4).

A pie-chart showing relative frequencies (%) among 183 bEST orthologous sequences based on different biological functions and molecular activitiesFigure 4
A pie-chart showing relative frequencies (%) among 
183 bEST orthologous sequences based on different 
biological functions and molecular activities.

Table 3: Distribution of the orthologous loci on individual rice chromosome

Rice Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 Total

Number of loci 122 95 133 52 64 61 52 43 41 23 27 30 743
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mainly attributed to the fact that only a small fraction of
wheat genome (0.02%) and almost complete rice genome
(95%) were used for sequence comparison with the avail-
able Brachypodium EST contigs. If we take into account the
proportion of the genome used for comparison, it may be
concluded that wheat has higher level of orthology with
Brachypodium than with rice.

The mapped loci in different deletion bins of a particular
chromosome of wheat matched with same or different
supercontigs of Brachypodium. For instance, wheat group 4
chromosomes are highly syntenic to Brachypodium
super_1 contig (54.5%) than to other supercontigs,
although super_1 contig showed homology with other
homoeologous groups also. The mapping information of
these Brachypodium supercontigs on individual Brachypo-
dium chromosomes will be useful for developing markers
specific to the targeted regions of wheat chromosomes.

It was also observed that although D sub-genome of
wheat is smaller in size, the orthologous loci mapped on
this sub-genome are no fewer than those mapped on sub-
genome B, suggesting closer relationship between Brachy-
podium and Aegilops tauschii, the donor of the D sub-
genome of hexaploid wheat.

The relative abundance of orthologous loci on proximal
regions of chromosome arms in wheat is in agreement with

the earlier studies in wheat and rice [17]. It seems that
higher degree of sequence conservation coincides with the
low recombination proximal regions, which is understand-
able, since high recombination in terminal regions will
cause reshuffling of genes during evolution [18].

Conclusion
The results of the present study indicate that the availabil-
ity of whole genome sequence of Brachypodium will be of
enormous relevance for comparative genomics, gene
annotation and evolutionary, structural and functional
genomic studies of large genomes of the Triticeae.

Methods
Brachypodium, wheat, rice sequence databases
A total of 3,818 Brachypodium EST (bEST) contigs, and a
set of 1,015 supercontigs representing 4× coverage of
Brachypodium genome, were available in public domain
[19,20]. As many as 3,792 wheat EST (wEST) contigs con-
taining bin-mapped wESTs were available at GrainGenes
2.0 [21] and rice genomic sequences were available at
Gramene [22].

Sequence comparisons
In order to find orthology among Brachypodium, wheat
and rice genomes, bEST contigs were blasted against wEST
contigs and rice genomic sequences. The pairwise
sequence alignment in BLASTN search was improved by

Table 4: List of primers for the 12 conserved SSRs used for wet-lab experiment

Brachypodium contig Id. Motif Primer sequence 5'-3' Tm (°C) Product size (bp) Gene class

BDEST01P1_Contig9 (gct)5 L GCCTATGTTTCCGCAGAGAG
R CCAGGCAAGAAGTTCCTGAG

59.98 203 Formate dehydrogenase

BDEST01P1_Contig1223 (cca)4 L AGCCAACTCTTGCAGCAAAT
R TGTTGCTCCCTCCTTTTGAT

59.67 207 Endo-1,4-beta-glucanase 
Cel1

BDEST01P1_Contig1335 (tca)4 L GACGAGAGGTTGTGTTGGTG
R ACAGGACACCGTCAGAGGAA

60.71 239 Putative uncharac-terized 
protein

BDEST01P1_Contig1574 (cgc)6 L CAAAACCCTAGCTGCCCTTC
R TGCCAGTGCTTCTTGAAATG

59.99 123 Putative 60S ribos-omal 
protein L13E

BDEST01P1_Contig2089 (ggc)4 L GCTCTTCTCGCCCCTCTACT
R CTCCATCTGGAAATCGCAGT

60.22 200 Hypothetical protein

BDEST01P1_Contig2416 (tcaaga)2 L CCGCACCTCAAGGACTACA R 
TCGGAGGAGATCTTGGTGAG

60.34 194 Succinate dehydrogenase

BDEST01P1_Contig2648 (ggt)4 L AAACCACTTGCCAAAACACC
R GCTGCGGTTCTCCATGAC

60.37 248 Putative uncharac-terized 
protein

BDEST01P1_Contig3139 (tcg)4 L AGTCACCAAGGTCGTCAAGG
R CCTTCGCTGCTCCATAGTCT

59.6 224 Putative ribosomal protein

BDEST01P1_Contig3247 (tggtgc)2 L AGTTGGAATGAGGGCATCAG
R TTCAAGGCTCTCGAGTAGGG

59.57 214 Putative uncharac-terized 
protein

BDEST01P1_Contig3321 (gctcgc)2/
N36/(ggc)4

L CACTTCGAGTTTCCCGTCAT
R TTTTGCAGTGTCCACACCAT

60.01 244 Protein disulfide isomerase 
2 precursor

BDEST01P1_Contig3721 (gct)4 L GGACTACTTTGGGGCTCACA
R GGATTCATAACTGGCAACCA

59.44 180 Cytosolic 6-
phosphogluconate 
dehydrogenase

BDEST01P1_Contig3747 (tcgcca)2 L AGGTCAACTCGGTCAACGAC
R AGGTCAGCCCGTTGTTGTAG

60.17 192 Phenylalanine ammonia-
lyase
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using three new parameters [8]. The first parameter,
aligned length (AL), corresponds to the sum of the lengths
of all the high-scoring segment pairs (HSPs) in a single
hit. Second parameter, cumulative identity percentage
(CIP) was obtained from the formula, CIP = [Σ Id of
HSPs/AL] × 100 and the third parameter, cumulative
alignment length percentage (CALP) was calculated as fol-
lows: CALP = [AL/QL] × 100, where, QL is the length of
query sequence. Last two parameters (CIP and CALP)
allow estimation of highest similarity between sequences
over the entire length of query sequence. These parame-
ters were applied to all the BLASTN results and values of
60% CIP and 70% CALP were used for identification of
orthologs of Brachypodium genomic sequences in wheat
(through ESTs) and rice genomes.

Mapping of wheat and rice orthologs
The physical positions of wEST orthologs identified
through sequence comparisons were localized to specific
bins of wheat chromosomes based on the information
about mapped wEST sequences [23]. The rice genomic
sequences, which were orthologous to bEST contigs, were
also known and were physically localized to specific sites
on 12 different rice chromosomes with the help of Karyo-
View program [24]. The χ2 test for goodness-of-fit was
used for testing the random distribution of ortholoci in
wheat genome at the level of the three sub-genomes, the
seven homoeologous groups, the 21 chromosomes and
the 42 chromosome arms. The same was done for the 12
chromosomes of rice.

Assignment of putative function to orthologs
The orthologous sequences belonging to the three genomes
(Brachypodium, wheat and rice) were subjected to BLASTX
analysis against non-redundant protein database [25] for
assigning putative functions at a cut-off E value of 10-30.

Identification of SSRs in orthologs
The orthologous sequences available in all the three
genomes were mined for simple sequence repeats (SSRs)
using SSRIT program [26]. The SSRs with a repeat motif of
2–6 nucleotides and a length of ≥ 12 bp were included in
the analysis. Primers were designed for the 12 conserved
SSRs using PRIMER3 [27].

Wet-lab analysis
Primers for 12 conserved Brachypodium SSRs were synthe-
sized from Invitrogen, USA. PCR was performed sepa-
rately using the genomic DNA of Brachypodium, wheat and
rice in a final volume of 20 μl in an Applied Biosystems
'Veriti Thermal Cycler'. After electrophoresis, polyacryla-
mide gels were silver stained following Tegelstrom [28].
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