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Abstract
Background: The unbound, free concentration (Bf) of unconjugated bilirubin (UCB), and not the total UCB level, has 
been shown to correlate with bilirubin cytotoxicity, but the key molecular mechanisms accounting for the toxic effects 
of UCB are largely unknown.

Findings: Mouse liver mitochondria increase unbound UCB oxidation, consequently increasing the apparent rate 
constant for unbound UCB oxidation by HRP (Kp), higher than in control and mouse brain mitochondria, emphasizing 
the importance of determining Kp in complete systems containing the organelles being studied. The in vitro effects of 
UCB on cytochrome c oxidase activity in mitochondria isolated from mouse brain and liver were studied at Bf ranging 
from 22 to 150 nM. The results show that UCB at Bf up to 60 nM did not alter mitochondrial cytochrome c oxidase 
activity, while the higher concentrations significantly inhibited the enzyme activity by 20% in both liver and brain 
mitochondria.

Conclusions: We conclude that it is essential to include the organelles being studied in the medium used in 
measuring both Kp and Bf. A moderately elevated, pathophysiologically-relevant Bf impaired the cytochrome c oxidase 
activity modestly in mitochondria from mouse brain and liver.

Backgrounds
Unconjugated bilirubin (UCB) at low concentrations is a
potent antioxidant [1,2] that is neuroprotective [3], while
higher levels of UCB may damage neurons and astrocytes
[3-6], resulting in bilirubin-induced neurological dys-
function (BIND) in some neonates with severe unconju-
gated hyperbilirubinemia. It has been shown that the
unbound, free concentration (Bf) of unconjugated biliru-
bin (UCB), and not the total UCB level, correlates with
bilirubin cytotoxicity [7], but the key molecular mecha-
nisms accounting for the toxic effects of UCB are largely
unknown. Although the primary subcellular targets for
the toxic effects of UCB are not fully identified, mito-
chondria are believed to be particularly vulnerable [4,8-
12]. However, with few exceptions [10,13], most prior
research was performed at unbound UCB concentrations
(Bf) orders of magnitude higher than its hypothesized
upper normal limit of 20 nM (1.2 μg/dL) in plasma of

term infants [14]. In addition, most studies used unpuri-
fied commercial bilirubin, rendering uncertain whether
the observed toxic effects were due to UCB itself, or to
contaminants (especially lipids).

Here we demonstrate the need to include the organelles
being studied in the medium used in measuring both Kp
and Bf. This study further describe the in vitro effect of
UCB, at Bf ranging from 22 to 150 nM, on cytochrome c
oxidase (E.C. 1.9.3.1) activity in mitochondria isolated
from mouse liver and brain. Cytochrome c oxidase is a
crucial enzyme in aerobic energy metabolism, serving as
the final electron acceptor complex in the mitochondrial
electron transport. It catalyzes electron transfer from
cytochrome c to molecular oxygen, reducing the latter to
water, and yields substantial energy that drives the forma-
tion of a proton gradient that is then employed to synthe-
size cellular ATP [15]. The absence, deficiency or
malfunction of this enzyme in human leads to a number
of serious disease states [16]. The results obtained in this
study are relevant to the in vivo impairment of mitochon-
drial function by elevated plasma levels of UCB.
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Materials and methods
Materials
Bilirubin (Sigma Chemical Co.-Aldrich, Milan, Italy) was
purified using the method of McDonagh and Assisi [17].
Phenylmethanesulfonyl Fluoride (PMSF), p-Aminobenz-
amidine dihydrochloride (PAB HCl), ε-Amino-n-Caproic
Acid (ε-ACA), n-dodecyl β-D-maltoside, L-ascorbic acid,
horseradish peroxidase (Type 1 HRP, EC.1.11.1.7), cyto-
chrome c from horse heart, and Bovine Serum Albumin
(BSA) fraction V (Fatty-acid free) were purchased from
Sigma Aldrich (St. Louis, MO, USA). Reagent grade
hydrogen peroxide (H2O2, 30% wt/vol), hydrochloric acid
(HCl, 37%), chloroform, sodium hydroxide and sucrose
were purchased from Merck (Darmstadt, Germany).
EDTA (disodium salt, dehydrate, crystal) was purchased
from BDH (Dorset, England). Tris was purchased from
Invitrogen (Carlsbad, CA, USA). HEPES was purchased
from Gibco BRL (Grand Island, NY, USA).

Reagents
Purified UCB was dissolved in chloroform (0.5 mg/mL)
and the concentrations (μg/mL) determined spectropho-
tometrically as A453 nm × 0.974 × dilution factor [17]. UCB
was divided into 50 μg and 300 μg aliquots, and the chlo-
roform evaporated under nitrogen at <65°C, and stored at
-20°C until used. UCB was dissolved either in 0.01 N
NaOH for Kp measurement or 0.5% vol/vol DMSO for Bf
measurement and Complex IV Assay. H2O2 (1%) was pre-
pared freshly each day by diluting 33.3 μL of 30% H2O2
with 967 μL of potassium phosphate buffer, pH 7.4. HRP
stock solution (1 mg/mL) was prepared by dissolving 1
mg HRP in 1 mL potassium phosphate buffer, pH 7.4, and
stored at -20°C. Mitochondria isolation buffers are as
described in [18] for liver mitochondria and in [19] for
brain mitochondria. Cytochrome c was reduced by L-
ascorbate according to the method of [20]. Full reduction
of cytochrome c was confirmed by measuring the absor-
bance at 550 and 560 nm.

Methods
Isolation of mitochondria from mouse liver (LM) and
brain (BM) were obtained by sacrificing six BALB/c mice
(8-10 weeks) by decapitation (approved by the Eijkman
Institute Research Ethics Commission). LM isolation was
as in [18], and brain mitochondria (BM) isolation was as
in [19]. Mitochondrial protein concentration was deter-
mined by the modified Lowry Protein Assay [21]. Deter-
mination of unbound bilirubin (Bf) was performed using
the minimally-diluted peroxidase method [22] with mod-
ification [23]. Unbound bilirubin was oxidized by perox-
ide (H2O2) in the presence of horseradish peroxidase
(HRP) with first-order kinetics, while albumin-bound bil-
irubin was not [24]. The preliminary standardization of

the rate constant (Kp) for oxidation of unbound UCB was
done by measuring the decrease in A440 following addi-
tion of HRP and H2O2 in a system containing buffer, UCB,
and 100 μg of brain or liver mitochondria in the absence
of albumin [22-24]. Unbound bilirubin (Bf) was deter-
mined in a complete system containing buffer, BSA, UCB,
and 100 μg of brain or liver mitochondria, by measuring
the decrease in A468 in the presence of HRP and H2O2. Bf
was calculated from Kp, the HRP concentration, and the
initial change of light absorbance peak at 468 nm over
time [23,24]. Triplicate determinations were performed
for each measurement, and Kp or Bf was determined
from the average of at least three mitochondrial prepara-
tions.

Cytochrome c oxidase activity was measured at 37°C as
described previously, using 100 μg of brain or liver mito-
chondria [20,25], and expressed as percent activity nor-
malized to control incubations at the same BSA
concentration but without UCB. The oxidation of cyto-
chrome c by cytochrome c oxidase was followed spectro-
photometrically at 550 nm for 30 s, assuming ε1 cm =
19,600 per mol for horse heart cytochrome c [26]. The
effect of purified UCB on the activity of cytochrome c
oxidase was studied at low (22-31 nM and 60-61 nM) and
high (92-107 nM and 142-150 nM) Bf concentrations.

Results for LM and BM were the average of triplicate
determinations performed at each Bf level. All data are
expressed as mean ± SD of at least 3 experiments
obtained in 3 different preparations of mitochondria. Sta-
tistical differences were calculated according to the two-
tailed Student's t-test, performed on the basis of equal or
unequal variance as appropriate. p values lower than 0.05
were considered statistically significant.

Results and Discussion
Liver mitochondria increase the oxidation of unbound UCB
Measurement of the rate constant for oxidation of
unbound UCB by HRP (Kp, 15-20 repeats) was per-
formed both in the absence and presence of BM or LM;
controls were the assay mixture without mitochondria.
Kp determination was needed to calculate unbound bili-
rubin concentration [23,24]. The mean control Kp values
were unaffected by addition of BM, but were 1.7 times
higher in the presence of LM (Table 1). The Bf calculation
was, therefore, based on the Kp value obtained with each
experimental condition (control, with LM, and with BM).

As reported in Table 2, addition of 0.5 mM potassium
cyanide (KCN), a cytochrome c oxidase inhibitor,
decreased Kp to control values (p < 0.01) in the presence
of LM; the decrease was even greater when the KCN con-
centration was increased to 1.0 mM. The dose-dependent
Kp inhibition induced by KCN was much less prominent
in assay mixtures containing BM.
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The higher Kp values and the decrease of Kp due to
KCN addition in the presence of LM indicate that LM
contain higher levels of intrinsic peroxidases than BM,
confirming previous studies [27]. It has been reported
that BM contains bilirubin oxidase, which also has been
detected in other organs including liver [28,29]. Other
peroxidases known to be present in mitochondria include
phospholipid hydroperoxide glutathione peroxidase
(PHGPx) [30], glutathione peroxidase (GPx), catalase
(CAT) [30,31], and peroxiredoxin (Prx) III [32], which
like other hemoproteins, are inhibitable by KCN [29,31].
In LM, these intrinsic mitochondrial peroxidases contrib-
ute to the UCB oxidation measured in the presence of the
added HRP, accounting for the almost 2× higher apparent
Kp in the presence of LM compared to BM. These find-
ings emphasize the importance of determining Kp in
complete systems containing the organelles being stud-
ied.

Effects of Bf on mitochondrial cytochrome c oxidase activity

Bf was varied by using various B/A molar ratios (r) and
two different BSA concentrations (Table 3). As expected,
the Bf increased with r, with a tendency to slightly higher
measured Bf in systems containing LM compared to BM.
Except for r = 0.35 (p = 0.215), these differences were sig-
nificant (p < 0.005 for r = 0.2; p = < 0.005 for r = 0.5; p <
0.005 for r = 0.75).

The mean value of Bf from 4-5 replicate tubes was uti-
lized in assessing the effects of increasing Bf on cyto-
chrome c oxidase activity. As shown in Table 4, the
exposure of mitochondria to Bf of 22-31 nM and 60-61
nM was not associated with any significant effect on
cytochrome c oxidase activity of either BM or LM as
compared to control. In contrast, Bf of 92-107 nM and
142-150 nM caused significant, comparable reductions
(18-20%) of cytochrome c oxidase activity in both BM
and LM; no significant difference was found between the
inhibition observed at mean Bf values of 100 and 146 nM.
In vivo the brain and liver mitochondria are exposed to

Table 1: Effect of brain mitochondria (BM) and liver mitochondria (LM) on rate of peroxidation of unbound UCB by HRP 
(Kp)

Kp

(mL·μg-1·min-1) vs control (p)

Control a (n = 22) 0.406 ± 0.01

BM b (n = 15) 0.399 ± 0.02 0.183

LM c (n = 16) 0.699 ± 0.03 < 0.001

Kp was determined by method described in [23], to measure the coupled constant rate of bilirubin oxidation by HRP. a Control, no 
mitochondria; b BM, mouse brain mitochondria; c LM, mouse liver mitochondria.

Table 2: KCN inhibition of rate of peroxidation of unbound UCB by HRP (Kp)

Relative Kpa

vs control vs LMb or BMc

Control (n = 18) 100 ± 3.1

0.5 mM KCN (n = 12) 84.7 ± 5.8 (p < 0.001)

1.0 mM KCN (n = 11) 73.4 ± 5.8 (p < 0.001)

BMb (n = 11) 99.2 ± 4.4 (p = 0.618)

0.5 mM KCN (n = 6) 88.7 ± 3.3 (p < 0.001) 89.4 ± 3.4 (p < 0.001)

1.0 mM KCN (n = 6) 72.1 ± 6.8 (p < 0.001) 72.1 ± 6.9 (p < 0.001)

LMc (n = 12) 172 ± 6.2 (p < 0.001)

0.5 mM KCN (n = 6) 102 ± 8.1 (p = 0.580) 59.4 ± 4.7 (p < 0.001)

1.0 mM KCN (n = 6) 83.8 ± 9.3 (p < 0.001) 48.8 ± 5.4 (p < 0.001)

a Percent of Kp values normalized to control (no mitochondria); b BM, mouse brain mitochondria; c LM, mouse liver mitochondria.
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cytosolic fluid in which Bf is much lower than in plasma
[33]. These results suggest that cytochrome c oxidase
activity is probably only minimally impaired at plasma
unbound bilirubin concentrations found during neonatal
jaundice. Given that cytochrome c oxidase is a crucial
enzyme in aerobic energy metabolism, and deficiency or
malfunction of this enzyme in human leads to a number
of serious disease states, changes caused by high Bf con-
centration may cause noticeable damage and alter the
whole mitochondrial function. Others have reported
recently that the cytochrome c oxidase activity in rat cor-
tical neurons was decreased by approximately 50% due to
exposure to 50 μM UCB in the presence of 100 μM HSA
[34]. This gives an estimated Bf of 119 nM [35], midway
between the two highest Bf values we studied. The differ-
ence in the degree of inhibition they observed might be
due to the differences between rat and mouse mitochon-
dria, as well as the differences of the systems used. Vaz et
al [34] exposed cultured neuronal cells to UCB, then iso-

late the mitochondria afterwards, while this study
directly exposed isolated mitochondria from whole brain
consisiting of a mixture of cells, including neurons and
glial cells. It has been reported that neurons respond dif-
ferently from glial cells to bilirubin induced toxicity
[29,36,37]. In particular, the rate of bilirubin oxidation
was reported to be significantly lower in mitochondrial
membranes from a pure neuronal source than mem-
branes from either a glial source or a mixed neuronal/
glial source [29], hence the higher sensitivity of neurons
to UCB induced toxicity as compared to glial cells.

Conclusions
We showed that, in the application of the peroxidase
method, it is important to determine Kp, the first order
rate constant for HRP-catalyzed UCB oxidation by perox-
ide in the absence of albumin; Kp is then used to calculate
Bf, in a complete system containing the organelles being
studied. As demonstrated in this study, liver mitochon-
dria increase the oxidation of unbound UCB, thus

Table 3: Measured unbound bilirubin (Bf) concentrations at various ratios of [UCB]/[BSA]

Bf (nM)

UCB/BSA Ratio, 
[BSA] μM

Controla BMb LMc p-value
(BM vs LM)

p-value
(control vs LM)

0.20, 60 22.3 ± 3.4 22.6 ± 2.2 30.8 ± 2.2 p < 0.005 p < 0.005

0.35, 60 61.4 ± 2.3 59.6 ± 2.0 61.5 ± 4.3 p = 0.215, NS p = 0.788, NS

0.50, 60 90.2 ± 2.6 93.4 ± 5.6 104 ± 4.6 p < 0.005 p < 0.005

0.75, 30 141 ± 3.9 142 ± 3.4 150 ± 6.3 p < 0.005 p < 0.005

Bf concentrations were determined by the peroxidase method in potassium phosphate buffer (50 mM KH2PO4 - 50 mM K2HPO) containing 50 
mM KCl, pH 7.4 [22,23]. a Control, no mitochondria, b BM, mouse brain mitochondria; c LM, mouse liver mitochondria. Data are expressed as 
mean ± SD of at least 9 experiments.

Table 4: Cytochrome c oxidase activity of mouse liver and brain mitochondria exposed to different free bilirubin (Bf) 
concentrations

Percent Activity (%) vs controla

[UCB]
[HSA]b

Range of Bf (nM) BMc LMd

0.20 22-31 105 ± 3.1 101 ± 1.8

0.35 60-61 104 ± 8.9 99.1 ± 3.1

0.50 92-107 82.0 ± 4.5e 84.9 ± 3.5e

0.75 142-150 82.6 ± 1.0e 80.7 ± 5.8e

a Results are means of three repeats of at least three separate measurements of the activity of cytochrome c oxidase activity as percent of 
control (no UCB). b Molar ratios of bilirubin to albumin (r). c Mouse liver mitochondria. d Mouse brain mitochondria. e All p < 0.001 vs. Bf = 22-
31 nM, and p < 0.05 vs Bf = 60-61 nM, respectively. No significant differences between: Bf = 22-31 nM vs. Bf = 60-61 nM (p = 0.936 for BM and 
p = 0.302 for LM); Bf = 92-107 nM vs. Bf = 142-150 nM (p = 0.791 for BM and p = 0.342 for LM); or BM vs. LM at any range of Bf (p = 0.086, p = 
0.372, p = 0.298, p = 0.605, respectively).
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increasing the apparent Kp. As stated at the beginning of
this paper, Bf has been shown to correlate with bilirubin
cytotoxicity. Bf measurement using the peroxidase
method could improve the clinical management of neo-
natal jaundice by better recognizing babies that need
treatment and minimizing unnecessary intervention [38].

The present study, using purified UCB at pathophysio-
logically relevant Bf concentrations, demonstrated that at
modestly elevated Bf concentrations (about 90 and 150
nM), UCB inhibits cytochrome c oxidase activity by
about 20% in both brain and liver mitochondria from
mice. Exposure to lower, but still elevated Bf up to about
approx. 60 nM did not significantly affect mitochondrial
cytochrome c oxidase activity in either BM or LM. The
lack of a progressive dose-response effect as Bf increased
from approx. 100 to 150 nM, as well as the modest 20%
impairment in cytochrome c oxidase activity, suggests
that impairment of mitochondrial oxidative activity
might not be a major factor in the toxic effects of UCB on
these organelles. The results do not negate the reports by
others that UCB alters mitochondrial function in other
ways [9,11], for example by altering mitochondrial mem-
brane potential and triggering apoptosis by release of
cytochrome c into the cytosol.

Our studies, done at Bf levels compatible with those in
the plasma of jaundiced neonates, did not confirm the
suggested greater sensitivity of BM than LM to toxic
effects of UCB, derived from studies at vastly higher UCB
concentrations [7], although it is important to bear in
mind that the source of the brain mitochondria used in
this study are a mixture of various type of cells, not only
the ones that are sensitive to bilirubin toxicity, such as
neuronal cells, but also the less sensitive ones, such as
glial cells [29]. These less sensitive cells might be masking
the effect of bilirubin toxicity to the level similar to that of
liver mitochondria.

The present work thus demonstrates the importance of
comparing effects of UCB at comparable Bf levels, mea-
sured using the peroxidase method. It also demonstrates
the need to include the organelles in the medium used in
measuring both Kp and Bf.
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