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Abstract

Background: The miR-200c/141 cluster has recently been implicated in the epithelial to mesenchymal transition
(EMT) process. The expression of these two miRNAs is inversely correlated with tumorigenicity and invasiveness in
several human cancers. The role of these miRNAs in cancer progression is based in part on their capacity to target
the EMT activators ZEB1 and ZEB2, two transcription factors, which in turn repress expression of E-cadherin. Little is
known about the regulation of the mir200c/141 cluster, whose targeting has been proposed as a promising new
therapy for the most aggressive tumors.

Findings: We show that the miR-200c/141 cluster is repressed by DNA methylation of a CpG island located in the
promoter region of these miRNAs. Whereas in vitro methylation of the miR-200c/141 promoter led to shutdown of
promoter activity, treatment with a demethylating agent caused transcriptional reactivation in breast cancer cells
formerly lacking expression of miR-200c and miR-141. More importantly, we observed that DNA methylation of the
identified miR-200c/141 promoter was tightly correlated with phenotype and the invasive capacity in a panel of

8 human breast cancer cell lines. In line with this, in vitro induction of EMT by ectopic expression of the EMT
transcription factor Twist in human immortalized mammary epithelial cells (HMLE) was accompanied by increased
DNA methylation and concomitant repression of the miR-200c/141 locus.

Conclusions: The present study demonstrates that expression of the miR-200c/141 cluster is regulated by DNA
methylation, suggesting epigenetic regulation of this miRNA locus in aggressive breast cancer cell lines as well as
untransformed mammary epithelial cells. This epigenetic silencing mechanism might represent a novel component

of the regulatory circuit for the maintenance of EMT programs in cancer and normal cells.

Findings

Epithelial to mesenchymal transition (EMT) is consid-
ered an essential early step in tumor metastasis forma-
tion by controlling the detachment of invasive cancer
cells from the primary tumor [1]. Interestingly, EMT is
also seen as a facilitator of tissue remodeling during
embryonic development. The phenotypical changes and
the gain of invasive capacity occurring during EMT are
consequences of a cascade of events ultimately leading
to downregulation of cell-to-cell adhesion proteins such
as E-cadherin. Recently, specific microRNAs (miRNAs),
namely members of the miRNA-200 family including
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miR-200c and miR-141, have been implicated in this
process [2-4].

MiRNAs are evolutionary conserved small RNAs, able
to modulate gene expression by inhibiting the protein
translation process and/or degrading the respective tar-
get messenger RNA [5]. They have been shown to parti-
cipate in many cellular processes including
tumorigenesis and specific miRNAs have been assigned
either oncogenic or tumor suppressor roles [6]. With
respect to the EMT process, observations suggest that
members of the miRNA-200 family (especially the two
clustered miRNAs miR-200c and miR-141) play a pro-
minent role as metastasis suppressor genes by prevent-
ing the expression of zinc finger E-box binding
homeobox 1 (ZEB1), which in turn promotes EMT and
the switch to an invasive phenotype [4,7-10]. Impor-
tantly, loss of expression of miRNA-200 family members
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correlates with EMT in various tumor entities such as
breast [4], renal [11], and ovarian [2] cancer and thus
seems to be a conserved pathway promoting metastasis
formation.

During tumorigenesis and EMT, also epigenetic
mechanisms, in particular DNA methylation, play a
decisive role and contribute to the regulation of key fac-
tors involved in this process. While hypermethylation is
observed in regulatory regions of many tumor suppres-
sor genes leading to their transcriptional silencing (e.g.
E-cadherin [12]), on the global level genome-wide DNA
demethylation is observed [13].

Given the pleiotropic role of miR-200c/141 cluster in
tumorigenicity and invasiveness in cancer [2,4,14-17],
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we were interested to investigate the molecular mechan-
isms of its regulation. Previously published results
pointed out the region encompassing positions -683 to
-67 (relative to the precursor miRNA-200c (pre-miRNA-
200c) first nucleotide) as relevant for transcription
[18,19], therefore we concentrated our attention on this
area. Sequence analysis revealed the presence of a well-
defined CpG island between positions -343 to -115,
upstream of the miR-200c/141 cluster (Fig. 1A). CpG
islands (CpG dinucleotide-rich regions) are often co-
localized with promoters as well as first exons of genes
and methylation of the cytosines of the CpG dinucleo-
tides frequently leads to transcriptional silencing [20]. In
order to explore the possible relation between the
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Figure 1 The promoter of the miR-200c/141 cluster is located in a CpG-rich region. (A) Analysis of the genomic region encompassing the
miR-200c/141 cluster. Individual CpG dinucleotides are indicated by short vertical bars, the CpG island between positions -343 and -115 is
represented by a dark grey box. Known ZEB1 binding sites [19] are marked with “A”. The degree of conservation among 17 mammalian species
is shown in the middle part (area plot). In the lower part, the results of 5" Rapid Amplification of cDNA ends (5" RACE) experiments are depicted.
Starting positions of clones representing different transcription start sites are indicated on the left, the number of identified clones indicated on
the right side. (B) Luciferase reporter gene assays of empty vector (empty) (pPMOD vector, Invivogen), a control insert lacking any promoter
activity ((-) control) (intronic fraction of KIR3DL2 gene), an insert constituted by the GAPDH promoter ((+) control), and an insert encompassing
positions -707 to +501 as indicated in (A). (C) Northern blot results using a U6 RNA, a miR-200c, and a miR-141 probe on RNA extracted from
Hela cells transfected with pMOD empty vector or the pMOD vector containing the miR-200c/141 genomic region. Bands shown for the miRNAs
correspond to the mature forms of miR-141 (22bp) and miR-200c (23bp).
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detected CpG island and the transcripts containing the
clustered miRNAs, 5° RACE experiments were per-
formed using primers hybridizing specifically with the
pre-miRNA-200c and pre-miR-141. For these experi-
ments, was used RNA prepared from the breast cancer
cell line MCF7 (epithelial-like and non-metastatic cell
line derived from a pleural effusion of an invasive ductal
breast carcinoma) which strongly expresses these two
miRNAs [4,21]. The results show the existence of a pro-
minent transcription starting site (TSS) located very
close to the CpG island (position -93). This corresponds
to a primary miRNA transcript incorporating both miR-
NAs as it was detected using both primers and it is
located in a region that is highly conserved among
mammals. A second TSS was identified within the CpG
island, at position -285, and in close proximity to ZEB1
binding sites described by others [19] (Fig. 1). Interest-
ingly, this TSS was not detected using the pre-miR-141
primer suggesting the existence of a transcriptional unit
containing miR-200c, but not miR-141. Upon in-silico
inspection, a high-score splice donor site (boundary
exon/intron) was detected between the two miRNAs in
position +373, supporting the existence of an alternative
splicing variant that splices out miR-141 and conserves
the miR-200c transcript. The relevance of this splice
donor site for the generation of different splicing var-
iants was not tested experimentally, but the data suggest
that, although located in close proximity, these two
miRNAs might not always be co-expressed (as suggested
previously [22]). This might explain the observation pre-
viously made by us and others [4,23] that miR-200c is
usually expressed at higher levels compared to miR-141.

In order to more closely characterize the miR-200c/
141 promoter, luciferase reporter gene assays of the
genomic region comprising the putative promoter
region including both miRNAs (spanning the region
between nucleotide -707 - +501 as defined in Fig. 1A)
were performed. Indeed, strong promoter activity was
detected in the respective region (Fig. 1B). Furthermore,
to determine whether the putative RNA polymerase II
(RNA Pol II) promoter is sufficient to enable proper
downstream processing of both miRNAs, Northern blot
analyses were performed. As shown in Fig. 1C, mature
forms of both miRNAs were over-expressed in a time-
dependent manner after transfection of Hela cells that
express low levels of these two miRNAs.

In cancer, specific epigenetic changes are believed to
be early events leading to subsequent changes in gene
expression [13]. Given the reported role of miRNA-200c
and miRNA-141 in metastasis formation [16,17] and,
more recently, in tumorigenesis, development and stem
cells homeostasis [14,24] we speculated that this locus
might be subject to epigenetic regulation. To explore
this, we used the MDA-MB-231 breast cancer cells
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(mesenchymal-like and highly metastatic cell line
derived from a pleural effusion of an invasive ductal
breast carcinoma) that under normal culture conditions
express only residual amounts of these miRNAs [4,21].
We treated MDA-MB-231 cells with the DNA demethy-
lating agent 5-AZA-CdR. The agent leads to irreversible
inhibition of DNMT1, which is the maintenance DNA
methyltransferase that copies methylation patterns to
the newly synthesized DNA strand during DNA replica-
tion [25]. Notably, 5-AZA-CdR is a highly cytotoxic
agent that in many cases leads to stalled cell prolifera-
tion and accelerated cell death during in vitro culture.
In order to diminish these problems, in the present
work we used mild dosages of 5-AZA-CdR (0,2 uM and
1 uM) (Additional file 1: Materials and Methods). This
enabled successful propagation of cell culture experi-
ments for periods of more than 30 days.

The treatment of MDA-MB-231 cells with 5-AZA-CdR
led to the upregulation of both miRNAs (Fig. 2A) in a
time and dosage-dependent manner. The expression of
E-cadherin was previously shown to be regulated by
DNA methylation [12,26], and as expected, treatment-
dependent changes in miRNA expression were accompa-
nied by transcriptional activation of E-cadherin in the
formerly negative MDA-MB-231 line (Additional file 1:
Supplementary Figure S1). Interestingly, we did not
observe a decrease in expression of ZEB1 at mRNA or
protein levels (data not shown), although it was described
as a target of the miRNA-200 family [2-4]. As the action
of 5-AZA-CdR is not selective, this result might indicate
that ZEB1 is itself regulated by other mechanisms depen-
dent on DNA methylation (e.g. third party transcription
factors regulated by DNA methylation). Nonetheless, the
above observations do not exclude that under physiologi-
cal conditions, ZEBL still is sensitive to changes in DNA
methylation of the miR-200c/141 locus. Alternatively, the
lack of ZEB1 downregulation could be due to the fact
that the expression levels of miR-200c and -141 did not
reach a certain threshold necessary to substantially
reduce ZEB1 expression levels.

To exclude the possibility that activation of the miR-
200c/141 cluster observed by chemical demethylation
was mainly due to an indirect effect, e.g. activation of
third party transcription factors, we next explored if
expression of the miRNA cluster could be directly inhib-
ited by DNA methylation. In order to reduce unspecific
background signals we used an expression vector har-
boring a CpG-free luciferase transcriptional unit. This
construct was methylated in-vitro using the DNA
methylase Sss1 before being introduced into Hela cells.
Indeed, after in-vitro methylation, promoter activity was
strongly silenced (Fig. 2B) and together, these observa-
tions suggest a direct role of DNA methylation in tran-
scriptional regulation of the miR-200c/141 cluster.
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Figure 2 The activity of the promoter is regulated by DNA methylation. (A) TagMan-based RT-PCR analysis of miR-200c and miR-141 in
MDA-MB-231 kept under standard conditions and treated with 5-AZA-CdR at two different concentrations. Data are mean of triplicates and were
normalized according to the AACt method using miR-16 as normalizer gene. (B) Firefly luciferase gene reporter assays of the miR-200c/141
promoter region in either demethylated or methylated states, respectively on Hela cells.
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Our observation, that the miR-200c/141 cluster is epi-
genetically regulated by DNA methylation, prompted us
to investigate whether DNA methylation of these miR-
NAs correlates with their reported role in the regulation
of tumorigenicity and invasiveness. For this purpose, we
analyzed the DNA methylation status of the miR-200c/
141 locus in a panel of 8 different breast cell lines of
divergent origin. Some of these lines were originally
established from breast cancer primary tumor cells (BT-
20, BT-549 and Hs578T) while others were originated
from breast cancer metastasis (MCF7, MDA-MB-231
and ZR-75-1) [21]. The HBL-100 cell line was estab-
lished from an early lactation sample collected from an
apparently healthy woman but during in-vitro culture
evolved and became tumorigenic in nude mice [21]. The
MCF12A cell line is a spontaneously immortalized cell
line generated from normal breast epithelium [27].
Despite the different origins, the cell line panel can be
grouped in terms of morphology and invasive capacity:
MCF12A, MCF7, BT-20 and ZR-75-1 show an epithelial
phenotype and no or low invasive capacity while MDA-
MB-231, Hs578T, BT-549 and HBL-100 are clearly dis-
tinct showing a mesenchymal-like phenotype and high
invasive capacity. Indeed, the degree of DNA methylation
correlated strongly with the cellular phenotype (Fig. 3A):
locus demethylation was consistently observed in four
different breast cell lines with epithelial phenotype while
strong DNA methylation was observed in the promoters
of four cell lines representing mesenchymal phenotypes.

Consistent with previous observations [4], only breast
cancer lines with an epithelial phenotype exhibited
expression of the two miRNAs (Fig. 3B). Of note, the
expression levels in the epithelial cell lines were sub-
stantially higher than the levels we could reach by
demethylation of the mesenchymal MDA-MB-231 line,
which is again consistent with incomplete demethylation
of the miR-200c/141 promoter during 5-AZA-CdR
treatment (Additional file 1: Supplementary Figure S2).

To further explore the role of DNA methylation for
repression of the miR-200c/141 cluster in the course of
EMT, we took advantage of an in-vitro EMT model,
which is based on ectopic expression of the EMT tran-
scription factor Twist in non-transformed immortalized
human mammary epithelial cells (HMLE) [28]. Expres-
sion of Twist (HMLE-Twist) reproducibly led to loss of
epithelial cell-cell adhesion and acquisition of mesenchy-
mal morphology as well as to induction of ZEB1 and
ZEB2 expression and downregulation of E-cadherin (Fig.
4A and Additional file 1: Supplementary Figure S3). The
EMT process was accompanied by DNA hypermethyla-
tion and transcriptional silencing of the miR-200c/141
promoter (Fig. 4B and 4C). Importantly, although DNA
methylation levels of Twist-transfected HMLE cells
(56,0% counting all CpG dinucleotides from all clones)
were not as high as in invasive cell lines of mesenchymal
phenotype (Fig. 3A) (on average 89,3%), they were none-
theless associated with strong downregulation of the
respective miRNAs (Fig. 4B and 4C). The data thus
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Figure 3 Methylation status of the surrounding region correlates with miRNA expression and cellular phenotype. (A) Methylation status
analysis of the region surrounding miR-200c/141 in breast cancer cell lines of different phenotypes. White and black dots represent
demethylated and methylated CpG dinucleotides, respectively. EFach line represents an individual sequence and the number of identical clones
presenting that sequence is indicated on the right. (B) Expression analysis of miR-200c and miR-141 in various breast cancer cell lines. Data are
mean of triplicates and are calculated relative to miR-16 expression, which in all experiments did not exhibit significant differences in Ct values
between samples.

suggest that effective silencing of the miR-200c/141
locus is already achieved by intermediate levels of DNA
methylation.

During preparation of this manuscript, a correlation
between the expression levels of miR-200c/141 and the
degree of DNA methylation of the promoter-associated
CpG island was also reported by Vrba and colleagues
[29]. Similar to the present study, the authors demon-
strate a correlation of DNA methylation levels with
invasive phenotype and the capacity of 5-AZA-CdR to
reactivate the expression of the formerly silenced miR-
NAs in invasive breast cancer cell lines. The present
study goes beyond the correlative analysis by providing
evidence that expression of the miR-200c/141 locus is
indeed partly controlled by DNA methylation. Firstly, in
vitro methylation experiments showing how DNA
methylation of the miR200c/141 locus shuts down

expression of miR-200c and miR-141 provides a func-
tional link between DNA methylation of the promoter
and expression of the miR-200c/141 locus. Secondly,
ectopic expression of the EMT inducer Twist led to a
limited increase of DNA methylation in the miR200c/
141 promoter, which was nevertheless accompanied by
complete shut down of miRNA expression. The latter
data indicate that even limited levels of DNA methyla-
tion can cause transcriptional silencing of the miRNA
locus. Importantly, the effect of Twist on DNA methyla-
tion levels shown in our study further stresses the func-
tional relevance of epigenetic changes in the miR200c/
141 locus and suggests a potential role for epigenetic
regulation of EMT.

Although the present work supports the idea that
changes in DNA methylation of this particular locus
might be involved in EMT, it remains to be determined
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Figure 4 Changes in DNA methylation of the miRNA locus occurring in an EMT in-vitro model. (A) Phase contrast picture showing
differences in cell morphology observed in epithelial HMLE breast cancer cells and in HMLE cells that underwent EMT by constitutively
expressing Twist. Scale bar, 10 um. (B) Methylation status analysis of the region surrounding miR-200c/141 in same cell populations shown in (A).
(C) Expression analysis of miR-200c and miR-141 in same cell populations shown in (A). Data are mean of triplicates and are calculated relative to
miR-16 expression, which did not exhibit significant differences in Ct values between samples.

if the initial trigger to shutdown the miR-200c/141 pro-
moter during the EMT process is given by changes in
DNA methylation levels or binding of repressors (as
ZEB1, ZEB2, or Twist) to the promoter or if several of
these repressor mechanisms act simultaneously and
synergistically. In the latter case, DNA methylation of
miRNAs in conjunction with ZEB1 expression would
then support transition to a mesenchymal phenotype.
Interestingly, in clones established after experimental
knockdown of ZEB1 in MDA-MB-231 cells, others
observed an upregulation of miR-200c/141 expression
[19]. This opens the possibility that ZEB1 might be
necessary for maintaining DNA methylation of the miR-
200c¢/141 promoter. In this regard, it is known that
ZEB1 interacts with CtBP [30], that in turn interacts
with components of the Polycomb complex [31]. As
these complexes promote DNA methylation via interac-
tion with DNMTs [32], ZEB1 could indeed enforce

DNA methylation of the miR-200c/141 promoter. These
questions surely deserve further investigation.

Additional material

Additional file 1: Supplementary figures, materials and methods
and sequences of primers and probes. This file contains 3 figures
followed by the respective legends. These figures are referred on the
main text of the manuscript as ‘Additional file 1: Supplementary Figure
S1, 52 and S3'. Additionally, the document contains also the description
of methods used and the sequences of primers and probes used on
real-time-PCR experiments, analysis of methylation status, cloning of
promoter, 5RACE experiments and Northern blots.
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