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Abstract

reactions.

avoidance failure rates were assessed.

doubled with increased BACs.

Background: Alcohol is a commonly used social drug and driving under influence is a well-established risk factor
for traffic accidents[1]. To improve road safety, legal limits are set for blood alcohol concentration (BAC) and
driving, usually at 0.05% (most European countries) or 0.08% (most US states, Canada and UK). In contrast, for
walking there are no legal limits, yet there are numerous accounts of people stumbling and falling after drinking.
Alcohol, even at these low concentrations, affects brain function and increases fall risk. An increased fall risk has
been associated with impaired obstacle avoidance skills. Low level BACs are likely to affect obstacle avoidance
reactions during gait, since the brain areas that are presumably involved in these reactions have been shown to be
influenced by alcohol. Therefore we investigated the effect of low to moderate alcohol consumption on such

Thirteen healthy senior individuals (mean(SD) age: 61.5(4.4) years, 9 male) were subjected to an obstacle avoidance
task on a treadmill after low alcohol consumption. Fast stepping adjustments were required to successfully avoid
suddenly appearing obstacles. Response times and amplitudes of the m. biceps femoris, a prime mover, as well as

Findings: After the first alcoholic drink, 12 of the 13 participants already had slower responses. Without exception,
all participants’ biceps femoris response times were delayed after the final alcoholic drink (avg + sd:180 + 20 ms;
p < 0.001) compared to when participants were sober (156 = 16 ms). Biceps femoris response times were
significantly delayed from BACs of 0.035% onwards and were strongly associated with increasing levels of BAC (r =
0.6; p < 0.001). These delays had important behavioural consequences. Chances of hitting the obstacle were

Conclusions: The present results clearly show that even with BACs considered to be safe for driving, obstacle
avoidance reactions are inadequate, late, and too small. This is likely to contribute to an increased fall risk.
Therefore we suggest that many of the alcohol-related falls are the result of the disruptive effects of alcohol on the
online corrections of the ongoing gait pattern when walking under challenging conditions.

Background

Alcohol is a commonly used social drug and driving
under influence is a well-established risk factor for traf-
fic accidents [1]. To improve road safety, legal limits are
set for blood alcohol concentration (BAC) and driving,
usually at 0.05% (most European countries) or 0.08%
(most US states, Canada and UK). For other tasks than
driving, however, it remains unclear whether these
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BACs also reflect appropriate safety limits. Recent
research showed that among working-aged people,
ingestion of alcohol in the previous 6 hours is strongly
and consistently related to falls at home resulting in
admission to hospital or death, even with low levels of
alcohol consumption [2]. The public health impact of
falls is substantial and concomitant costs are growing
[2,3]. However, reducing alcohol intake is often not
included in intervention strategies to prevent falls. Low
alcohol intake is generally not deemed unsafe with
regard to falls, but this was never investigated systemati-
cally. Accidental falls have been found to be associated
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with impaired obstacle avoidance skills [4]. To prevent
tripping, accurate goal-directed reactions are required to
avoid sudden obstacles in the travel path. In previous
work we have observed that an increased percentage of
obstacles that were hit (“obstacle avoidance failures”) is
associated with the presence of smaller and later EMG
responses in the prime movers (such as the m. biceps
femoris) involved in the obstacle avoidance reaction
[5,6]. From cat studies it is known that the parietal cor-
tex and the cerebellum play an important role in this
reaction [7,8]. Imaging studies have shown that acute
alcohol administration significantly reduces brain glu-
cose metabolism in these areas that are important for
obstacle avoidance [9-11]. Hence, one would predict
obstacle avoidance reactions during gait to be disturbed
by alcohol ingestion. Therefore we investigated the
effect of low to moderate alcohol consumption on such
reactions in healthy senior individuals by means of an
obstacle avoidance task.

It was hypothesized that obstacle avoidance reactions
are already impaired at low BACs, and that the increases
in the percentage of obstacles that were hit after alcohol
consumption will be accompanied by delayed and
decreased muscle responses in the m. biceps femoris.

Methods

Participants

Thirteen healthy senior individuals (mean(SD) age: 61.5
(4.4) years, 9 male) volunteered to participate in this
study. None of the participants was, or used to be a
habitual drinker. Inclusion criteria were absence of any
known serious neurological, orthopaedic or cognitive
dysfunction, and age between 50-70 years. Exclusion cri-
teria were a bodyweight exceeding 100 kg or the use of
(prescribed) medication(s) that could interfere with alco-
hol. As the experiment took place in the late afternoon,
participants were instructed to just have an early light
lunch (e.g. a sandwich), and not to drink caffeinated
drinks in the 4 hours before arriving at the laboratory.
Subjects were informed about the experimental proce-
dure before they gave their written informed consent in
accordance with the ethical standards of the Declaration
of Helsinki. The protocol was approved by the ethical
committee of the region Arnhem-Nijmegen.

Equipment and procedure

The participants were instructed to avoid obstacles
while walking on a treadmill (ENRAF Nonius, Type EN-
tred Reha) at a fixed velocity of 3 km/hr (Figure 1A),
wearing their own comfortable shoes (no high heels). A
wooden obstacle (measuring 40x30x1.5cm) with an
embedded piece of iron was held by an electromagnet
just above the treadmill surface. Its release could be trig-
gered by the computer. The obstacle was always
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presented to the left foot. On both feet, three reflective
markers (diameter 14 mm) were attached at heel, hallux
and lateral malleolus. A single marker was placed on
top of the obstacle. Marker positions were recorded by
an 8-camera 3-D motion analysis system (Vicon®,
Oxford Metrics, London, UK) at a sample rate of 100
Hz. The marker positions were processed in real time in
order to determine the moment of obstacle release
related to gait phase. The real time processing also
enabled the experimenter to check online the foot posi-
tion with respect to the obstacle, while the participants
were instructed to walk at a fixed distance to the obsta-
cle that was approximately 10 cm from the most ante-
rior position reached by the toes in the swing phase. If
they deviated more than 3 cm from this position, parti-
cipants received verbal feedback to correct the distance
to the obstacle. The obstacle was not released until a
regular walking pattern was observed and until at least
five unperturbed strides for the trial had been com-
pleted. Stride regularity was defined as a maximum dif-
ference of 50 ms between two consecutive strides. The
obstacle was dropped at one of three different phases of
the step cycle (late stance (LSt,45-60% of the step cycle),
early swing (ESw, 60-70%) or mid swing (MSw,70-85%))
to create different levels of difficulty to avoid the obsta-
cle as time pressure increased (Figure 1B). Available
response time (ART), the measure of time pressure, was
defined as the time between obstacle release and the
estimated moment of foot contact with the obstacle if
no adjustment of the stride had been made [12]. The
obstacle release phases corresponded with ARTs greater
than 450 ms (LSt), 300-450 ms (ESw), and 150-300 ms
(MSw). Ten obstacles in each of the three phases of the
gait cycle were presented in random order during a ser-
ies of 30 trials.

The participants were instructed to look at the obsta-
cle, and step over it after its release. Stepping to the side
was discouraged, and any contact of the left foot with
the obstacle was defined as a failure. Since the m. biceps
femoris (BF) is known to be the prime mover involved
in the avoidance reaction [6], surface electromyography
(EMG) data were collected from this muscle to assess
response times. Self-adhesive Ag-AgCl electrodes (Tyco
Arbo ECG) were placed approximately 2 cm apart and
longitudinally on the belly of the muscle, according to
European guidelines [13]. The EMG signals were
sampled at 2400 Hz (ZeroWire®, Aurion S.r.l, Italy) and
recorded synchronously with the marker data.

Three series of 30 obstacle avoidance trials were per-
formed, each 30 minutes after ingestion of a drink
(Figure 1C). Subjects were informed that these drinks
contained alcohol, and had to finish them within 10
minutes. The first (A0) was a placebo consisting of
water mixed with orange juice (ratio 1:3) with a drop of



Hegeman et al. BMC Research Notes 2010, 3:243
http://www.biomedcentral.com/1756-0500/3/243

A.

B.

C.

A0 A1 A2
o — “— +—AIO
30min 30min 30min »

Figure 1 Methods. A. Experimental setup. B. Step cycle phases in
which the obstacle was released. LSt = Late Stance, ESw = Early
Swing, MSw = Mid Swing C. Protocol: assessment of BAC at t0-t6.
AO: placebo, AT: first alcoholic drink, A2: second alcoholic drink.
Solid black line: obstacle avoidance task.

vodka floated on top to give the scent of alcohol. The
following two drinks (A1 and A2) each contained 40%
vodka mixed with orange juice (ratio 1:3). We aimed to
reach a BAC that was around the common legal limits
for driving (0.05% for most European countries or 0.08%
for most US states, Canada and UK) 30 minutes after
A2, having used the Widmark formula [14] to adjust the
alcohol dosage for the individual’s gender and weight.
A Drager Alcotest® 7410 Plus com breathalyzer was
used to determine the BAC before, during, and after the
experimental task (Figure 1C). For safety reasons, all
participants were taken home by a taxi after the experi-
ment was finished.

Data analysis

Successful obstacle avoidance for each trial was scored.
This was easily determined by two observers by eye, and
by feedback from the participant. If there was any doubt
about the successfulness, the marker data were checked
(this happened in less than 1% of the cases). As the pri-
mary outcome measure, failure rates (as defined by the
number of failed trials divided by the total number of
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trials) were calculated for each alcohol condition and
each step cycle phase.

To assess the EMG responses, the EMG activity of the
m. biceps femoris (BF) was full-wave rectified and low-
pass filtered at 25 Hz (zero lag, 4™ order Butterworth
filter). Background EMG was calculated for each series
separately as the average BF activity over 25 control
strides (i.e. the stride preceding that in which obstacle
release occurred). For each participant and alcohol con-
dition, BF response times were determined as the time
between obstacle release and the moment at which BF
activity exceeded the average control stride by at least 2
SDs for more than 30 ms (for example, see Figure 2).
This was done with the help of a custom made compu-
ter algorithm (Matlab® software, version 7.4.0, The
Mathworks Inc., US). Each trial for which a response
time was calculated was visually checked for correct
determination of the response onset. In about 2% of the
trials the onsets were corrected. The onsets of the
avoidance responses for each subject were averaged for
each phase of obstacle release within each alcohol con-
dition. The responses amplitude was calculated as the
average amplitude during the 100 ms following the
onset of the BF response [5,15]. The amplitudes were
normalized with respect to the maximum average back-
ground activity during the whole step cycle in the A0
condition. A similar procedure was performed to calcu-
late and normalize the average control stride activity in
the 100 ms following the BF response onset.
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Figure 2 Determination of response time and amplitude of the
m. biceps femoris (BF). Response time was defined as the time
between obstacle release (set at the origin of the axes) and the
moment where the BF activity exceeded the activity of the control
stride + 2SD. Average response amplitude was calculated over 100
ms after the onset of the response and normalized with respect to
the average background activity.
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Statistical analysis

To check whether within participants, the series were
equally difficult in the three alcohol conditions, we com-
pared the average ARTs in a repeated measures MAN-
OVA (within-subjects factors: alcohol condition (AO,
A1, A2); phase of obstacle release (LSt, ESw, MSw), a. =
0.05) with post-hoc pairwise comparisons.

To identify the effect of BAC on avoidance failure
rates we used a binary logistic regression with alcohol
condition as categorical factor (A0 as reference category,
o = 0.05) in Egret® for Windows (version 2.0.31). A sta-
tistical model was fitted to the data of the MSw phase
to predict the probability of a failure with increasing
BAC for the most time critical situations.

For the analysis of EMG data, we used repeated mea-
sures MANOVAs with post-hoc pairwise comparisons
to test for differences between the three alcohol condi-
tions (within subjects-factor: A0, A1, A2; o = 0.05) for
average BF response times, normalized response ampli-
tudes, and normalized background activity. The relation-
ship between BF response time and BAC was assessed
by means of bivariate correlation (Pearson Correlation
Coefficient). One sample Students’ t-test with bins of
0.005% BAC was used to determine the BAC from
which the BF response time was significantly delayed.
These analyses were carried out in SPSS® (version
12.0.1) with o set at 0.05. Means are presented with
their standard errors (SE).

Pilot data indicated that the difference in obstacle
avoidance response time after 2-3 standard alcoholic
drinks was 20 ms (SD: 18 ms). To be able to identify a
difference of 20 ms in the mean response time
between A0 and A2, a sample size of 11 subjects
would be needed in this repeated measures design (B =
0.9, o = 0.05).

Results

Before the start of the experiment, the BAC of each par-
ticipant was 0.00%. After the final drink the BACs found
ranged from 0.03% to 0.06%. Hence, we succeeded in
our aim to reach BACs around or below common legal
limits for driving (0.05% for most European countries or
0.08% for most US states, Canada and the UK).

The series of the obstacle avoidance trials were equally
difficult in the three alcohol conditions (A0, Al, and
A2), as there were no significant main effects of alcohol
condition on the average ARTs (F,;; = 0.22, p = 0.81).

Failures

Figure 3A shows the effect of alcohol on avoidance fail-
ure rates. Overall, the failure rate increased significantly
from 4.5% (A0) to 8.8% (p < 0.01) after consumption of
two alcoholic drinks. Figure 3A also demonstrates that
in each alcohol condition most failures were made in
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Figure 3 Effect of alcohol on failures. A. Failure rate per alcoholic
condition for each step cycle phase separately, and in total. LSt =
Late Stance, ESw = Early Swing, MSw = Mid Swing. AQ: placebo, Al:
first alcohol, A2: second alcohol. (**p < 0.01, compared to A0). B.
Model of the probability of failing to avoid the obstacle with
increasing blood alcohol concentrations for the most time critical
situations.

the MSw phase (p < 0.01, compared to late stance).
Within this phase, the failure rate increased significantly
with alcohol consumption, from 11.7% in AO, to 19.2%
and 20.5% in Al and A2, respectively (p < 0.01, com-
pared to A0). Moreover, the probability of a failure not
only increased with higher BACs, but also with lower
ARTs, which corresponded to the MSw phase (Figure
3B). Compared to the placebo condition, chances of hit-
ting the obstacle almost doubled after the final alcoholic
drink (odds ratio (95%CI) = 1.93 (1.17,3.18); p = 0.01).

Response time

The results for BF response times, one of the proposed
determinants of successful obstacle avoidance, are
shown in Figure 4. Repeated measures MANOVA
revealed a main effect of alcohol condition on overall BF
response times (F,;; = 24.93, p < 0.001), as well as
for each phase of obstacle release separately (Table 1).
After ingestion of 2 alcoholic drinks (mean + SD: 0.47 +
0.04 g alcohol/kg bodyweight), BF response times were
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Figure 4 Effect of alcohol on BF response times for each step
cycle phase separately, and in total. LSt = Late Stance, Esw =
Early Swing, MSw = Mid Swing. AQ: placebo, AT: first alcohol, A2:
second alcohol. (*p < 0.05, **p < 0.01).

delayed by 12% compared to when participants were
sober (179 + 5.8 vs 160 + 4.7 ms, F; ;5 = 53.42, p <
0.001) (Figure 4). From the data of the individual sub-
jects (Figure 5) it can be seen that without exception,
BF response times for all participants were delayed fol-
lowing A2. Furthermore, even after Al, 12 of the 13
participants already responded more slowly. The BF
response times were significantly delayed from BACs of
0.035% upwards (¢t = 18.05; p = 0.003). There was a sig-
nificant correlation between response time and level of
BAC (r = 0.6; p < 0.001; Figure 5).

A significant effect of obstacle release phase on BF
response times was also found. The LSt responses were
significantly slower than those in ESw (F; ;», = 52.65, p <
0.001). In turn, ESw responses were again significantly
slower than those in MSw (F; ;> = 49.86, p < 0.001).

Response amplitude

Figure 6 shows the results of the normalized response
amplitudes. Repeated measures MANOVA revealed a
main effect of alcohol condition on overall BF response
amplitudes (F,;; = 4.83, p = 0.03). Post-hoc analyses
yielded a significant effect of alcohol condition on
response time in LSt, MSw, and in total (Table 2).
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Figure 5 Individual delays in BF response times after the first
(A1) and second (A2) drink as compared with the A0
condition. Each data point represents one subject in the
corresponding alcohol condition. The solid line shows the
correlation between BAC and the delay in response time (**p <
0.01). The dashed line represents the BAC from whereon the delay
is significant (*p < 0.05).

A trend for decreasing amplitude with increasing BACs
can be noted in all step cycle phases (Figure 6).

To rule out the possible effect of background activity
on amplitude, the background activity was analyzed as
well. The normalized background activity did not
change significantly with increasing BACs (F5 ;= 0.24,
p =0.79).

Discussion

The present study investigated the effect of low to mod-
erate levels of alcohol consumption on obstacle avoid-
ance reactions during gait. The results clearly show that
even with low BACs ( < 0.06%), reactions to sudden gait
perturbations are seriously affected. After ingestion of
2 alcoholic drinks, obstacles were hit more often,
BF response times were delayed and response ampli-
tudes were reduced. These changes were most obvious
in situations with little available response time.

This is the first study to investigate the effect of alcohol
on responses to sudden gait perturbations (as a relevant
task related of falls). Previous studies have concentrated on
the effects on posture [16,17]. Low doses usually increased

Table 1 Repeated measures MANOVA with within subjects contrast for BF response latencies

LSt ESw MSw Total
Diff(ms)  Fy:> p Diff(ms)  F; 12 14 Diff(ms)  Fy p Diff(ms)  F; 12 14
A0 vs Al 83 110 0.006 92 56 0.036 54 20 0182 87 150 0.002
Al vs A2 108 120  0.005 50 12 0287 110 184  0.001 108 227  0.000
A2 vs AO 192 268  0.000 142 100 0.008 164 363  0.000 194 534  0.000

A0 = placebo, A1 = first alcohol, A2 = second alcohol, LSt = Late Stance, ESw = Early Swing, MSw = Mid Swing, Total = all trials, Diff = difference. Bold numbers

indicate significance.
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Figure 6 Effect of alcohol on normalized EMG amplitudes for
the m. biceps femoris. LSt = Late Stance, Esw = Early Swing, MSw
= Mid Swing. AO: placebo, AT: first alcohol, A2: second alcohol.
(*p < 0.05, *p<001).

body sway but in some subjects the inverse was seen, indi-
cating that these doses may have an beneficial effect in
some cases [17]. However, it is questionable whether these
data are actually relevant for falls since falls rarely occur
during standing. Locomotion studies seem to be more rele-
vant in this respect. Mallinson et al.[18] found that it may
be possible to detect subtle dynamic imbalance induced by
alcohol ingestion (89 ml of 40% alcohol) during tandem
walking with eyes closed. In the present study participants
had to walk on a treadmill with eyes open after consuming
an average of 125 ml of 40% alcohol. Because the back-
ground activity was not significantly different between the
alcohol conditions, and the obstacle was only released
when a regular walking pattern was observed and after at
least five unperturbed strides had been taken from the start
of the trial, we feel confident that any differences found in
the failure rate and any changes in BF activity reflect the
effect of the increased BAC.

Earlier research has shown that many falls are primar-
ily due to stumbling and tripping [19]. In order to avoid
falls due to hitting an obstacle, one needs to be able to
respond adequately to both unseen obstacles causing a
stumble [20,21], and to obstacles suddenly appearing in
the travel path [6]. The muscle that shows the first
major response in all these reactions is the m. biceps
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femoris [6,15,20,21]. When compared to young adults,
both an increase in response latency and a decrease in
response amplitudes of this muscle were found in older
adults [6,22]. These longer onset latencies and smaller
amplitudes were associated with lower success rates [6].
The underlying mechanism for the decreased amplitudes
during the stumbling and obstacle avoidance reactions
in older adults may involve various age-related physiolo-
gical changes, both in the CNS (e.g. fewer motoneurons)
[23] and in skeletal muscle properties (fewer type II
muscle fibers and overall muscle atrophy) [23,24]. In
contrast, in the present study the delay and decrease in
response are more likely to be due to CNS changes.
A possible explanation for the increased failure rate
could be that the pathways used in the avoidance reac-
tions have been altered by alcohol consumption. Obsta-
cle avoidance reactions are often very fast; this has led
to the proposal that fast supraspinal pathways may be
involved that bypass the primary motor cortex [6,25].
These pathways may involve the parietal cortex and/or
the cerebellum. For example in studies on cats, Drew
[26] showed that the parietal cortex is involved in obsta-
cle avoidance. They also proposed that both a fast
directly descending pathway originating from the parie-
tal cortex may exist along with a slower one involving
the motor cortex.

Another possible explanation for the impaired obstacle
avoidance skills after alcohol consumption lies at the level
of neurotransmitters. For example, previous research has
shown that the endorphinergic system [27] and GABA
(Gamma-AminoButyric Acid) [28] are intimately involved
in the actions of alcohol. The sedative, tranquilizing and/
or anaesthetic properties of alcohol have been related to
the enhancement of the flow of chlorine ions across neural
membranes due to GABA [28]. Yet alcohol does not have
this effect on all GABA receptors. Motor incoordination
due to ethanol is caused by potentiation of GABA 4-asso-
ciated adenosine A, 4 receptors in the striatum (caudate
nucleus & putamen) [28]. Moreover, it is suggested that
alcohol-induced deterioration in motor function is linked
to changes in patterns of brain activity rather than changes
in specific brain regions. Specifically, changed activity in
the cerebellum as well as in the frontal and parietal cor-
tices are involved in the motor-incoordinating effects of
alcohol [29].

Table 2 Repeated measures MANOVA with within subjects contrast for BF response amplitudes

LSt ESw MSw Total
Diff(%)  Fi,12 P Diff(%)  Fiq2 p Diff(%)  Fi12 p Diff(%)  Fi,12 p
AO vs Al 184 35 0087 158 46 0054 171 47 0.050 165 91  0.011
AT vs A2 147 112 0.006 42 23 0158 15 25 0142 101 91 0.0m
A2 vs AO 331 83 0014 20 47 0052 186 57 0.035 265 103 0.007

A0 = placebo, A1 = first alcohol, A2 = second alcohol, LSt = Late Stance, ESw = Early Swing, MSw = Mid Swing, Total = all trials, Diff = difference. Bold numbers

indicate significance.
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Studies on the effects of alcohol on brain activity with
leg movements are lacking. However, for arm move-
ments Van Horn et al. [30] found that the human cere-
bellum and PPC (Posterior Parietal Cortex) are involved
in goal-oriented limb movements and that this role is
compromised by alcohol. In particular, alcohol may
cause a disturbance in the ability of these brain regions
to compute appropriate corrective behavioral responses
[30]. In this context it is reasonable to suggest that the
presently observed deficits in obstacle avoidance skills
may be due to the effect of alcohol on information pro-
cessing in the PPC and the cerebellum. Experiments
involving techniques to record brain activity during
obstacle avoidance should be performed to test this
hypothesis.

Limitations

To limit discomfort to the subjects we used a handheld
breath analyzer instead of blood samples. In contrast to
blood analysis, these breath analyzers are easy and quick
to use, do not require additional hard or software, and
are not a burden to the participants. The readings of
such portable devices are in good agreement with the
results of confirmatory analyses performed by stationary
devices (r = 0.978) [31]. Furthermore, the correlation
with blood analysis is quite high for both the readings
of the handheld (r = 0.940) as well as the stationary
devices(r = 0.936) [31].

To the best of our knowledge, the effect of alcohol or
other substances on obstacle avoidance during gait has
never been studied before in healthy senior individuals.
Therefore, it is not possible to make a direct compari-
son with results from similar studies. However, the
obstacle avoidance task used in the present study has
proven to be sensitive enough to detect significant age-
related deficits [32]. A possible limitation is the rela-
tively small sample size. However, in this type of motor
control studies it is quite usual to have similar group
sizes (because of the extensive data analysis involved).
Furthermore, even with the small number the study
yielded unequivocal outcomes. Hence, a larger sample
size will mostly accentuate the significance of the pre-
sent results.

Conclusions

In conclusion, the present results clearly show that
alcohol levels, considered to be safe for driving, ser-
iously hamper the ability to successfully avoid sudden
obstacles in the travel path. It is suggested that many
of the alcohol-related falls are the result of the disrup-
tive effects of alcohol on the online corrections of the
ongoing gait pattern when walking under challenging
conditions. In general the use of alcohol is primarily
seen as a risk factor for driving [1,33]. However, Kool
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et al. [2] estimated that approximately 20% of uninten-
tional falls at home in a working-aged population may
be attributable to the consumption of two or more
standard alcoholic drinks in the preceding 6 h. More-
over, accidents can also occur while walking, particu-
larly under challenging conditions such as when
negotiating suddenly appearing obstacles. The present
data show that the required skills for obstacle avoid-
ance frequently fail even after consumption of a low
dose of alcohol.
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