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Abstract

discoveries in future GWASs.

Background: Substantial genotyping data produced by current high-throughput technologies have brought
opportunities and difficulties. With the number of single-nucleotide polymorphisms (SNPs) going into millions
comes the harsh challenge of multiple-testing adjustment. However, even with the false discovery rate (FDR)
control approach, a genome-wide association study (GWAS) may still fall short of discovering any true positive
gene, particularly when it has a relatively small sample size.

Findings: To counteract such a harsh multiple-testing penalty, in this report, we incorporate findings from previous
linkage and association studies to re-analyze a GWAS on age-related macular degeneration. While previous
Bonferroni correction and the traditional FDR approach detected only one significant SNP (rs380390), here we have
been able to detect seven significant SNPs with an easy-to-implement prioritized subset analysis (PSA) with the
overall FDR controlled at 0.05. These include SNPs within three genes: CFH, CFHR4, and SGCD.

Conclusions: Based on the success of this example, we advocate using the simple method of PSA to facilitate

Background
Substantial genotyping data produced by current high-
throughput technologies have brought opportunities and
difficulties. High-density genotyping platforms have been
developed in a hope that underlying disease-associated
genes can be identified through denser and denser collec-
tions of single-nucleotide polymorphism (SNP) data.
However with the number of SNPs going into millions
comes the harsh challenge of multiple-testing adjust-
ment. To counteract multiple-testing penalty incurred by
testing such a large number of SNPs, some genome-wide
association studies (GWASs) responded by taking a large
sample size—with the number of study subjects soaring
into thousands, tens of thousands, or even more [1].
There are two approaches for multiple-testing adjust-
ments. One is controlling the family-wise error rate
(FWER), the other is controlling the false discovery rate
(FDR) [2,3]. The FWER is defined as the probability of
at least one type I error. Among methods for controlling
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FWER, the Bonferroni correction is the best known
approach, although it is very conservative. Holm’s step-
down procedure [4] is less conservative than the classi-
cal Bonferroni correction. The FWER can also be con-
trolled by the resampling-based P-value adjustment
procedure. Compared with controlling the FWER, con-
trolling the FDR is usually a more powerful approach.
However, even with the FDR approach, a GWAS may
still fall short of discovering any true positive gene, par-
ticularly when it has a relatively small sample size.
When testing simultaneously for a huge number of
SNPs, even true positive SNPs would have difficulty in
standing out among all the noise, based on a straight
(and brutal) comparison of their p values. GWAS on
age-related macular degeneration (AMD) is a good
example, and we will show this in this paper.

The above simple FDR approach has been further
extended to dependent tests and to tests with prior
information [5]. The false discovery control with P-value
weighting [5,6] can improve power when the assignment
of weights (based on previous linkage evidence [6]) is
adequate, but there is some power loss when the
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weights are poorly assigned. Sun et al.’s [7] stratified
false discovery control is another approach. They parti-
tioned all SNPs into two subsets based on minor-allele
frequencies (MAFs), and then the FDR control is applied
to the two subsets respectively. However, as pointed out
by Li et al. [8], MAFs have little relevance with biologi-
cal information and thus partitioning SNPs based on
MAFs probably may not improve much power. To
address this issue, Li et al. [8] proposed a ‘prioritized
subset analysis’ (PSA). The PSA makes clever use of
available prior knowledge, either of the linkage informa-
tion, the biological information or both. We will show
that the PSA can greatly facilitate discoveries in
GWASs, with a demonstration on an AMD data.

Methods

Materials: a GWAS on Age-related Macular Degeneration
(AMD)

AMD is a genetically complex disorder. The heritability
was estimated to range from 46% to 71%. Klein et al. [9]
reported an AMD data set containing 96 AMD cases
and 50 controls. Of all the 116,204 genotyped SNPs,
99,317 SNPs were informative (MAF > 1%) and con-
formed to Hardy-Weinberg equilibrium (with Hardy-
Weinberg exact p value 2 0.05 in the 50 controls). Fol-
lowing Klein et al. [9], we test for allelic association with
disease status on each SNP.

Prioritized Subset Analysis

To facilitate discoveries in GWASs, we turned to a new
method of ‘prioritized subset analysis’ (PSA) [8]. To per-
form a PSA, a researcher based on his/her prior biologi-
cal knowledge first picks from among all SNPs under
study, a certain number of SNPs likely to be the true
positives. He/she then places those selected SNPs in a
‘prioritized subset’ and those remaining in a ‘non-priori-
tized’ subset. The FDR control is then applied to these
two subsets separately, and the significant results are
harvested from both the two subsets.

Prioritizing SNPs

We took findings from previous genome-wide linkage
and association studies on AMD as our prior knowledge
to prioritize SNPs. Our prioritization process is detailed
below.

We first incorporated evidence of linkage (with LOD
score >2.0) based on previous linkage studies [10-16].
We obtained the physical position of each D-number
marker (listed in Table 1) from the Gene Location web-
site http://genecards.weizmann.ac.il/geneloc/index.shtml.
Then SNPs within 500 kb from each D-number marker
were prioritized.

Moreover, several genes have had at least one positive
association finding [17,18]. These genes with SNPs
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genotyped in the AMD data set are listed in Table 1.
For example, complement factor H (CFH, GenelD 3075)
gene within 1q32 was reported to be related to AMD,
both from genome-wide linkage analyses [10-15] (all
published before Klein et al. [9]) and case-control stu-
dies [19-21] (all independent of Klein et al.’s study [9],
and published at the same year of Klein et al.’s paper
[9]). We also learnt that LOC387715/HTRAI (GenelD
5654) locus within 10q26 was identified as a second
major locus contributing to AMD pathogenesis [22,23].
Furthermore, complement component factor B (CFB,
GenelD 629) and the adjacent complement component
2 (C2, GenelD 717) on chromosome 6p21, were
reported to act along the same biological pathway as
CFH [24,25]. When prioritizing SNPs, we used the
Bioinformatics tool ‘GenoWatch’ [26] to identify SNPs
around these candidate genes. The chromosomal region
around the CFH gene had been shown by several inde-
pendent studies to be linked [10-15] or associated
[19-21] with AMD, so we prioritized SNPs within 1 Mb
from the CFH gene. For other candidate genes in Table
1, we prioritized SNPs within 50 kb from each. (For
example, to check whether SNP rs800292 is within 1
Mb from the CFH gene, we simply insert ‘rs800292’ into
‘SNP ID’ and ‘1 Mb’ into the ‘Upstream’ and ‘Down-
stream’ on the website of GenoWatch [26]: http://gene-
pipe.ngc.sinica.edu.tw/genominer/menu.do)

In the end, a total of 639 SNPs were prioritized, and
the remaining 98,678 SNPs, non-prioritized. We then
applied the PSA with the FDR being controlled at 0.05,
for both the prioritized subset and the non-prioritized

Table 1 Genes or markers to be prioritized, in the
prioritized subset analysis

Chr. Genes D-number No. of SNPs in the
markers prioritized subset
1 ABCA4, CFH D15549 94
2 D2S1356, 103
D251394, D251384
3 CX3CR1 D351768, 93
D3S1304, D353045
4 D452368 19
5 D55820, 169
GATAT2A08,
D551506
6 HLA, C2-CFB, VEGF, 20
ELOVL4, SOD2
7 PONT 10
9 VLDLR, TLR4 D95930, D95934 49
10 LOC387715/HTRAT 12
12 LRP6 9
19 APOE D195245 32
20 CST3, MMP9 17
22 D225683 12



http://genecards.weizmann.ac.il/geneloc/index.shtml
http://genepipe.ngc.sinica.edu.tw/genominer/menu.do
http://genepipe.ngc.sinica.edu.tw/genominer/menu.do

Lin and Lee BMC Research Notes 2010, 3:26
http://www.biomedcentral.com/1756-0500/3/26

subset. We used Storey and Tibshirani’s [3] smoothing
spline approach provided by the package ‘fdrtool’ [27] to
estimate the proportions of true negative SNPs.

Results

Bonferroni Correction and Traditional FDR Approach
Controlling the FWER at 0.05 (the level of significance
for each SNP being set at 0.05/99,317 = 5.03 x 107 with
the Bonferroni correction), only one significant SNP
(rs380390) can be identified (within the CFH gene, see
Table 2). (Klein et al. [9] actually found one additional
significant SNP, rs10272438, but it was later dropped
because of low call rate and possible genotyping errors.)
Controlling the FDR at 0.05 wasn’t any better—the same
(and the only one) SNP rs380390 was found to be sig-
nificant (Table 2). Note that this SNP, rs380390, though
being significant, was still not 100% guaranteed to be a
true positive (because it was detected under a FDR con-
trol value of 0.05).

Prioritized Subset Analysis

The PSA identified a total of seven significant SNPs (all
from the prioritized subset) (Table 2). These include
SNPs within three genes: CFH, CFHR4, and SGCD. By
using the PSA method, we have been able to detect six
additional significant SNPs (in two additional genes),
compared to the Bonferroni approach (the method used
by Klein et al. [9]) or the traditional FDR approach.
Two of the three significant genes found in this study,
CFH and CFHR4, are located in a chromosomal region
(1g31-1q32) having been most replicated in previous
AMD studies. The remaining one significant SGCD
gene had not been previously reported to be AMD-
related, though. However, we notice that previous ani-
mal studies showed the SGCD gene is related to vascu-
lar abnormalities in mice [28]. This might suggest a link
of SGCD to neovascular AMD in humans.

All the seven significant SNPs are from the prioritized
subset. To evaluate how well the FDR is controlled in
our prioritized subset, we further estimated the permu-
tation-based FDR [29] in this subset. We randomly

Table 2 Results of the AMD data set
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permuted the data and calculated the null P values -
pl(b) for the ith SNP in the bth permutation (i =
1,...,639). Through B permutations, the number of false
positives (FP) is estimated as FAP(d) = 25:1#{1‘ p < d}/B,
where d = 5.12 x 10™* is the largest P value of the seven
significant SNPs (see Table 2). We took B = 100,000
and obtained FAP = 0.225. The permutation-based FDR
in the prioritized subset is thus estimated as 0.225/7 =
0.032, which is still less than our FDR control level of
0.05, suggesting a satisfactory FDR control in this
subset.

Discussion
Prior information can come from a researcher’s biologi-
cal knowledge, or findings of data other than that pro-
vided in the current study. But one should not ‘snoop’
his/her data at hand for the prior knowledge. If one
naively prioritizes those SNPs with the smallest p values
in the study data, the actual overall FDR would no
longer be properly controlled. To avoid such bias, we
searched findings of other data to build our ‘prior
knowledge’, before seeing the analysis results of indivi-
dual SNPs in the current AMD data set. At that time,
we did know that rs380390 is a significant SNP in the
AMD data set which can withstand a FWER control of
0.05 [9]. But the chromosomal region around rs380390
had already been replicated by many previous linkage
studies [10-15] (all published before Klein et al. [9]).
And so, prioritizing chromosomal region around
rs380390 won’t constitute an act of data snooping.
Around a particular gene, how large a chromosomal
region should be prioritized is also an issue. Because of
the consistent findings in the CFH gene, both from gen-
ome-wide linkage analyses [10-15] and case-control stu-
dies [19-21], we prioritized SNPs within 1 Mb from the
CFH gene. Other evidence of linkage and associations
are relatively unconfirmed by prior studies, so we priori-
tized SNPs within 500 kb and 50 kb, respectively.
Because linkage is a coarse mapping whereas association
is a fine mapping, in general a wider region of SNPs
should be prioritized for a linkage peak. Admittedly,

Chr. Location (bp) SNP P value * Bonferroni FDR PSA Gene
1 193930492 rs800292 512 % 107 NS ** NS S CFH
1 193962973 152019727 301 x 107 NS NS S
1 193989310 rs380390 540 x 10°® S S S
1 193991069 151329428 309 x 10° NS NS S
1 194173603 rs1853882 159 x 10™ NS NS S CFHR4
5 155782975 1970476 720 x 10° NS NS S SGCD
5 155791718 rs931798 369 x 10 NS NS S

* P values were obtained from Fisher’s exact test for allelic association with disease status.
** S: significant; NS: not significant
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there is no absolute criterion for choosing the sizes of
prioritized regions. No matter how large a chromosomal
region is prioritized, the FDR within subsets should be
controlled at the desired level, and this can be verified
by estimating the permutation-based FDR [29].

In recent GWASs, a commonly used approach to
incorporate prior knowledge is to calculate the Bayes
factors [1,30]. However, to estimate the Bayes factors,
the prior distributions and the effect sizes should be
carefully specified [30]. This may limit its applicability.
By contrast, the PSA method used in this paper can
feed on prior knowledge that is only rudimentary (we
need only to decide beforehand whether a particular
SNP is more likely a true positive or a true negative, but
don’t need to know exactly how likely). And there is
almost no penalty for poor guessing [8]. In this paper,
we demonstrated that such a simple dichotomization
followed by a simple PSA can greatly facilitate discov-
eries in a GWAS on AMD.

Note that we did not recruit any more subjects or type
any more SNPs beyond what Klein et al. [9] had done.
The only thing we did is to incorporate prior knowledge
about AMD into the analysis. And we see this input of
knowledge is rather powerful (six/two additional signifi-
cant SNPs/genes were identified in the same AMD case-
control data). One may question that our input of
knowledge and the subsequent partition of SNPs into
two subsets to be tested separately and harvested com-
binedly are making easier (and perhaps too easier) for
the SNPs to come out. But we should emphasize that
we did not loosen our FDR control in any way. The
total seven significant SNPs found in this re-analysis
have an overall 0.05 FDR attached to them, much the
same way with the one SNP rs380390 originally found
in Klein et al. [9] had a 0.05 FDR attached to it. And we
believe that researchers will find no difficulties to choose
seven SNPs or just one—that is, under the same FDR
criteria.

Conclusions

The PSA approach is rather powerful and is easy to
implement. Based on the success of our re-analysis of
Klein et al's GWAS on AMD, we advocate using PSA to
facilitate discoveries in future GWASs.
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