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Allelic replacement of the streptococcal cysteine
protease SpeB in a Δsrv mutant background
restores biofilm formation
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Abstract

Background: Group A Streptococcus (GAS) is a Gram-positive human pathogen that is capable of causing a wide
spectrum of human disease. Thus, the organism has evolved to colonize a number of physiologically distinct host
sites. One such mechanism to aid colonization is the formation of a biofilm. We have recently shown that
inactivation of the streptococcal regulator of virulence (Srv), results in a mutant strain exhibiting a significant
reduction in biofilm formation. Unlike the parental strain (MGAS5005), the streptococcal cysteine protease (SpeB) is
constitutively produced by the srv mutant (MGAS5005Δsrv) suggesting Srv contributes to the control of SpeB
production. Given that SpeB is a potent protease, we hypothesized that the biofilm deficient phenotype of the srv
mutant was due to the constitutive production of SpeB. In support of this hypothesis, we have previously
demonstrated that treating cultures with E64, a commercially available chemical inhibitor of cysteine proteases,
restored the ability of MGAS5005Δsrv to form biofilms. Still, it was unclear if the loss of biofilm formation by
MGAS5005Δsrv was due only to the constitutive production of SpeB or to other changes inherent in the srv
mutant strain. To address this question, we constructed a ΔsrvΔspeB double mutant through allelic replacement
(MGAS5005ΔsrvΔspeB) and tested its ability to form biofilms in vitro.

Findings: Allelic replacement of speB in the srv mutant background restored the ability of this strain to form
biofilms under static and continuous flow conditions. Furthermore, addition of purified SpeB to actively growing
wild-type cultures significantly inhibited biofilm formation.

Conclusions: The constitutive production of SpeB by the srv mutant strain is responsible for the significant
reduction of biofilm formation previously observed. The double mutant supports a model by which Srv contributes
to biofilm formation and/or dispersal through regulation of speB/SpeB.

Findings
Group A Streptococcus (GAS) is a Gram-positive human
pathogen that is capable of causing a wide spectrum of
human disease [1-3]. Thus, the organism has evolved to
colonize a number of physiologically distinct host sites.
One such mechanism to aid colonization is the forma-
tion of a biofilm [4-6]. As put forth by Donlan and
Costerton, a biofilm is a community of bacteria encased
in an extracellular matrix [7]. The structure of this
matrix may differ by bacterial species but evidence sug-
gests the biofilm provides protection against the innate
host response and therapeutic agents [8-11]. In a study

of the biofilm forming ability of 219 clinical GAS iso-
lates representing 32 serotypes, we observed consider-
able strain to strain variation in biofilm formation based
on a crystal violet staining assay (unpublished). This var-
iation has also been observed by others[12]. In our
study, one strain named MGAS5005 formed amongst
the largest biofilms we observed[13]. MGAS5005 is
representative of a M1T1 clone that is globally dissemi-
nated and a leading cause of invasive infections world-
wide[14-16]. This strain has been shown to have a
mutation in the histidine kinase encoded by covS, part
of the two component regulatory system CovRS (CsrRS)
[17]. This mutation results in CovR repression of the
cysteine protease speB[18,19]. Repression of SpeB is
thought to contribute to the invasive phenotype of this
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clone[17,20,21]. We have recently shown that inactiva-
tion of the streptococcal regulator of virulence (Srv), a
proposed transcriptional regulator with homology to the
Listeria monocytogenes regulator PrfA, results in a
mutant strain exhibiting a significant reduction in bio-
film formation [13,22]. Unlike in the wild-type parental
strain, the streptococcal cysteine protease (SpeB) is con-
stitutively produced by the srv mutant suggesting Srv
contributes to the control of SpeB production [23].
SpeB is capable of cleaving both host (vitronectin, fibro-
nectin, C3b) and self (M-protein, C5a peptidase, Fba,
Sda1) extracellular proteins [21,24-30]. Previous studies
have shown that SpeB production leads to localized tis-
sue damage and dissemination from the sight of infec-
tion in several murine models [31-34]. Given these
previous observations, we hypothesized that the biofilm
deficient phenotype of the srv mutant was due to the
constitutive production of SpeB. In support of this
hypothesis, we demonstrated that treating cultures with
E64, a commercially available chemical inhibitor of
cysteine proteases, restored the ability of the srv mutant
to form biofilms [13]. Furthermore, mature SpeB was
undetected in wild-type in vitro biofilms by western
immunoblot analysis [13]. Still, it was unclear if the loss
of biofilm formation by MGAS5005Δsrv was due only to
the constitutive production of SpeB or to other changes
inherent in the srv mutant strain. To address this ques-
tion, we constructed a ΔsrvΔspeB double mutant
through allelic replacement (Figure 1). If our hypothesis
is correct, biofilm formation would be restored in the
MGAS5005ΔsrvΔspeB strain. Furthermore, one would
expect that the addition of exogenous SpeB to a growing
culture of the wild-type strain would significantly
decrease biofilm formation.
The sequence located upstream of the speB ORF was

amplified from MGAS5005 genomic DNA using speBsrv
UP FWD (Table 1) and speBsrv UP REV (Table 1), gen-
erating an ~1.1 kb DNA fragment. The fragment was
cloned into the BsrGI-XhoI site of pFW14 [22,35,36],
forming plasmid pFW14ΔspeB-UP. Sequence located
downstream of the speB ORF was amplified from
MGAS5005 genomic DNA using speBsrv DOWN FWD
(Table 1) and speBsrv DOWN REV (Table 1), generating
an ~1.1 kb DNA fragment. The fragment was cloned
into the XmaI-AgeI site of pFW14ΔspeB-UP. The result-
ing plasmid (pFW14ΔspeB) was transformed into Nova-
Blue competent cells (Novagen). Electrocompetent
MGAS5005Δsrv cells (200 μL) were incubated with
pFW14ΔspeB (2 μg, 10 μL) for 10 minutes on ice. The
competent cells and DNA were placed in a pre-chilled
0.2 cm cuvette and electroporated (2.5 kV, 25 μF, 200
Ω). Electroporated cells were incubated for 10 minutes
on ice. Cells were allowed to outgrow at 37°C with 5%
CO2 for 3.5 h in Todd Hewitt broth supplemented with

2% Yeast extract (THY) (Becton, Dickson, Company).
Selection for MGAS5005ΔsrvΔspeB occurred on THY
agar supplemented with chloramphenicol (5 μg/mL)
(Sigma) and incubated at 37°C with 5% CO2 for 48
hours. The speB deletion was verified in chlorampheni-
col resistant transformants using PCR and restriction

Figure 1 Construction of MGAS5005ΔsrvΔspeB. (A) speB flanking
sequences were cloned upstream and downstream of the
chloramphenicol resistance cassette cat (Cmr) in pFW14. The
resulting plasmid was transformed into MGAS5005Δsrv, and allelic
replacement yielded MGAS5005ΔsrvΔspeB. (B) PCR of (I) MGAS5005,
(II) MGAS5005Δsrv, (III) MGAS5005ΔspeB and (IV) MGAS5005ΔsrvΔspeB
using primers srv internal FWD/REV (347 bp fragment) and internal
speB FWD/REV (80 bp fragment) to verify deletion of the genes srv
and speB within the MGAS5005 mutants. Ladder (L) is a 1 kB ladder.
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digestion. A PCR utilizing internal srv and internal speB
primers (Table 1) was performed on genomic DNA of
MGAS5005 wild-type (I), MGAS5005Δsrv (II),
MGAS5005ΔspeB (III) and MGAS5005ΔsrvΔspeB (IV)
(Figure 1B) to validate deletion of either srv or speB or
both within the indicated mutants.
To verify that speB mRNA was not produced by

MGAS5005ΔsrvΔspeB, total RNA was isolated from
MGAS5005 (control) and MGAS5005ΔsrvΔspeB and
subjected to TaqMan real-time reverse transcriptase
PCR (RT-PCR) analysis [37,38]. Results indicated that
transcript was not produced for either srv or speB (data
not shown) in the MGAS5005ΔsrvΔspeB strain. Tran-
script of prsA, a gene located immediately downstream
of speB, was ~ 3 fold higher in MGAS5005ΔsrvΔspeB
than MGAS5005, indicating that transcription of down-
stream genes was not disrupted. It should be noted that
MGAS5005Δsrv [22] and MGAS5005ΔspeB have pre-
viously been shown to be free of detectable polar effects
[31,34,39]. Also, Srv and SpeB have both been shown to
be produced by MGAS5005 [22,23].
To examine biofilm formation, MGAS5005,

MGAS5005Δsrv, MGAS5005ΔspeB [31,34,39] and
MGAS5005ΔsrvΔspeB cultures were grown under static
conditions (0.5 h - 48 h); biofilm production was mea-
sured through crystal violet (CV) staining as previously
described [13] (Figure 2). Inactivation of speB in the srv
mutant background restored biofilm formation to near
wild-type levels after 24 h (Figure 2A). Inactivation of
speB in the MGAS5005 wild-type background does not

Table 1 Primers and probes used in this study

Primer or probe Sequence

speB internal FWD 5’-TCAACATGCAGCTACAGGATGTG-3’

speB internal REV 5’-TCAACCCTTTGTTAGGGTAATTATGATA-3’

internal srv FWD 5’-GCATTGTGAAACAGAGTGTTCTTTCAAAATATGG-3’

internal srv REV 5’-TAGTTCTTCGCCAAATAGGGTCATTAAGTC-3’

prsA 309AA FWD 5’-GCGACAGTCGTGACCTTATCAG-3’

prsA 309AA REV 5’-CTGACAGTGATGGTGTCTCCTTTC-3

prsA 309AA Probe 5’-CATCACACAACAACACCAAACTCGTC-3’

speBsrv UP FWD 5’ ATATATATTGTACACGATAATAGGTTTGCCT
AGTGAG-3’

speBsrv UP REV 5’-ATATATATCTCGAGGCTAAAAGACTTAATAATC
TGACACC-3’

speBsrv DOWN FWD 5’-ATATATATCCCGGGCAGTATACTACCAAGGTGT
CGG-3’

speBsrv DOWN REV 5’-ATATATATACCGGTCGCCAGCGTTACCACTC-3’

gyrA FWD 5’-CGACTTGTCTGAACGCCAAA-3’

gyrA REV 5’-TTATCACGTTCCAAACCAGTCAA-3’

gyrA Probe 5’-CGACGCAAACGCATATCCAAAATAGCTTGE-3’

Figure 2 Static crystal violet assays for the measurement of in
vitro biofilm formation. MGAS5005, MGAS5005Δsrv,
MGAS5005ΔspeB and MGAS5005ΔsrvΔspeB were grown in 6-well
tissue culture treated polystyrene plates for 24 h (A), stained with
crystal violet, and solubilized with ethanol. Each reported value for
the CV assay is an average of at least 6 replicates and is adjusted by
the dilution factor required to obtain a spectrophometric reading
(A600 nm) (P ≤ 0.0001, unpaired t-test). (B) Biofilm formation for each
strain over time is shown out to 48 h.
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alter biofilm formation (Figure 2A). MGAS5005ΔsrvΔ-
speB formed significantly more biofilm than that of
MGAS5005Δsrv (P ≤ 0.001, unpaired student’s t-test).
Over time, biofilm formation of MGAS5005ΔsrvΔspeB
closely resembled what we have previously reported for
MGAS5005 with maximal formation occurring between
24 h and 30 h with a subtle decline in CV staining
thereafter (Figure 2B) [13]. Planktonic growth of
MGAS5005, MGAS5005Δsrv, MGAS5005ΔspeB, and
MGAS5005ΔsrvΔspeB indicated that there was no
growth defect of the mutant strains compared to the
wild-type as equivalent bacterial loads were recovered
over time (e.g. AVG 8.32 ± 0.72 Log10 CFU/mL 7 h
post-growth initiation).
Studies have shown that hydrodynamic shear forces

are often needed for biofilm formation as these condi-
tions are comparable to that of the host environment
[40-42]. MGAS5005Δsrv was unable to form a biofilm

under continuous flow conditions [13]. To verify that
the restored biofilm phenotype observed for
MGAS5005ΔsrvΔspeB was maintained under continuous
flow, MGAS5005ΔsrvΔspeB was grown in a flow cell
chamber under a flow rate of ~ 0.7 mL/min for 24 h as
previously described [13]. After 24 h, the flow chamber
was completely filled with a viscous substance (Figure
3A) comparable to flow chamber grown wild-type
MGAS5005 (Figure 3B). Once again, MGAS5005Δsrv
failed to attach and form a biofilm under these condi-
tions (Figure 3C). Electron microscopy revealed a dense
population of MGAS5005ΔsrvΔspeB organized in a
three-dimensional structure (Figure 3E-G). Visually, this
structure is equivalent to the MGAS5005 biofilms we
have observed (Figure 3D) [13]. Higher magnification
revealed chains of MGAS5005ΔsrvΔspeB (Figure 3G)
which appeared to be coated in a matrix material com-
parable to what has been seen in MGAS5005 biofilms

Figure 3 MGAS5005ΔsrvΔspeB biofilm formation under continuous flow conditions. (A-C) Representative flow cell chambers containing 24
h grown cultures under a flow rate of ~ 0.7 mL/min of MGAS5005ΔsrvΔspeB, MGAS5005, and MGAS5005Δsrv, respectively. (A and B) Chambers
inoculated with (A) MGAS5005ΔsrvΔspeB or (B) MGAS5005 were filled with dense viscous material indicative of GAS biofilms. (C) MGAS5005Δsrv
was unable to form biofilms under flow conditions. Scanning electron microscopy of a 24 h (D) MGAS5005 and (E-G) a MGAS5005ΔsrvΔspeB
continuous flow biofilm clearly depicts chains of cocci organized into a 3-dimensional structure encased in a matrix-like material.
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(Figure 3D) [13]. Thus, MGAS5005ΔsrvΔspeB can form
a biofilm under continuous flow conditions.
To prove that SpeB alone is capable of disrupting GAS

biofilm formation, we added purified active SpeB (Toxin
Technology, Inc., Sarasota, FL)(final concentration 1 μg/
mL) 3 times over the course of static biofilm

development (0, 6 h, and 12 h). CV staining was per-
formed on treated and untreated samples at 18 h post-
seeding (Figure 4). SpeB addition resulted in a signifi-
cant decrease in measurable biofilm of all treated strains
to levels comparable to MGAS5005Δsrv (Figure 4).
Taken together, the data indicate that the biofilm defi-

cient phenotype of MGAS5005Δsrv is due to the consti-
tutive production of mature SpeB. Inactivation of speB
in the MGAS5005Δsrv background restored biofilm
formation to wild-type levels. Complementation of
MGAS5005ΔsrvΔspeB through the addition of exogen-
ous SpeB significantly reduced biofilm formation to
MGAS5005Δsrv levels. These results support a model in
which the Srv mediated control of SpeB production reg-
ulates GAS biofilm formation (Figure 5). Following
initial exposure and attachment, our model would pre-
dict Srv-based negative regulation of SpeB production.
This state would allow biofilm formation and coloniza-
tion. Likewise, an opposite state would be predicted in
which SpeB production is upregulated allowing biofilm
dispersal and dissemination/transmission of GAS. We
hypothesize an equilibrium exists between these two
states such that controlled levels of SpeB may be pro-
duced to facilitate transmission while preventing com-
plete biofilm disruption. For clarity, it is important to
point out that our work was done in the MGAS5005
background, a background which contains a mutation in
covS, which has been shown to be involved in invasive
disease and is characterized by an invasive transcriptome
profile[14,15]. Recently, Hollands et al. have shown in a
separate M1T1 strain (5448) that mutation of covS
(obtained following passage through an animal model)
resulted in a strain with decreased biofilm formation
due to increased capsule production[20]. They show
that 5448 formed more biofilm than the 5448 covS
mutant[20]. Thus, our future work is directed at study-
ing the effects of mutation of srv in a covS+ M1T1 back-
ground (as well as in other serotypes) to understand the
role of Srv in biofilm formation and GAS disease.

Figure 4 Addition of purified active SpeB inhibits biofilm
formation. MGAS5005, MGAS5005ΔspeB and MGAS5005ΔsrvΔspeB
were either untreated or treated with 1 μg/mL of purified SpeB
(Toxin Technology, Inc., Sarasota, FL) 3 times at time 0, 6 h, and 12
h. Biofilm was measured at 18 h using CV staining as previously
discussed. The level of reduction in biofilm formation was
statistically significant ((***) P < 0.0001) compared to the untreated
samples. MGAS5005Δsrv, with constitutive production of SpeB, is
presented for comparison.

Exposure -> Attachment

Colonization
Srv+ / SpeB -

Biofilm formation

Srv - / SpeB+

Biofilm disruption->

Transmission/
Dissemination

Figure 5 Hypothetical model of Srv/SpeB mediated GAS biofilm formation and dispersal. Following GAS exposure, Srv-mediated negative
regulation of SpeB production would allow biofilm formation and colonization. As of yet unidentified environmental signals may reverse this
control, promoting SpeB production and subsequent biofilm dispersal in order to facilitate dissemination/transmission of the organism. We
hypothesize that this cycle is likely held in equilibrium such that controlled amounts of SpeB may be produced to allow dissemination without
complete disruption of the GAS biofilm.
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