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Use of RNAlater in fluorescence-activated cell
sorting (FACS) reduces the fluorescence from GFP
but not from DsRed
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Abstract

Background: Flow cytometry utilizes signals from fluorescent markers to separate targeted cell populations for
gene expression studies. However, the stress of the FACS process could change normal gene expression profiles.
RNAlater could be used to stop such changes in original gene expression profiles through its ability to denature
RNase and other proteins. The normal conformational structure of fluorescent proteins must be maintained in
order to fluoresce. Whether or not RNAlater would affect signals from different types of intrinsic fluorescent
proteins is crucial to its use in flow cytometry; this question has not been investigated in detail.

Findings: To address this question, we analyzed the effect of RNAlater on fluorescence intensity of GFP, YFP,
DsRed and small fluorescent molecules attached to secondary antibodies (Cy2 and Texas-Red) when used in flow
cytometry. FACS results were confirmed with fluorescence microscopy. Our results showed that exposure of YFP
and GFP containing cells to RNAlater reduces the intensity of their fluorescence to such an extent that separation
of such labeled cells is difficult if not impossible. In contrast, signals from DsRed2, Cy2 and Texas-Red were not
affected by RNAlater treatment. In addition, the background fluorescence and clumping of dissociated cells are
altered by RNAlater treatment.

Conclusions: When considering gene expression studies using cell sorting with RNAlater, DsRed is the fluorescent
protein of choice while GFP/YFP have severe limitations because of their reduced fluorescence. It is necessary to
examine the effects of RNAlater on signals from fluorescent markers and the physical properties (e.g., clumping) of

the cells before considering its use in cell sorting.

Background

Fluorescent labeling enables researchers to trace opti-
cally a particular population of cells in vitro or in vivo.
FACS procedure is used to separate targeted populations
for further biochemical characterization and in particu-
lar to permit isolation of intact mRNA for microarray
and quantitative real time PCR studies. However, sorted
cells go through a series of steps that could induce
stress and change gene expression. Mechanical force has
been shown to modulate global gene expression and sig-
naling pathways in different cell types [1,2]. Such force
is typically used in dissociating cells. The hydrodynamic
forces utilized in the operation of the FACS could affect
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cell viability as well. Indeed, several reports have shown
a significant decrease in viability in different cell types
after sorting by flow cytometry [3-7]. We observed a
reduction of ~10% in the viability of sorted cells, which
is consistent with these reports. While FACS is an effi-
cient method for isolating cells for gene expression ana-
lysis, it is essential to prevent changes in normal global
gene expression of sorted cells, a result which can be
effected by treating cells with RNAlater. RNAlater pre-
serves the product of normal gene expression by dena-
turing RNase and other cellular proteins, thus
maintaining RNA integrity for gene expression studies
using both microarray and quantitative real time PCR
[8,9]. RNAlater contains ammonium sulfate salt solu-
tions, which have the ability to denature RNase at a
controlled pH [10,11]. However, if cells are prepared in
RNAlater prior to sorting, the conformational structure
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of fluorescent proteins must be maintained within cer-
tain limits in order to fluoresce [12-14]. Because of its
ability to denature protein, we investigated whether
RNAlater would affect signals from fluorescent markers,
such as GFP, YFP, DsRed, Cy2 and Texas-Red.

Results and Discussion

Green fluorescent protein (GFP), originally isolated from
jellyfish Aequorea victoria, is a soluble globular protein
with a chromophore in its center that emits green fluor-
escence (for review see Ref. [15]). The native structure of
the GFP and its variants (YFP) consists of a chromophore
surrounded by 11 beta sheets and capping alpha helices
[16-18]. Protein denaturation exposes the chromophore
to water, an event which results in quenching of fluores-
cence [12]. To investigate the effect of RNAlater on YFP
fluorescence, we obtained tissue from transgenic mice
that express YFP in neural crest-derived cells [19]. The
dissociated cells were sorted on a flow cytometer (FACS
Vantage SE, BD Bioscience, San Jose, California) into
YEP positive and negative populations. These populations
were clearly separable and distinct when initially sus-
pended in BSA (Figure 1A). In contrast, YFP positive and
negative populations were not distinct when initially trea-
ted with RNAlater (Figure 1B); YFP fluorescence
decreased 94% (Figures 1A and 1B). When dissociated
YFP positive cells were examined under the microscope,
the YFP signal was extinguished in less than a minute
after addition of RNAlater (Figure 1C,1D). The RNAlater
treatment also increased the background fluorescence of
the YFP negative cells and the forward scatter of both
YFP positive and negative cells. It is likely that these
changes in scatter, a crude measure of cell size, reflect
changes in the optical properties of RNAlater-treated
specimens. Similar increases in the background fluores-
cence of RNAlater treated specimens has been observed
by other groups [9,20]. We also studied the effects of
RNAlater on a GFP positive T cell line [21]. The median
fluorescence intensity of the T cells treated with RNAla-
ter declined by 80% as measured by flow cytometry. Cel-
lular proteins differ widely in their conformational
stabilities, and studies have shown that the fluorescence
of GFP and its variants is pH dependent [13]. It has been
reported that 80% of GFP fluorescence is lost at pH 6.5
and lower [13]. Indeed, we found that the pH of RNAla-
ter is 5.6. We attribute the quenching of the GFP and
YFP monomeric proteins to the acid pH found in RNAla-
ter. Rosenberg et al. (2003) found a reduction of similar
magnitude (80%) of GFP fluorescence after RNAlater
treatment but did not show whether GFP+ cells could
still be distinguished from GFP negative cells by flow
cytometry. Our data show that exposure of YFP and GFP
containing cells to RNAlater reduces the amount of their
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fluorescence to such an extent that separation is difficult,
or not possible.

While RNAlater reduces the fluorescence of GFP and
YEP, it does not reduce the signal from the red fluores-
cent protein (DsRed2; Figure 2). DsRed originally iso-
lated from the Discosoma genus, is a commonly used
tetrameric fluorescent protein (for review see Ref. [22]).
It has a beta-can structure similar to monomeric GFP
but with a different chromophore [23]. While the
mature form of tetrameric DsRed emits a red fluores-
cence, its immature monomer emits a green fluores-
cence during the transition to the formation of its
tetrameric structure [24]. DsRed2 is a mutant of DsRed,
with a shorter maturation time [25]. To evaluate the
effect of RNAlater on DsRed2, COS-7 cells were electro-
porated with the DsRed2 vector, cultured, and resus-
pended under standard conditions. DsRed positive and
negative COS-7 cells were mixed before sorting by flow
cytometry. In contrast to its effect on GFP and YFP, we
found no detectable change in the intensity of DsRed2
fluorescence after RNAlater treatment (Figure 2A, B).
Experiments were repeated with HEK 293T cells and
similar results were obtained (data not shown). Both
COS-7 and HEK 293 cells showed a large increase in
cells clumping after RNAlater treatment, thereby redu-
cing the number of single cells available for sorting.
Observations with the fluorescence microscope also
showed no decrease in DsRed2 fluorescence (Figure 2C,
D). In contrast to GFP, the fluorescence of DsRed is
stable within a wide range of pH 5.0-12.0 [22,26,27], a
finding that suggests why RNAlater (pH 5.6) does not
quench the DsRed2 fluorescence. However, after bring-
ing the pH of the RNAlater down to 4.0, red fluores-
cence from mature DsRed2 was substantially reduced as
viewed under the fluorescence microscope, but green
fluorescence from immature monomers of DsRed2 was
still visible. We conclude that RNAlater does not
quench fluorescent signals from tetrameric DsRed2
protein.

Our findings indicate that RNAlater treatment reduces
GFP and YFP fluorescence, making separation of fluor-
escent and non-fluorescent cells difficult or impossible.
Rosenberg et al. (2003) found a similar decrease in GFP
fluorescence but they did not attempt to separate the
two populations using flow cytometry. In addition, their
results in tissues indicated that fluorescence from both
GFP and DsRed was stable over an extended period of
time. In contrast, we show that GFP fluorescence was
extinguished in minutes, while DsRed fluorescence was
stable. Their experiments were conducted using a GFP
expressing cell line that was transfected with DsRed.
One possible explanation for this difference in stability
of fluorescence in tissues is that they might have
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Figure 1 RNAlater decreases fluorescence of YFP. (A & B) FACS results. All data in FACS figures are restricted to cells defined by forward and
side light scatter and further to singlet events. The YFP positive cells are shown enclosed by red lines and negative cells are shown enclosed by
black lines. (A) Cells in BSA: a population of YFP positive cells is clearly distinguished from YFP negative cells. (B) Cells in RNAlater: the two
populations are not discernable. (C & D) dissociated cells were observed under the fluorescence microscope (C) YFP positive cells in BSA. (D) YFP
positive cells one minute after addition of RNAlater. The intensity of the YFP decreased substantially in the presence of RNAlater. (C & D)

Exposure time: 200ms; scale bar: 50 microns.
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detected the green fluorescence from the monomeric
immature species of DsRed protein [24], and not from
GEP itself. Indeed, we found that the green fluorescence
from immature species of DsRed2 to be more resistant
to quenching by RNAlater (pH 4.0) than red fluores-
cence from mature DsRed2.

It is noteworthy that RNAlater affects the physical
properties of treated cells. Because of their large size,
the changes (clumping) in the COS-7 and HEK 293
cells were more apparent than changes in primary cells.
As a result, the sorter recognized the majority of RNA-
later-treated COS-7 and HEK 293 cells as debris, while
a large proportion of primary cells remained as singlets
and were sorted normally.

Small fluorescent molecules are markers used to stain
specific cell types extrinsically. For example, immuno-
fluorescence is achieved by using antibodies conjugated
to these molecules. We immunostained fixed cells that
were visualized with secondary antibody conjugated with

Cy2. These immunostained cells were treated with
either BSA or RNAlater and sorted by flow cytometry.
We observed no difference in the Cy2 labeled popula-
tions (Figure 3A, B). We repeated these experiments on
tissues labeled with Texas-Red conjugated antibody and
observed no decrease in fluorescence. Similar results
were obtained using a fluorescence microscope (data
not shown). We conclude that RNAlater does not affect
the signal from small fluorescent molecules attached to
secondary antibodies, an observation that is consistent
with a previous report [9].

In summary, we report that RNAlater diminishes the
intensity of the fluorescent proteins GFP and YFP, and
hinders their utility for sorting by flow cytometry. In
contrast, RNAlater does not diminish the fluorescence
of DsRed2 protein and the small molecule fluorophores
Cy2 and Texas-Red. These results suggest that targeted
DsRed2 expression in mice should be the choice for
gene expression studies when RNAlater is used.
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Figure 2 Fluorescence of DsRed2 protein is not affected in RNAlater. (A & B) FACS results. All data in FACS figures are restricted to single cells
defined by forward and side light scatter; clumped and ruptured cells (debris) are not displayed in the figure. DsRed positive and negative COS-7
cells were mixed before flow cytometry sorting. (A) Cells in BSA: a population of DsRed?2 positive cells is clearly distinguished from DsRed2 negative
cells. The cells with intermediate fluorescence intensity between the positive and negative populations represent newly dividing cells, which are in
the initial stages of DsRed expression. (B) Cells in RNAlater: fewer cells are shown here than in (A) because RNAlater has induced cell clumping, so
fewer singlets are available to the sorter. RNAlater did not quench fluorescent signals from analyzed DsRed positive cells. (C & D) Dissociated cells
were observed under the fluorescence microscope (C) DsRed?2 positive cells in BSA. (D) DsRed?2 positive cells after addition of RNAlater. The
intensity of the DsRed?2 was stable in the presence of RNAlater. (C & D) Exposure time: 30ms; scale bar: 50 microns.
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Figure 3 Fluorescence of Cy2 is not affected in RNAlater. (A & B) FACS results. All data in FACS figures are restricted to cells defined by
forward and side light scatter and further to singlet events. Dissociated cells were fixed and immunostained. The immunostained cells were
visualized with secondary antibody conjugated with Cy2. The Cy2 positive cells are shown enclosed by red lines and negative cells are shown
enclosed by black lines. (A) Cells in BSA: a population of Cy2 positive cells is clearly distinguished from Cy2 negative cells. (B) Cells in RNAlater:
the two populations are distinguishable as well.
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However, it should be noted that RNAlater affected the
physical properties (clumping) of the cells and their abil-
ity to be sorted regardless of the fluorescent protein
expressed. Thus, it is necessary to examine the effects of
RNAlater on signals from fluorescent markers and the
physical properties of the cells before considering its use
in cell sorting.

Methods

Animal tissues

All procedures were approved by the Institutional Animal
Care and Use Committee of the University of Wisconsin-
Madison. We obtained tissues from transgenic mice that
express YFP in neural crest-derived cells [19]. Pregnant
mice were anesthetized with isoflurane vapor, sacrificed by
cervical dislocation, and fetuses were removed at E14.5.
YEP positive fetuses were identified under the fluorescent
microscope and their gastrointestinal tracts were harvested
and pooled. Collected tissues were dissociated in a mixture
of 3 mg/ml collagenase, 1 mg/ml Dispace, 1 mg/ml BSA,
and 0.5 mg/ml DNAase for 20 minutes at 37°C, washed in
PBS, and triturated. The dissociated cells were resus-
pended in either 0.1% bovine serum albumin in PBS (BSA)
or RNAlater (Qiagen, Hilden, Germany, final concentra-
tion ~50% in BSA), and kept on ice for 0.5-1 hour before
FACS sorting.

Immunostaining

For whole mount staining, paraformaldehyde-fixed tis-
sues were incubated with human anti-Hu (Epstein
laboratory, Madison, WI), followed by goat anti-human-
Texas Red (Jackson ImmunoResearch, West Grove, PA).
Fixed dissociated cells were incubated with chicken
anti-GFP (Aves, Tigard, Or) for 2 hours at room tem-
perature, washed in PBS, incubated in donkey anti-
chicken-CY2 (Jackson ImmunoResearch) for 2 hours,
washed in PBS, and sorted on the flow cytometer as
described below.

Cell culture and DsRed2 transfection

The GFP positive T cell line was cultured as described
[21]. HEK-293 cells were cultured in Eagle’s minimum
essential medium (Fisher Scientific, Pittsburg, PA) with
10% fetal bovine serum, 1% penicillin/streptomycin, 1%
L-glutamine, 1% sodium pyruvate, and 400 pg/ml genta-
micin. COS-7 cells were cultured in Dulbecco’s modified
Eagle’s medium (Fisher Scientific) with 10% cosmic calf
serum and 1% penicillin/streptomycin. Both cell types
were cultured in 37°C 5% CO2-air atmosphere. HEK-
293 cells and COS-7 cells were transfected with DsRed2
plasmid by electroporation as described previously [28].
After 3-5 days of transfection, both lines were disso-
ciated with trypsin into single cells and kept on ice for
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0.5-1 hour. All three cell lines were sorted on the flow
cytometer as described below.

Flow Cytometry

Cell suspensions were prepared as described above.
0.25 ml of dissociated cells in BSA was filtered through
20 um Nitex into tubes containing either 1.0 ml RNALater
or 1.0 ml BSA. Filtered cells were separated into fluores-
cent positive and negative cells by a flow cytometry (FACS
Vantage SE, BD Bioscience, San Jose, California).
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