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Abstract

using different technologies.

metrics.

Background: The maturing of gene expression microarray technology and interest in the use of microarray-based
applications for clinical and diagnostic applications calls for quantitative measures of quality. This manuscript
presents a retrospective study characterizing several approaches to assess technical performance of microarray data
measured on the Affymetrix GeneChip platform, including whole-array metrics and information from a standard
mixture of external spike-in and endogenous internal controls. Spike-in controls were found to carry the same
information about technical performance as whole-array metrics and endogenous "housekeeping” genes. These
results support the use of spike-in controls as general tools for performance assessment across time, experimenters
and array batches, suggesting that they have potential for comparison of microarray data generated across species

Results: A layered PCA modeling methodology that uses data from a number of classes of controls (spike-in
hybridization, spike-in polyA+, internal RNA degradation, endogenous or “housekeeping genes”) was used for the
assessment of microarray data quality. The controls provide information on multiple stages of the experimental
protocol (e.g., hybridization, RNA amplification). External spike-in, hybridization and RNA labeling controls provide
information related to both assay and hybridization performance whereas internal endogenous controls provide
quality information on the biological sample. We find that the variance of the data generated from the external
and internal controls carries critical information about technical performance; the PCA dissection of this variance is
consistent with whole-array quality assessment based on a number of quality assurance/quality control (QA/QC)

Conclusions: These results provide support for the use of both external and internal RNA control data to assess
the technical quality of microarray experiments. The observed consistency amongst the information carried by
internal and external controls and whole-array quality measures offers promise for rationally-designed control
standards for routine performance monitoring of multiplexed measurement platforms.

Background

Expression profiling using DNA microarrays is increas-
ingly being used for clinical and diagnostic applications
and in support of regulatory decision-making. These
applications require the technology to be robust and
reliable and that the data be well characterized [1]. The
quality of data generated varies considerably between
laboratories [2,3] as well as between platforms [4,5].
One initiative working to provide tools for technical
performance assessment of microarray gene expression
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data is the External RNA Control Consortium (ERCC)
[6-9]. The external, “spike-in” controls from this group
are intended to be informative about the quality of a
gene expression assay independent of microarray plat-
form, experiment, or species. This paper presents evi-
dence that the spike-in controls carry the essential
quality information about an experiment. Data obtained
from spiked-in controls was compared with that carried
by full-array quality metrics, which typically depend on
platform, experiment, and species. These results support
the proposition that spike-in controls can be used on
their own as tools for assessing data quality and com-
paring data generated as part of different experiments.
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Data quality can be assessed at a number of stages
within the microarray experiment (from the integrity of
the biological sample to the accessibility of the data
stored in a databank repository) [10]. Few universal data
quality metrics are available as there are a large number
of array types, labeling methods, scanner types, and sta-
tistical approaches available to summarize and analyze
the data. The determination of integrated whole-array
data quality indicators is not yet a standard practice,
and is considered an important research topic area in
biostatistics [11,12], as highlighted by Brettschneider
et al. [13]. The need for better quality metrics is not
limited to gene expression measurements generated
using microarrays: a number of other high throughput
technologies (e.g., multiplex protein arrays) lack
obvious simple scalar metrics that can be used to
assess quality [14,15].

A number of initiatives including the Microarray
Quality Control (MAQC) project of the FDA http://
www.fda.gov/nctr/science/centers/toxicoinformatics/
maqc/ and the ERCC are working to develop reference
data sets, reference RNAs, and standard external con-
trols intended for use in the evaluation of microarray
performance [6-9]. The ERCC seeks to employ external
spike-in control measurements to assess technical per-
formance with a standard set of controls in a consistent
manner using metrics that can be compared across
experiments, labs, platforms, and other factors as they
arise. The ERCC is developing the standard controls,
analysis tools, and protocols for using these controls
and tools to enable consistent assessment and monitor-
ing of technical performance.

The MAQC project has examined the use of a diverse
set of external controls for a number of platforms [16],
noted that external controls have yet to be widely used
for performance assessment, and made recommenda-
tions for doing so. Analysis of the control signals to
assess performance was largely through quantitative
characterization of the slope of the signal-concentration
curve. A significant observation from this work was the
identification of outlier data at one participant’s site
using principal component analysis (PCA) of the exter-
nal controls. More recent analysis of the various spike-
in controls employed in the measurements for the
MAQC project demonstrated promise that the spike-in
controls were informative of “outlying” arrays, and that
they exhibit behavior that is independent of the sample
type [17].

This work characterizes the internal and external con-
trol data, separate from the signal derived from the bio-
logical sample, from a microarray experiment generated
on the Affymetrix GeneChip platform. The internal con-
trols are Affymetrix-specified probesets that represent
RNA degradation internal controls or “housekeeping”
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genes and are routinely examined to reveal the quality
of the sample RNA (Figure 1a). The external, or “spike-
in”, controls are typically RNA transcripts produced by
in vitro transcription that are added at a particular stage
in the generation of the labeled sample transcriptome
extract, at a known concentration (Figure la and 1b).
The expression measures of these controls carry infor-
mation about variation arising from a number of
sources; both classes of internal controls should carry
information on all of the sources of the variability in the
experiment (Figure la). The polyA+ controls should
carry information about the technical variation asso-
ciated with amplification and labeling procedures only -
and not variation arising from sampling - whereas the
hybridization controls should carry information about
variability arising from hybridization and scanning only.
Employing PCA as an exploratory data analysis tool, it
was anticipated that the variance structure associated
with the individual steps of the microarray experiment
would be revealed through the resultant scores and
loadings profile of the PCA models of these four sepa-
rate classes of control data.

Knowledge of the quantity of each spike added and
the relative intensities of the signals can be compared
against the expression measures obtained from global
gene expression; this has been used as the basis of com-
parison between data generated on different arrays [18].
Deviations from the expected signal-concentration rela-
tionship for the spike-in controls should be informative
about the technical performance of the measurement
[7,19-24]. Critically, the utility of the information carried
by the spike-in controls relies on the assumption that
the controls act as meaningful proxies for the endogen-
ous genes and that their behavior is representative of
these genes of interest. The retrospective study underta-
ken here tests that assumption.

Hybridization-wise PCA was also used to compare the
results of individual PCA models obtained from the
control probeset data with independent laboratory mea-
sures of RNA- and hybridization-specific quality and
full-array metrics [13]. Our results underscore the
importance of assessing data quality and reveal some of
the strengths and limitations of using spike-in and endo-
genous controls for assessing data quality.

Methods

This study uses data generated on the Affymetrix Gene-
Chip platform at the Clinical Sciences Centre/Imperial
College (CSC/IC) Microarray Centre. This data is stored
in, and was accessed, via the Centre’s Microarray data
Mining Resource (MiMiR) database [25,26]. These data
were generated using a stock of external controls (polya-
denylated - polyA+ controls) prepared at the Centre and
distributed to individual research groups along with
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Figure 1 Overview of the classes of controls (internal and external) used within a microarray experiment together with a schematic
illustrating the addition of external controls at different steps during sample processing. (a) Overview of the classes of controls (internal
and external) used within a microarray experiment. Each class reports on variability originating at multiple stages. (b) Schematic protocol
showing the addition of external spike-in polyA+ and hybridization controls at different steps during sample processing.

at different concentrations as
part of a cocktail.

Three Escherichia coli
transcripts (BioB, BioC, BioD)
and one P1 bacteriophage
transcript (Cre) that are biotin-
labeled and added at different
concentrations as part of a
cocktail.

standard protocols for generating labeled cRNA in their
own laboratories. Prelabeled hybridization controls were
purchased from Affymetrix and added to the labeled
samples at the Centre prior to hybridization.

The polyA+ controls are a cocktail of 5 polyA-tailed
Bacillus subtilis transcripts (Lys, Phe, Dap, Thr, and

Trp) (Figure 1b). These controls are spiked into total
RNA in a fixed ratio to a fixed amount of total RNA
and were carried through the sample preparation and
used to monitor the efficiency of cRNA labeling and
data quality. The hybridization controls (BioB, BioC,
BioD, and Cre biotin-labeled transcripts) were spiked
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into the hybridization cocktail according to the manu-
facturer’s instructions. They are used to align the grid
and assess the efficiency of hybridization, washing and
staining.

Extensive whole-array quality assurance metrics and
BioConductor-based summary statistics [27-30] related
to scanner/array performance and RNA quality are rou-
tinely assembled for each of the datasets with a report
generated at the CSC/IC Microarray Centre. These
reports are included in the MiMiR database, together
with the individual hybridization files and experimental
ontology and annotation information [25,26].

The Microarray Centre QA report metrics are based
on .CEL file signal intensity data from GeneChip arrays
and include summary statistics of all the hybridizations
within a particular experiment generated using the Bio-
Conductor (BioC Release 1.9) open source software.
This report provides quality assessment metrics based
on: 1) Diagnostic Plots, 2) Probe-level Robust Multichip
Average (RMA) Model Estimates, 3) Probe Metrics and
4) Principal Component Analysis. The first two sections
include summaries of log, probe RMA intensities before
and after normalization as well as the RMA model fit
residuals, relative log, expression (RLE) and normalized
unscaled standard error (NUSE) plots for the identifica-
tion of outlier arrays within an experiment dataset.
In addition, RNA degradation plots show the log, mean
intensity by probe pair position (5" end to 3’ end) for
each array and are used to identify samples that may
have been subject to degradation. The third section,
Probe Metrics, are obtained from BioConductor MAS
5.0-based statistical algorithms and are used to assess
both RNA assay and hybridization performance. These
include measures of scanner variability (e.g., RawQ),
summarized exogenous control intensities with respect
to their spike-in concentration levels, correlation mea-
sures between exogenous polyA+ controls and raw sig-
nal values, and 3’/5’ ratio measures for both exogenous
and endogenous controls to assess the efficiency of
labeling and/or sample RNA integrity. The fourth and
last section provides a simplified PCA scores plot gener-
ated from the complete set of probes (including back-
ground and all exogenous and endogenous control
probes) to identify gross outliers within the experimental
dataset as a whole. A recent review of these metrics as
they relate to the quality assessment of microarray data
after statistical processing is provided by Brettschneider
et al. [13]

Data Examined in this Study

Data from 525 hybridizations representing 22 publicly-avail-
able experiments generated over a five-year period at the
CSC/IC Microarray Centre on multiple types of GeneChips
were analyzed as part of this study and included human
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(HG-U133A, HG-U133B, HG-U133plus2), rat (RG-230_2,
RAE230A, RAE230B) and mouse (MG-430_2, MOE430A,
MOE430B, MG-U74v2A, MG-U74v2B, MG-U74v2C)
microarrays. A single, exemplary experiment containing
data from 137 Rat Genome RAE230A arrays is highlighted
for this manuscript. This included data generated on differ-
ent days over a 10-month period, with different experimen-
ters, array batches, and QC measures from the whole-array
QC report. This example was analyzed using PCA and the
results compared to the QC and factor information avail-
able within the MiMiR database.

PCA was conducted using only data from the control-
based probesets (excluding all the non-control (back-
ground) probeset signals). There are four groups, or
classes, of controls, external and internal to the biologi-
cal sample (exogenous and endogenous). The external
controls were either polyA+ RNAs spiked into the sam-
ple before amplification and labeling or prelabeled
hybridization controls spiked into the sample prior to
hybridization. The internal controls are those suggested
by Affymetrix as a measure of RNA degradation, and
report on relatively invariant ‘housekeeping’ genes.
Microarray probesets for the same external controls are
present on all Affymetrix GeneChip arrays; probesets for
the endogenous controls are organism-specific and are
common to all arrays of such type (i.e., rat).

Dataset Construction and Preprocessing
Probeset data from the individual hybridizations on
RAE230A arrays (EXP_CWTA_0103_01; Array Express
ID E-MIMR-222) are described in this manuscript. In
brief, this experiment is a comparison of gene expression
profiles of peritoneal fat of 6-week rats from 30 recombi-
nant inbred (RI) strains derived from the spontaneously
hypertensive rat (SHR/Ola) and Brown Norway congenic
carrying polydactylyl-luxate syndrome (BN-Lx) strains.
A single hybridization (HFB2003080611Aaa) was missing
annotation for experimental QC and was thus omitted
from the data analysis. A summarized version of the
annotation QC information pertaining to the individual
hybridizations used in this experimental dataset is pro-
vided in Additional File 1: Supplemental Table S1.
Measures representing expression were generated from
the raw data using the RMA “Affy” package (Bioconduc-
tor 1.8 release) within the R environment (v 2.6.0). The
data was preprocessed using background correction and
quantile normalization to the global median [27].
A hybridization-specific normalization protocol was used
that adjusts each probeset intensity to the 75th percentile
of the non-control (background) probes and is an alter-
native to the quantile normalization approach typically
employed with RMA-based methods. Using the expres-
sion values determined from the RMA summarization
method (with only background correction), the 75th
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percentile of the log, intensities for the background pro-
besets associated with the individual hybridization was
determined and then subtracted from the probesets of
interest (i.e., hybridization and polyA+ spike-in controls
and the internal Affymetrix-designated cRNA degrada-
tion and endogenous control/housekeeping gene con-
trols). This ‘brightness-scaled” normalization approach
was employed to support control data aggregation across
multiple array types can be generated on a similar scale
can thus directly compared and permits the identification
of sample-associated variability. This 75th percentile nor-
malization was carried out for several datasets that were
generated across multiple array types (data not shown)
when aliquots of the same samples were hybridized to
arrays of the same or different type (e.g. RAE230A and
RAE230B). The 75" percentile normalization was the
default data analysis method for our investigations.

Mean/SD Plots

The mean and standard deviation (SD) of the RMA
values were calculated for all probesets within an experi-
ment conducted on a single array type, comparable to
other informatic methods for generating probeset-level
precision metrics [2,31-33]. All mean and associated SD
data pairs were employed to generate mean/SD plots
that highlight control probesets associated with the
hybridization, polyA+, RNA degradation, and endogen-
ous control/’housekeeping genes’ (as defined by Affyme-
trix for specific array types). The remaining non-control
sample probesets were displayed as background for the
mean/SD plots; the background average line of these
data was determined as a 100-point moving average of
the mean values for all the non-control probesets. All
calculations were carried out using Excel code.

Chemometric Analysis

PCA was conducted for all experimental datasets using
PLS_Toolbox 4.2.1 (Eigenvector Research, Inc., Wenatchee,
WA) within a MATLAB v. 7.5.0.342 (R2007b) (Math-
Works, Inc., Natick, MA) computational environment.
Each experimental dataset was separated into four subsets
representing the: 1) spike-in hybridization controls, 2)
spike-in polyA+ controls, 3) internal RNA degradation
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controls (Affymetrix-designated) and 4) endogenous or
normalization control genes http://www.affymetrix.com/
support/technical/mask_files.affx). Each PCA data subset
was organized into a single data block structure with
dimensions of N;oys X Keolumns that correspond to N sam-
ples (hybridizations) and K variables (probesets) (see Table
1). Each variable in the dataset was centered to have a
mean of zero but was not variance scaled. A complete list
of the spike-in control probe set identifiers together with
the internal RNA degradation and endogenous control
probe set identifiers is provided in Additional File 1: Sup-
plemental Table S2.

The optimal number of components to include in the
PCA model was determined by the minimum of both
the root mean square error of calibration (RMSEC) and
of cross-validation (RMSECV) employing a venetian
blinds algorithm for which the dataset were split accord-
ing to their size (here 10 splits for 137 hybridizations).
Datasets that contain duplicate hybridizations were sub-
ject to replicate sample trapping as the presence of
related samples in test and training sets may lead to
skewed cross-validation results. Here, an additional
cross-validation using a random subset scheme was
employed and checked for consistency with the venetian
blinds approach. A summary of the PCA models includ-
ing the cumulative % variance captured for each model
is provided in Table 1.

Results and Discussion

In this evaluation of internal and external controls for asses-
sing microarray performance, it is assumed that these con-
trols act in a manner similar to and consistent with
endogenous transcripts in the biological sample when all
are assayed with gene expression microarrays. To provide
an initial quality assessment of the probeset-specific perfor-
mance, the variance behavior of the individual probesets of
the controls was examined in relation to average signal level
across the entire experiment. Similar approaches have been
employed to illustrate relationships between probeset signal
level and precision metrics in microarray data [2,31-33].
The mean and standard deviation (SD) of the RMA values
for all probesets for the 137 hybridizations of the rat experi-
ment is illustrated in Figure 2 for preprocessing with (a) no

Table 1 Summary of the PCA models (Nsamples x Kvariables) obtained from the four control subsets of the single Rat

experiment

Data subset Nsamples Kyariables No. of PCs % Variance RMSEC® RMSECV®
(control-type) (hybridizations) (probesets) Cumulative

hybridization 137 18 4 94.9 0.087 0.680
polyA+ 137 27 4 97.3 0.117 148
RNAd 137 12 3 94.6 0.143 1.05
endogenous 137 100 7 708 0.125 152

“Root mean square error of calibration (model)

PRoot mean square error of cross-validation employing the venetian blinds approach
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normalization, (b) quantile normalization and (c) 75th per-
centile normalization. A comparison of the normalization
approaches on this dataset illustrates that the dispersion
pattern of the external spike-in controls, as well as the
internal Affymetrix controls relative to the mean of the
background probesets, are comparable for the (b) quantile
normalization and (c) 75th percentile normalization, parti-
cularly for intensities greater than 2°. The greatest differ-
ence observed is for probesets with intensities less than 26
for which the data resembles a “non-normalized” pattern.
The different classes of controls are distinct in terms
of the overall variability (SD) across their inherent RMA
intensities; this observed difference among the control
groups can be used as a screening tool to identify high-
quality experimental datasets from the lower-quality or
more “noisy” datasets [2]. The experimental dataset
shown in Figure 2 is considered of “high-quality”, given
that the precision for the various controls (as a group)
does increase in a systematic fashion with respect to the
amount of experimental processing that each group has
experienced (Figure 1a). The hybridization controls are
expected to have the lowest variability as they are added
at the last experimental stage, whereas the polyA+ and
endogenous controls are subject to amplification/label-
ing and degradation steps, respectively, and are thus
expected to exhibit greater variability. The overall dis-
persion of the non-control (background) probesets lends
insight into the relative “noise” of the data. For this
experiment, the spike-in hybridization controls are at
this average or below the average of the non-control
probesets whereas the spike-in polyA+ controls are well
above this average and near the upper-limit of the back-
ground probesets. Notably, the 100 internal endogenous
controls or “housekeeping genes” have consistently
lower variability across the range of RMA intensities.
The mean/SD plots also reveal the relative precision of
individual probesets within a control group relative to
other probesets in the experimental dataset. A few of the
internal RNA degradation probesets are considerably
more variable than both the average background signal
and the internal endogenous genes. As shown in Figure 2,
the control probesets with the greatest variability include
the AFFX_Rat_ GAPDH_5_at and AFFX_Rat_GAPDH_-
M_at RNAd controls (RG5 and RGm, respectively) and
the Dap, Thr, Phe and Lys polyA+ controls (v/V, w, Y and
x/X, respectively). Greater variability, likely attributable to
differences in processivity during cRNA labeling, is gener-
ally observed for the 5’ probesets (denoted with “5”), fol-
lowed by a moderate level of variability for the probesets
that target the middle of the transcript (denoted with
“m”). As provided by the quality metrics in the Microarray
Centre Quality Assessment (QA) report [26], the majority
of hybridizations from this experiment are of acceptable
quality, however, several hybridizations exhibit lesser
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quality and may contribute to the greater variability
observed in these probesets. The QA report for Experi-
ment CWTA_0103_01 is included as Additional File 2.

The mean/SD dispersion plots provide an overview of
quality through an assessment of probeset-specific per-
formance within the experimental dataset but do not
definitively identify particular samples that may be out-
liers within the experimental dataset. Samples that con-
tribute the greatest amount of variance to the
experiment can be resolved through a PCA of the spike-
in controls and can be used to identify problems with
the discrete sample preparation steps (e.g., hybridization
or RNA amplification). Likewise, PCA models of the
internal controls can be utilized to verify sample RNA
integrity or to account for other sample degradation
issues.

Spike-in Hybridization Controls
In an effort to identify individual arrays that may be pro-
blematic, PCA was employed to explore the variability
within the spike-in hybridization control dataset. PCA
score plots for the first three principal components (PCs)
of the hybridization control data subset of the rat CWTA
dataset are shown in Figure 3. The data are classified by
the date on which a hybridization was performed. For this
experiment, a total of 13 hybridization dates were
recorded ranging from May 7, 2003 (20030507) to Febru-
ary 25, 2004 (20040225) and are color-coded and denoted
by a letters ranging from “A” to “M”. The first PC repre-
sents roughly 85% of the model variance and highlights a
shifting of hybridization intensities between those of date
class “E” (20030806) and those of date class “F”
(20030929). PC 2 captures an additional 5% of the overall
model variance and separates hybridizations (F64 and 190)
that have both low quality Scan QC measures (values of 4)
and also are outliers with respect to the Normalized
Unscaled Standard Error (NUSE) plot [28], shifted log,
probe intensities as well as relatively high average array
background values and RawQ noise values, the latter of
which is a measure of pixel-to-pixel variation among the
probesets that is used to calculate the array background
[34]. Notably, 190 (NNC2003102101A, Aliquot ID
FMTAO0048_a; see Table S-1) is a re-hybridization of sam-
ple F64 (NNC2003092901A), however there was little
improvement to the overall hybridization metrics (i.e.,
Scan QC, NUSE) Consistent with the relatively high abun-
dance of the biotin-labeled spike-in controls, the scores
for PC 2 and PC 3 (< 3% variance) separates hybridizations
(F67, F68 and E60) that have relatively low quality Scan
QC measures (3 or 4) and have more moderate-to-high
average array background values and RawQ values.

The Q residuals of the PCA model (Additional File 1:
Supplemental Figure S1) can be used as a diagnostic
tool to identify hybridizations that have unusual
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variation (those that reside outside the PCA model
space). In addition, Hotelling T values can be used to
identify samples that are outliers and that might possess
relatively high leverage along the principal axis of the
model, analogous to the end points of a linear regres-
sion model. The Q residuals in Supplemental Figure S1
(a) highlight hybridization B22, which has also been
flagged as potential outlier by the NUSE plot. Hotelling
T? values consistently highlight hybridizations F64, E60,
190, F68 for which scanner QC measures have been
denoted as problematic (values of 3 or 4).

Spike-in PolyA+ Controls

A cocktail of RNA controls with artificial polyA+ tails
are spiked into each RNA sample over a range of con-
centrations (Table 2) to monitor the entire sample label-
ing process. All of the polyA+ controls should be scored
as “Present” with signal values: Lys >Phe >Dap >Thr
>Trp. For this experiment, an extremely low correlation
(R* = 0.4498) between the polyA+ spike in concentra-
tion and raw signal value observed for hybridization
NNC2004020512Aaa (sample J111) as reported in the
MiMiR QA report. Correlation values of R* > 0.95 are
expected for typical samples. Outliers such as these are
easily identified through an examination of the relative
RMA intensities; as an example, the relative RMA inten-
sities for this extreme polyA+ control outlier are shown
in Table 2. The difference observed between the average
experiment RMA intensity values and that of sample
J111 is linearly correlated with log, concentrations for
the polyA+ spike-in controls.

The PCA model for the polyA+ controls comprises of
4 PCs. The first PC captures the largest variance (76.8%)
and primarily separates hybridization J111 from the
other 136 hybridizations within the experimental dataset
(data in Additional File 1: Supplemental Figure S2(a)).
PCs 2, 3 and 4 describe the remaining 20% of variance
captured for this model and illustrate more subtle pat-
terns of spike-in polyA+ control quality (Figure 4) that
are not readily seen by examining the relative intensities
of the controls alone. An unfolded 3-dimensional PCA
scores plot of these lower PCs illustrates the various
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outlying hybridizations that correspond to definitive
quality control parameters associated with both assay
and hybridization performance. PC 2 (11% of variance)
separates hybridizations with the most extreme differ-
ences in probe intensities and array background (F64,
the 190 re-hybridization of F64, and B22) whereas PC 3
has a primary contribution from the polyA+ control
level differences observed for hybridization J111. PC 4
(= 4% of variance) uniquely identifies hybridizations
conducted on Date “G” (20031007) for which the 3’/5
ratios for the Phe and Lys polyA+ controls are substan-
tially above the Affymetrix-defined tolerance ratio of 3,
which is usually indicative of either insufficient labeling
efficiency or poor sample quality. For example, the
hybridizations denoted as G73, G74, G75, G82 and G77
had 3’/5’ ratios for the relatively high concentration Phe
polyA+ control of 30.32, 18.91, 11.10, 6.70 and 6.82,
respectively.

The J111 outlier can be also identified in the high
Hotelling T? values for the overall model (Additional
File 1: Supplemental Figure S2(b)). The loadings for PC
1 have comparable contributions from probesets (X/x,
Y/y, V/v, and W/w) that represent the four polyA+ con-
trols (Lys, Phe, Dap and Thr) (Figure S-2(c)). This result
is consistent with the obvious difference in RMA inten-
sity; the log, probe intensities for these four polyA+
controls for hybridization J111 were several orders of
magnitude lower when compared to the other hybridiza-
tions in the experiment. In contrast, the log, intensities
for the Trp polyA+ control probesets (Z5, Zm and Z3)
were relatively small relative to the overall experiment
(median z-score of 0.7). Consistent with the observed
intensity data, these probesets have a low contribution
to the loadings for the PC 1. In addition, the probeset
loading pattern of 5-middle - 3’ trend as observed for
the higher concentration controls (Lys and Phe in Addi-
tional File 1: Supplemental Figure S2(c)) indicates that
the 5’ probeset signals carry more of the variance of the
dataset. This is likely attributable to low processivity in
the in vitro transcription reaction used to synthesis the
polyA+ controls (which proceed in the 3’ to 5
direction).

Table 2 Comparison of polyA+ control RMA values averaged for the entire dataset in contrast with a single outlier

sample (J111)

PolyA+ Control Conc. (ng/uL) log, Conc. (ng/uL) Experiment Sample J111 Difference
RMA values® ° RMA values®

Trp 14.7 3.88 4.69 4.26 043

Thr 39.1 529 8.00 5.06 2.94

Dap 1089 6.77 791 433 3.58

Phe 260.0 8.02 10.23 4.80 543

Lys 591.1 9.21 11.82 4.61 7.21

@ Averaged probeset intensities for each of the polyA+ control group
® Averaged over 137 hybridizations
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Internal RNA Degradation and Endogenous Controls

The PCA model results for the Affymetrix-designated
RNA degradation internal control data (Figure 5) illus-
trate a complementary pattern to the PCA results
obtained for the polyA+ external spike-in control data-
set but with some subtle differences. For this dataset,
the primary contribution of the RNA degradation is rea-
lized in the first component of the model (PC 1) fol-
lowed by the separation of hybridizations that differ in
log, probe intensities and overall array quality in the
subsequent PCs (2 and 3). This is observed for the
group of flagged hybridizations for elevated 3’/5’ ratios
for GAPDH and/or B-Actin controls (G73, G74, G82,

G75, G80, G78 and G77, and to a lesser extent G79,
1100 and A4) that are separated in PC 1 and represent
68% of the model variance. Likewise, the major variables
that contribute to the loadings for PC 1 correspond to
the 5-end and middle-segments of the Affymetrix
GAPDH and B-Actin probesets (RG5, RGm, RbAct5,
RbActm; see Additional File 1: Supplemental Figure S3
(b)). Hybridizations that correspond to shifted log,
probe intensities and elevated NUSE values (F64, 190,
B22) are separated on PC 2. Notably, hybridizations B20
and D46 are partially separated from the other hybridi-
zations on PC 3 (= 7%), the former of which has a slight
indication of cRNA degradation (3’/5’ ratio of 3.16 for
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dataset. Symbols as Figure 4.

B-Actin) but it is unclear how D46 (hybridization ID
NNC2003070706Aaa) is different from the others with
regards to the Affymetrix cRNA degradation internal
controls. In all, the PC 1 x PC 2 x PC 3 scores profile
as illustrated in Figure 5 represents ~ 95% of the total
model variance.

In contrast to the RNA degradation control dataset, the
PC 1 x PC 2 x PC 3 scores profile for the PCA model of
the endogenous control data (comprised of 100 Affyme-
trix-identified “housekeeping genes”) capture only 53% of
the total model variance, with the remainder dispersed

among subsequent PCs (Figure 6). The PC 1 x PC 2 x
PC 3 profile does, however, have some similarities to the
observed patterns for both the external polyA+ and the
internal RNA degradation control PCA models. The sam-
ple F64 and its 190 rehybridization are present as outliers
in PC 1 as is the group of hybridizations (G73, G74, G75,
G77, G78, G80, G82, [100) that have been flagged for ele-
vated 3’/5’ ratios in PC 2. Notably, PC 3 (8.5% variance)
contains additional samples from the Date “B” group
(B17, B20), for which the variance contribution is not
apparent. The samples that were considered outliers with
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Figure 6 Two sets of unfolded 3-D PCA scores plot (PC 1 x PC 2 x PC 3 and PC 4 x PC 5 x PC 6) for the endogenous controls from
the rat dataset. Symbols as Figures 4 and 5.

respect to hybridization and/or scanning issues (F67, F68,
E60) are indistinguishable in the PC 1 x PC 2 x PC 3
profile, but are apparent in the lower PC profile (PC 4 x
PC 5 x PC 6 layout within Figure 6). Sample J111 is not
identified as an outlier within either the internal RNA
degradation or endogenous control PCA models; this
hybridization is only deemed as an outlier through the
polyA+ control model (Figure 4) as its only significant
variance is measured via the probesets attributable to the
four polyA+ controls (Lys, Phe, Dap and Thr). This
exemplifies the utility of controls that probe data quality
at multiple stages in data generation (Figure la).

Conclusions

Different types of controls provide distinct levels of data
quality information that can be readily resolved through
principal component analysis. A layered PCA modeling
of the four classes of controls (spike-in hybridization,
spike-in polyA+, internal RNA degradation, endogenous
or “housekeeping genes”) is valuable for evaluating data
quality at a number of stages within the experiment
(e.g., hybridization, RNA amplification). The variance at
each stage, whether spike-in or internally present, pro-
vides complementary information on data quality to
those provided by the QA/QC metrics.
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This work supports the use of both external and inter-
nal control data to assess the technical quality of micro-
array experiments. In the results presented here, using a
layered PCA approach, we find that both the external
and internal controls carry with them the critical infor-
mation about technical performance that is consistent
with whole-array quality assessment. This information is
obtained for every sample generated using spike-in con-
trols and permits assessment of technical performance
for each array. This study is thus a key element in our
efforts to develop control methods, materials and
designs that support the use of genome-scale data with
confidence. Furthermore, these results validate the pro-
posal to use such controls with large data sets generated
on multiple platforms or with other multiplexed tech-
nology applications.

Additional material

Additional file 1: contains the PCA model results include both
diagnostic Q/Hotelling T? plots and loadings plots for the spike-in
hybridization and polyA+ control data and the internal cRNA
degradation control data subsets in Supplemental Figures S1, S2,
and S3 respectively. Additionally, two supplemental tables are provided
to aid in the data interpretation within the manuscript. These include
Table ST that provides condensed annotation information for the single
Rat experiment and Table S2 that lists the probe set identifiers for spike-
in hybridization and polyA+ controls together with the internal
Affymetrix cRNA degradation (RNAd) and endogenous controls for the
RAE230A array.

Additional file 2: contains a copy of the Microarray Centre Quality
Assessment of Affymetrix Data for EXP_CWTA_0103_01 comprising
138 hybridizations on Rat Expression Set 230A Arrays.
Hybridization HFB2003080611Aaa listed in the QA report was
excluded from the PCA dataset as the full annotation information
was not available at the time of this study.
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