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Abstract

27 times over its single-core CPU mode run.

Background: Gene-gene interaction in genetic association studies is computationally intensive when a large
number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas
Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster
scientific software. However, currently there are no genetic analysis software packages that allow users to fully
utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits.

Findings: Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU
processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into
memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE
analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current
fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density
lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of

Conclusions: GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and
memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE
will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can
be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

Background

The advent of high-throughput genotyping technologies
has made it possible to study human genetic variation
on a genome-wide scale. Recent years have seen an
explosion of results generated from genome-wide asso-
ciation studies (GWAS). Most GWAS focus on single
marker-based analysis in which each marker is analyzed
individually, ignoring the dependence or interactions
between markers. Although this approach has led to the
discovery of disease susceptibility genes for many dis-
eases, the identified markers often only explain a small
fraction of the phenotypic variation, suggesting a large
number of disease variants are yet to be discovered. It is
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becoming increasingly evident that gene-gene interac-
tions play an important role in the etiology of complex
diseases and traits [1-3], and likely explain some fraction
of the “missing heritability”. Gene-gene interaction is
often studied using a regression framework in which a
pair of SNPs and their interaction terms are included as
predictors. The drawback of such analysis is that the
number of tests will be extremely large. For example, in
the case of a GWAS with 500,000 SNPs the number of
SNP pairs to be studied amounts to ~125 billion. The
running time quickly becomes an issue due to the large
number of pairs.

However, gene-gene interaction analysis is paralleliz-
able in nature. Most of the current Central Processor
Units (CPUs) have multiple cores. Parallel computing
until recently meant using a computing cluster having
multiple nodes with multi-core CPUs. The costs of
building a computing cluster may run in hundreds of
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thousands of dollars, making it cost prohibitive. An
emerging economic scientific computing paradigm is to
use Graphics Processing Units (GPUs) that are present
in graphic cards of most desktop computers or worksta-
tions for general purpose computing. A GPU is a pro-
cessing unit that was traditionally used for accelerating
graphical operations. The power of GPUs has been used
to implement faster software solutions for biological
problems [4-8]. For example, Schupbach et al. [8] devel-
oped a GPU-based software package that greatly speeds
up gene-gene interaction analysis of quantitative traits.

A typical graphics card has several processors as well
as its own dedicated memory. We will be using the
term “device memory” to refer to the built-in memory
of the graphics card in the rest of this paper. Several
vendors of graphics cards offer architectures and pro-
gramming tools that enable GPU-based general purpose
computing using high level programming language
extensions. NVIDIA Common Unified Device Architec-
ture (CUDA) is an example of a graphics card architec-
ture for parallel general purpose computing. CUDA
follows the Single Instruction Multiple Thread (SIMT)
architecture that is similar to the Single Instruction
Multiple Data (SIMD) architecture of parallel comput-
ing. In the case of CUDA, this means that multiple
threads on the same instructions are executed simulta-
neously on different data. Programmers can exploit the
CUDA architecture with relative ease to solve larger
problems that can be decomposed into several sub-pro-
blems that can be solved in parallel. The computing
power offered by the latest graphic cards is comparable
to that of a computing cluster with hundreds of CPUs,
but the GPU programming approach for parallel com-
puting is much cheaper than using a traditional comput-
ing cluster.

CUDA compatible graphics cards have several proces-
sors that are also known as multiprocessors (MP) that in
turn have several stream/thread processors (SP) known
as cores (Figure 1). CUDA arranges threads in grids and
blocks. A block is a collection of threads, while a grid is a
collection of blocks. CUDA allows the sizes of the blocks
and grids to be manipulated programmatically. There is a
limit to the maximum number of threads that can be pre-
sent in a block. This limitation exists because a block has
to reside on a single MP and share that MP’s resources.
On a Tesla C1060 the maximum number of threads per
block is 512. We use the term CUDA thread or GPU
thread interchangeably in this paper.

CUDA provides a new scalable parallel programming
model along with an instruction set. CUDA also pro-
vides several levels of abstraction in terms of threads
and memory hierarchies. Such abstractions help CUDA
provide data parallelism and thread parallelism. Pro-
grammers are exposed to these abstractions in the form
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Figure 1 NVIDIA GPU Architecture. Simplified GPU Architecture:
The grey rectangles of thread blocks are for illustration purposes
and are not a physical part of the architecture. MP = Multi
Processor, SM = Shared Memory, SFU = Special Functions Unit, U =
Instruction Unit, SP = Streaming processor (core).

of API. Figure 2 shows the CUDA memory and thread
hierarchies. A kernel is a C function that is executed by
several GPU threads in parallel. A program exploiting
the power of GPUs generally has portions of code that
runs on the CPU as well as calls to kernels that run on
the GPU cores. The CUDA runtime system is aware of
the system details of the CUDA capable graphics card
such as the number of MPs and cores. The runtime sys-
tem schedules a thread block to be executed on the
next available MP. The parallel threads in a block are
executed by the assigned MP in groups of 32 known as
warps. Thread blocks can be scheduled to execute inde-
pendent of each other over any number of GPU cores.
Each CUDA thread has local memory that is limited to
16 KB in case of a C1060 graphics card. As shown in
Figure 2, global memory is accessible by every thread.
Each block of threads has access to a shared memory.

Currently, there are no software packages that directly
address the gene-gene interaction analysis problem for
binary traits. Moreover, there are no gene-gene interac-
tion analysis software packages that use multiple proces-
sor cores present in CPUs or GPU cards. Our software
package, GENIE, utilizes multiple cores to parallelize
gene-gene interaction analysis. As we show in the
Results, GENIE achieves ~27 times speedup over a sin-
gle-core CPU, and making large-scale gene-gene interac-
tion analysis feasible even on a desktop computer.

Implementation

Development environment

GENIE was implemented using C language and CUDA
C language extension. It was developed on a Dell
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Figure 2 CUDA Thread and Memory Hierarchy. The dashed
rectangle at the top half of the diagram shows the CUDA thread
hierarchy while the large rectangle in the lower half shows the
hierarchy of memory spaces in a CUDA device. TO to T32 represent
the threads contained in a warp. The current version of GENIE uses
the global and local memory spaces that are represented by the
orange and aqua colored boxes respectively.

Precision T7500 Windows XP workstation that has 4
GB of main memory, a quad-core 2.13 GHz Intel Xeon
processor, an NVIDIA Quadro FX1800 graphics card,
and an NVIDIA Tesla C1060 graphics card with 4 GB
of device memory. The NVIDIA C1060 card has 30
MPs and 240 cores. It has a CUDA compute capability
of 1.3. We used CUDA toolkit version 3.1 and MS
Visual C++ 2008 to compile the program under win-
dows. To run GENIE, we used the NVIDIA Tesla
C1060 card, whereas the Quadro FX1800 card was used
only for display purposes.

Data Pre-processing

GENIE assumes the input genetic association study files
contain case/control data with genotypes encoded under
an additive model. Users can use the data converter tool
that is a part of the GENIE software package to convert
their data files to GENIE format. GENIE documentation
includes detailed instructions and step-by-step examples
that illustrate this process.

Logistic Regression
The interaction between a pair of SNPs is tested using a
logistic regression framework in which the SNP
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genotypes and their interaction terms are included as
predictors. The model is expressed as the following:

logit[P(Y = 1181, 82)] = Bo + 181 + B282 + B128182, (1)

where Y (1: case; 0: control) is the disease status, and
g (=0, 1, and 2) is the genotype score that counts the
number of minor alleles at SNP j. Interaction between
the two SNPs is assessed by testing Ho: 12 = 0 using a
likelihood ratio test, which is asymptotically distributed
as Chi-squared distribution with one degree of freedom.
We note that this interaction test is implemented
PLINK (http://pngu.mgh.harvard.edu/purcell/plink/) [9],
a popular software package for whole-genome data ana-
lysis. PLINK analyzes one SNP pair at a time despite
that the analysis of all SNP pairs are parallelizable in
nature.

Parallelization Algorithm

We propose to parallelize the interaction analysis of dif-
ferent SNP pairs. Specifically, the GENIE algorithm par-
titions the input dataset into equally sized non-
overlapping fragments with up to S SNPs each. This
gives GENIE the ability to handle large datasets and
maintain a small memory footprint in terms of output
variables. We refer to S as the fragment size. As men-
tioned earlier, the interaction between a pair of SNPs is
tested using a logistic regression framework. We briefly
describe the algorithm below:

1) Read the genetic association study data file. Let
fragment size S be a non-zero integer.
2) Partition the data into non-overlapping fragments
containing of S SNPs each. Let us assume that the
fragments are numbered from 1 to F, where F is the
total number of fragments. The partitioning of data
is done in memory and no physical files need to be
generated.
3) For each fragment i, where 1< i < F:
a. Test the interaction of S(S -1)/2 SNP pairs
within fragment i in parallel.
b. For each of the other fragment j >i, test the
interaction of S*> SNP pairs across fragment i and
fragment j in parallel.
c. Output only those results that meet a prespe-
cified P-value threshold.

The fragment size S translates to the maximum x or y
dimension of a thread block, which is 512 for cards with
a compute capability of less than 2.0. As mentioned ear-
lier, the size of a full warp is 32. We follow NVIDIA’s
performance recommendations [10,11] and recommend
that S must be a non-zero integer multiple of 32 that is
less than or equal to 512.
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The interaction analysis for each SNP pair is run on a
separate GPU thread. The GPU kernel function of
GENIE implements logistic regression. We modified
PLINK’s Newton’s algorithm to fit the logistic regression
model in (1). Specifically, we unrolled loops in the
CUDA kernel. CUDA single precision floating point fast
math functions were used in the CUDA kernel imple-
mentation. Due to the size of the input dataset, the cur-
rent implementation of the GENIE algorithm makes use
of local and global memory spaces. The input dataset as
well as the intermediate output are stored in the global
memory. We do not utilize any constant memory,
shared memory, and texture memory spaces of the GPU
device. We minimize the local memory utilization of the
interaction analysis module/kernel to facilitate paralleli-
zation. Each GPU thread utilizes a maximum of 16 KB
of the local memory. We use a single grid of two dimen-
sional thread blocks. We enabled compiler code optimi-
zation. In order to reduce memory latency, we restrict
the number of data transfers between main and device
memories. Initially, GENIE reads the entire dataset into
the main memory of the computer and then transfers it
to the global memory space of the device memory.
Intermediate results are periodically transferred from
the global memory space of the device memory to the
main memory of the workstation and then written to
the output file. We also reduced the number of registers
that are used by each kernel using the -maxrregcount
compiler option in order to improve the CUDA utiliza-
tion/occupancy.

Due to CUDA local memory limitations of the NVI-
DIA Tesla C1060 card, we set the maximum number of
individuals in a genetic association studies to 4,000, but
this number can be increased for cards with larger local
memory. When the total number of SNPs is not a mul-
tiple of S, the last fragment has less than S total SNPs in
it. In this case, we pad the rest of the fragment with
missing values to maintain a fragment size of S.

The algorithm presented above can be easily extended
to support multiple CPU cores. We implemented a sim-
ple serial single threaded version of the GENIE algo-
rithm. We support multiple-cores using a script that
first splits the input dataset into as many parts as there
are cores. It then invokes a separate run of single
threaded GENIE on each separate subset or part of the
dataset.

Software Capabilities

The current version of GENIE is a command line pro-
gram and has a number of user input options. GENIE
can be run in a GPU mode or in a CPU mode. The
GENIE software package includes a GENIE executable,
a data converter utility executable, and a script file. Mul-
tiple GPU cards, GPU clusters, multi-core CPUs, and
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CPU clusters are supported using the script file. This
enables GENIE to handle datasets generated from larger
genetic association studies in a scalable fashion. In the
GPU mode, the interaction analysis is carried out using
a CUDA compatible graphics card. If a machine has sev-
eral GPU cards, GENIE allows users to choose a card
that will be used to run the analysis. The script file can
be used to distribute the analysis task across multiple
GPU cards.

In the CPU mode, the interaction analysis is carried
out using a single processor core. If a machine has a
multi-core CPU, the script file provided with GENIE
package can be used to distribute the analysis task
across multiple cores. Currently, the script distributes
fragments among several separate parallel runs of a sin-
gle threaded GENIE implementation for CPUs.

Findings

Data from the University of Pennsylvania High-Density
Lipoprotein Cholesterol (HDL-C) Study was used to test
GENIE. In this study, subjects of European ancestry
with HDL-C > 90" percentile for age and gender were
considered as cases and subjects with HDL-C < 30"
percentile for age and gender were considered as con-
trols. 625 cases and 606 controls were genotyped using
the IBC 50K SNP array [12]. We extracted 23,470 SNPs
that had a Minor Allele Frequency (MAF) greater than
0.15 for interaction analysis.

We tested GENIE on the same workstation that was
used for its development. A fragment size of 256 was
used during testing. Figure 3 shows the screenshot of a
sample run of GENIE. We call the CPU mode runs of
GENIE as CPU-GENIE and the GPU mode runs of
GENIE as GPU-GENIE for comparison purposes.
Speedup was calculated as the ratio of total time taken
by the interaction module of CPU-GENIE and the total
time taken by the interaction module of GPU-GENIE.
The CPU-GENIE script was used to run CPU-GENIE
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Figure 3 Screenshot of a test run of GENIE
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using all four CPU cores. In this case, the script distrib-
uted fragments among four separate parallel runs of a
single threaded CPU-GENIE implementation. The total
time taken by CPU-GENIE with a single core was calcu-
lated as a sum of the execution times for each of the
four CPU-GENIE runs. Figure 4 shows the execution
times of CPU-GENIE and GPU-GENIE. It took CPU-
GENIE 458 hours to analyze the HDL-C dataset using a
single Intel Xeon CPU core and 115 hours using all four
Intel Xeon CPU cores. In contrast, GPU-GENIE
achieves a speedup of almost 27 over the single CPU
core run of CPU-GENIE and finishes the analysis in
around 17 hours. To match the performance of GPU-
GENIE, CPU-GENIE requires a CPU cluster with at
least 27 processor cores.

The GENIE output file contains 148,590 pairs that
satisfy the MAF threshold of 0.15 and P-value threshold
of 0.001. Table 1 shows a subset of the GENIE interac-
tion analysis results. Interestingly, all SNP pairs with P-
value < 107 involve rs1864163, a SNP in gene CETP
that encodes for cholesteryl ester transfer protein. It is
well known that CETP promotes the transfer of choles-
teryl esters from HDL to low-density lipoprotein, and
individuals that are genetically deficient for CETP often
have extremely high HDL levels. Various genetics stu-
dies have shown that CETP SNPs are significantly asso-
ciated with HDL-C level. In our analysis, we found that
CETP may also interact with other genes in regulating
the level of HDL-C.

Discussion

Recognizing the ongoing debate regarding using GPUs
vs. CPUs for general purpose computing [13], we have
developed a software package for genetic interaction
analysis that takes advantage of multiple cores present
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Figure 4 GENIE execution time on the HDL study dataset. GPU-
GENIE achieves a speedup of 6.7 fold over CPU-GENIE using 4 Intel
Xeon cores and 26.7 fold over CPU-GENIE using a single Intel Xeon
core.
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Table 1 Subset of the results produced by GENIE for the
HDL-C study showing SNP pairs having an interaction
P-value less than 107,

Gene Gene SNP1 SNP2 P-Value
(SNP1) (SNP2)

CETP HDAC4 rs1864163 rs3791373 787 x 107"
CETP BCL2 rs1864163 rs1982673 153 x 107
CETP SCOT rs1864163 rs9897641 210 x 107°
CETP ABCCT rs1864163 rs215100 309 x 1071°
CETP BCL2 rs1864163 rs2046137 466 x 1070
CETP BCL2 rs1864163 rs1531697 891 x 107°

in GPU cards and multi-core CPUs. Clusters containing
nodes with multiple CUDA based graphics cards are
also available for GPU computing purposes. Although
we presented our results only for one GPU card, GENIE
can easily handle multiple GPU cards and GPU clusters
using a script included with the GENIE package. This is
possible because GENIE works on partitions of a genetic
association study dataset in a decoupled fashion.

The GENIE source code is optimized for the underly-
ing GPU card and CPU. GENIE was implemented by
following the NVIDIA CUDA C best programming
practices [10]. To make it easily parallelizable, we also
minimized the amount of local memory used by the
interaction analysis module. As documented by several
CUDA publications [10,11,14], CUDA implementations
perform better when all the cores are utilized. Underuti-
lization of the cores can make CUDA implementations
perform significantly worse than serial CPU based
implementations [10,11,13].

The speedup achieved by the GPU mode of GENIE
over its CPU implementation depends on the power of
the graphics card and the fragment size S. Figure 5
shows the effect of various fragment sizes on the

23, §7530028

2317539063

£.701066023

128 255 512

Fragment Size (5)

8 GPUAGENIE vs. CPU-GENIE (1 core) B GPU-GENIE vs. CPU-GENIE (all 4 cores)

Figure 5 A study of the effect of fragment size (S) on GPU-
GENIE's speedup for the HDL study dataset. Fragment size has
an effect on the amount of speedup that is achieved by GPU-GENIE
over CPU-GENIE. The largest speedup is attained for S = 512. As
mentioned earlier, these experiments were carried out using a quad
core Intel Xeon processor and an NVIDIA C1060 graphics card.
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speedup. The optimal value of the fragment size S can
vary depending upon the graphics card that is used to
run GENIE. The GPU computing field is growing
rapidly. Faster and cheaper cards are being frequently
released. NVIDIA recently released a faster CUDA
based architecture called Fermi. The NVIDIA Tesla
C2050 is an example of a Fermi based graphics card. A
higher GPU mode speedup can be achieved by making
use of the latest GPU computing capable graphics cards.

The NVIDIA Tesla C1060 card that was provided by
Dell with our workstation cost us $1,700, but it can be
purchased online for a significantly cheaper price. The
total cost of the workstation was $3,500. A CPU cluster
with at least 27 processor cores is needed to match
GPU-GENIE’s performance. If each machine has a
quad-core processor and costs $3,000, a CPU cluster
based solution would cost at least $21,000. Thus, GPU
computing offers an economical solution to computa-
tionally intensive problems.

Future work will involve utilizing Message Passing
Interface (MPI) to make GENIE’s support of multiple
graphics cards, GPU computing clusters, multi-core
CPUs and CPU clusters more efficient. Since CUDA
code can be easily ported to OpenCL using OpenCL
translators such as Swan [15], we plan to use OpenCL
to implement a graphics card vendor independent
implementation of GENIE. We also plan to implement a
webserver version of GENIE.

Conclusions

GENIE is user friendly and is scalable and can handle
large datasets as long as they fit the memory of the gra-
phics card. As GPU cards with bigger memory capacities
are entering the market at ever cheaper prices, it is now
possible to analyze entire GWAS datasets economically
with GENIE. An advantage of running GENIE in GPU
mode is that a bulk of the computation is handled by
the GPUs and the CPU is free to be utilized by other
programs. Although GENIE was originally developed for
GPU card, we have provided script that allows the users
to run GENIE using CPUs. If the users do not have
access to a GPU card, but have access to a CPU cluster,
GENIE can still be easily used to perform interaction
analysis.

Availability and requirements

GENIE is implemented using C and NVIDIA Common
Unified Device Architecture (CUDA) C extension. The
current version of GENIE is built for the windows oper-
ating system. GENIE needs to be recompiled to run on
Unix and Linux. We recommend that users run GENIE
on a CUDA compatible graphics card such as NVIDIA
Tesla C1060 or better. NVIDIA recommends using a
dedicated graphics card to perform GPU based
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computing, which means that all display related activ-
ities must be carried out using an additional graphics
card. Documentation, source code, and precompiled
binaries can be downloaded from http://www.cceb.
upenn.edu/~mli/software/ GENIE/.
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