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Abstract

Background: The generalized odds ratio (GOR) was recently suggested as a genetic model-free measure for
association studies. However, its properties were not extensively investigated. We used Monte Carlo simulations to
investigate type-I error rates, power and bias in both effect size and between-study variance estimates of meta-
analyses using the GOR as a summary effect, and compared these results to those obtained by usual approaches
of model specification. We further applied the GOR in a real meta-analysis of three genome-wide association
studies in Alzheimer’s disease.

Findings: For bi-allelic polymorphisms, the GOR performs virtually identical to a standard multiplicative model of
analysis (e.g. per-allele odds ratio) for variants acting multiplicatively, but augments slightly the power to detect
variants with a dominant mode of action, while reducing the probability to detect recessive variants. Although
there were differences among the GOR and usual approaches in terms of bias and type-I error rates, both
simulation- and real data-based results provided little indication that these differences will be substantial in practice
for meta-analyses involving bi-allelic polymorphisms. However, the use of the GOR may be slightly more powerful
for the synthesis of data from tri-allelic variants, particularly when susceptibility alleles are less common in the
populations (≤10%). This gain in power may depend on knowledge of the direction of the effects.

Conclusions: For the synthesis of data from bi-allelic variants, the GOR may be regarded as a multiplicative-like
model of analysis. The use of the GOR may be slightly more powerful in the tri-allelic case, particularly when
susceptibility alleles are less common in the populations.

Findings
The generalized odds ratio (GOR) was recently sug-
gested as a model-free measure of effect that might
overcome the problem of a genetic model misspecifica-
tion in meta-analyses of association studies [1]. In the
context of case-control genetic association studies for a
binary trait and under assumption of random sampling,
the GOR measures the probability that a case has a
higher mutation load (i.e. a larger number of high-risk
alleles) than a control divided by the probability that a
control has a higher mutation load than a case.
In this note, we highlight advantages and limitations

of the use of the GOR as a measure of effect in meta-

analyses of bi- and tri-allelic polymorphisms through
simulation. Our results are further complemented by a
re-analysis of a real meta-analysis of three genome-wide
association studies covering >311,000 bi-allelic markers
in Alzheimer’s disease.

Results
Performance of the GOR in the bi-allelic model
Type-I error rates
Type-I error rates obtained from meta-analyses employ-
ing the GOR as a summary effect size are comparable to
the multiplicative and dominant models of analysis
(Table 1).
Power
Compared to the use of multiplicative approaches, the
power to detect variants with a dominant model of
action was typically only slightly higher for meta-
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analyses using the GOR as summary estimate. For var-
iants following a multiplicative pattern of action, all
non-recessive models of analysis were highly compar-
able. Interestingly, the largest differences observed
among the per-allele, log-additive trend (LAT) and the
GOR were found in true recessive and over-dominant
models, where the performance of the GOR is slightly
inferior for the former, but reasonable better for the lat-
ter (Figure 1).
Bias in the estimated statistical heterogeneity (τ2)
Compared to both per-allele and LAT approaches, the
median bias in τ2 obtained by the GOR is typically lower
in scenarios where the genetic variant is less common in
the populations (e.g. minor allele frequency [MAF] =
10%) and acts either dominantly or multiplicatively. For
the latter model of action, bias is slightly positive. In
addition, for common markers (MAF = 40%) following a
dominant model of action, the GOR provides less biased

τ2 estimates compared to the specification of a multipli-
cative model. Importantly, for a common variant (MAF =
40%) acting multiplicatively, meta-analyses using the
GOR as an effect size provide upwardly biased estimates
of τ2 compared to true underlying average increment in
the between-study variance per additional copy of the
risk allele (Figure 2). This upward bias in the estimated
statistical heterogeneity is also found in both dominant
and recessive models of analysis.
Bias in the estimated genetic effect size
The GOR provides nearly unbiased summary effects for
less common variants (MAF = 10%) acting dominantly,
regardless of the meta-analytical model and τ2. Conver-
sely, when the variant follows a multiplicative model of
action and is common (MAF = 40%), GOR-based meta-
analyses overestimate the true underlying increase in the
effect size per additional copy of the risk allele (on aver-
age 20%) [Additional file 1: Supplementary tables S1-S2].

Table 1 Type-I error rates (%) for the bi-allelic case according to different genetic models of analysis and
heterogeneity (τ2 ) for a = 5%

τ2 = 0 τ2 = 0.025 τ2 = 0.05

Model of analysis Allelic LAT GOR Domi Rece Allelic LAT GOR Domi Rece Allelic LAT GOR Domi Rece

No. of Studies Fixed-effects, MAF = 10%

2 4.82 4.82 4.82 4.86 2.30 12.34 12.28 13.44 13.60 2.54 16.98 16.80 18.72 18.86 2.68

5 5.34 5.36 5.12 5.16 2.10 11.34 11.22 12.80 12.90 2.42 17.88 17.96 19.80 20.16 2.48

7 4.80 4.80 4.94 4.78 1.76 11.46 11.30 12.78 12.88 1.98 17.94 17.78 19.66 20.08 2.72

10 5.00 5.00 5.02 5.00 1.92 11.98 11.80 13.26 13.42 2.12 17.72 17.72 19.60 20.02 2.76

20 4.86 4.80 5.06 5.18 1.68 11.52 11.36 12.36 12.64 2.02 17.72 17.60 19.28 19.32 2.62

30 4.96 4.92 4.96 5.02 1.94 11.94 11.78 12.84 13.06 2.04 18.52 18.40 20.18 20.40 2.38

No. of Studies Random-effects, MAF = 10%

2 3.76 3.76 3.66 3.60 2.24 8.38 8.28 8.72 8.84 2.44 10.54 10.62 11.58 11.56 2.66

5 4.14 4.10 3.92 3.84 1.90 6.90 6.78 7.48 7.50 2.20 8.76 8.68 9.08 9.30 2.28

7 3.70 3.70 3.74 3.76 1.66 7.02 6.92 7.14 7.22 1.88 8.34 8.34 8.66 8.68 2.48

10 3.88 3.84 4.04 4.16 1.80 7.14 7.02 7.52 7.42 1.98 7.30 7.20 7.56 7.58 2.64

20 4.12 4.14 4.42 4.42 1.66 6.06 6.04 6.32 6.36 1.92 6.86 6.88 6.88 6.78 2.42

30 4.16 4.16 4.34 4.32 1.88 5.82 5.80 5.76 5.84 1.96 6.24 6.34 6.06 5.88 2.24

No. of Studies Fixed-effects, MAF = 40%

2 4.82 4.72 4.84 4.96 4.70 9.82 9.66 9.74 12.32 13.78 15.62 15.40 15.60 19.82 22.58

5 4.98 4.86 4.88 4.68 4.90 10.42 10.38 10.46 12.42 14.60 15.66 15.42 15.84 20.14 22.52

7 5.22 4.98 4.82 4.56 5.08 10.34 10.18 10.62 12.92 15.04 16.26 16.16 16.26 20.44 21.58

10 5.02 4.98 4.86 4.68 5.26 11.42 11.26 11.08 13.22 14.94 15.64 15.42 15.74 20.46 22.38

20 5.18 5.12 5.06 4.94 5.14 10.80 10.62 10.84 13.82 14.76 16.22 15.98 16.34 20.36 23.52

30 4.60 4.60 4.66 4.62 4.56 11.34 11.28 11.44 13.88 15.22 16.56 16.48 16.88 20.26 22.64

No. of Studies Random-effects, MAF = 40%

2 3.82 3.76 3.82 4.04 3.58 6.92 6.86 7.00 8.42 9.10 9.54 9.66 9.86 12.34 13.58

5 3.82 3.70 3.72 3.76 3.60 6.18 6.16 6.02 6.72 7.86 8.50 8.40 8.34 9.60 9.28

7 3.94 3.80 3.58 3.46 3.96 6.08 6.02 6.30 6.78 7.68 8.02 7.98 7.92 9.20 8.46

10 3.94 3.90 3.88 3.48 4.00 6.20 6.20 6.32 6.96 6.90 7.10 7.08 7.30 7.98 7.40

20 4.14 4.12 4.16 4.24 4.16 5.90 5.88 6.16 6.74 6.02 6.96 6.96 7.06 6.88 6.26

30 3.90 3.86 3.90 3.92 3.74 6.74 6.66 7.04 6.72 6.16 6.88 6.98 6.84 6.92 5.32

Allelic, per-allele odds ratio. LAT, log-additive trend. GOR, generalized odds ratio. Domi, dominant. Rece, recessive. MAF, minor allele frequency. Results are based
on 5,000 simulations. τ2, between-study variance. The size for each study was randomly sampled from a uniform distribution on the interval [500-1000] and split
equally into cases and controls (i.e. case to control ratio = 1).
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Performance of the GOR in the tri-allelic model
Type-I error rates
The performance of each model of analysis depends on
the underlying between-study variability, allele frequencies
and meta-analytical model, but type-I error rates for LAT-
and GOR-based meta-analyses are comparable, whereas
false discoveries tend to be higher for the per-allele
approach when statistical heterogeneity is present (i.e. τ2

>0). However, the extent of these differences is smaller in
random-effects calculations [Additional file 1: Supplemen-
tary tables S3-S4].
Power: two alleles acting on the same direction
When at least one of the risk-alleles is less common in
the populations (f = 10%), and both exhibit either a
dominant or multiplicative mode of action, power
obtained by using the GOR as a summary effect is

Figure 1 Power (at a = 5%) for the bi-allelic case for a representative scenario of a variant with modest effect (OR = 1.3) following
distinct modes of action (A-B, dominant; C-D, multiplicative, E-F, recessive, and G-H, over-dominant) under moderate heterogeneity (τ2

= 0.025). The sample size for each study was randomly sampled from a uniform distribution on the interval [500-1000] and split equally into cases
and controls (i.e. case to control ratio = 1). Color lines depict power estimates under different models of analysis: green (dominant), blue (per-allele
odds ratio), red (recessive) and black (generalized odds ratio). Results for the log-additive trend were omitted because the striking similarity with
the results of the per-allele odds ratio. Results are based on 5,000 replications under a random-effects model (DerSimonian-Laird method). f, allelic
frequency. Scenarios with alternative magnitudes of heterogeneity or use of a fixed-effects model yielded qualitatively identical results.
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higher than that provided by either the per-allele or
LAT approaches (Figure 3).
Power: two alleles acting on opposite directions
When prior evidence on the direction of the effects of
the susceptibility alleles is available, similar power is
achieved with the use of the per-allele, LAT and GOR,
regardless of the meta-analytical model, f and statistical
heterogeneity [Additional files 1: Supplementary tables
S5-S7].
On the other hand, when no prior evidence on the

direction of effects is available (e.g. initial screenings),

the per-allele model of analysis displays a superior per-
formance compared to the use of either the LAT- or
GOR-based approaches. In particular, compared to both
GOR and LAT approaches, the gain in power for meta-
analyses using the per-allele OR may range from 1.5- to
10-fold depending on the number of combined studies
(Figure 4).
Power: when only one allele displays a significant effect
Power is comparable among the GOR, LAT and per-
allele odds ratio when only one allele displays a signifi-
cant effect. This is specially true when the high-risk

Figure 2 Bias (%) in the between-study variance (τ2 ) estimate (statistical heterogeneity) for the bi-allelic case for a representative
scenario of a variant with modest effect (OR = 1.3) following distinct modes of action (A-B, dominant; C-D, multiplicative, E-F, over-
dominant) under moderate heterogeneity (τ2 = 0.025). The sample size for each study was randomly sampled from a uniform distribution
on the interval [500-1000] and split equally into cases and controls (i.e. case to control ratio = 1). Color lines depict bias estimates under different
models of analysis: green (dominant), blue (per-allele odds ratio), red (recessive) and black (generalized odds ratio). Results for the log-additive
trend model of analysis were omitted because the striking similarity with the results of the per-allele odds ratio. Scenarios with a genuine variant
acting recessively are not displayed for simplicity, since all models of analysis (except the recessive) are unable to capture the underlying τ2 even
when the frequency of risk alleles is high. Scenarios with alternative magnitudes of heterogeneity yielded qualitatively identical results. Results
are based on the median value from 5,000 replications. f, allelic frequency.

Pereira and Mingroni-Netto BMC Research Notes 2011, 4:172
http://www.biomedcentral.com/1756-0500/4/172

Page 4 of 11



allele is less common in the populations (f = 10%), parti-
cularly when f (A2) = f (A3) = 10%. Overall, for common
variants acting multiplicatively, the best performance is
achieved with both GOR and LAT. When the risk allele
is either recessive or dominant and is common, the best
approach may depend on the frequency of the remain-
ing alleles, but power is comparable among the three
tested approaches whenever f (A2) ≅ f (A3) [Additional
file 1: Supplementary tables S8-S10].

Real application
Results for the seven “top hits” variants associated with
late-onset Alzheimer’s disease are presented in Table 2.
As expected, the largest association signal arose from

the variant rs41377151, located at the 3’ end of the apo-
lipoprotein C-I (APOC1) gene within the Apolipopro-
tein E (APOE)/APOC1 gene cluster on chromosome
19q13.3. This polymorphism is only 10.9 kb away from
rs7412 variant (Arg176Cys) [2], which is one of the
alleles that dictate the APOE ε status [3]. In addition,
the remaining signals are also commensurate with
results from previous [4] and more recent, large investi-
gations [2,5,6].
In agreement with our simulation-based results, plots

of summary ORs and P-values (Figure 5) based on real
data suggest a good concordance between GOR and
both LAT and per-allele approaches, followed by the
dominant and recessive models, respectively.

Figure 3 Power (at a = 5%) for the tri-allelic case for a representative scenario of two alleles (A2 and A3) acting on the same direction
with modest effect (OR = 1.3) following distinct modes of action (A-B, dominant; C-D, multiplicative, E-F, recessive) under moderate
heterogeneity (τ2 = 0.025). The sample size for each study was randomly sampled from a uniform distribution on the interval [500-1000] and
split equally into cases and controls (i.e. case to control ratio = 1). Color lines depict power estimates under different models of analysis: orange
(log-additive trend), blue (Dunn-Šidák-corrected per-allele odds ratio) and black (generalized odds ratio). Results are based on 5,000 replications
under a random-effects model (DerSimonian-Laird method). f, allelic frequency. Scenarios with alternative magnitudes of heterogeneity or use of
a fixed-effects model yielded qualitatively identical results.
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Discussion
The GOR was suggested as a model-free approach for
the synthesis of genetic association studies. The rational
is that the GOR provides more flexibility for the true
underlying genetic effect to describe the difference
between two cumulative distribution functions of the
latent variables, particularly when the assumption of
proportional odds is violated. Furthermore, an additional
advantage is that this ordinal measure of association is
easily interpretable in practice [1].

Recent meta-analyses have applied the GOR claiming
that this might be considered a different genetic model
or an independent approach compared to the specifica-
tion of traditional genetic model of analysis [7,8]. How-
ever, here we show that, since the GOR inherently
assumes an ordinal mutation load (e.g. 1, 2 and 3 for
genotypes A1A1, A1A2, and A2A2, respectively), this mea-
sure of assocation performs like a multiplicative model
of analysis for bi-allelic polymorphisms. For diallelic var-
iants, our simulations show that GOR-based results are

Figure 4 Power (at a = 5%) for the tri-allelic case for a representative scenario of two alleles (A2 and A3) acting in opposite directions
(A2 is protective, whereas A3 is the susceptibility allele) with modest effect (OR = 0.77 for allele A2 and OR = 1.3 for allele A3)
following distinct modes of action (A-B, dominant; C-D, multiplicative, E-F, recessive) under moderate heterogeneity (τ2 = 0.025). The
sample size for each study was randomly sampled from a uniform distribution on the interval [500-1000] and split equally into cases and
controls (i.e. case to control ratio = 1). Color lines depict power estimates under different models of analysis: orange (log-additive trend), blue
(Dunn-Šidák-corrected per-allele odds ratio) and black (generalized odds ratio). Results are based on 5,000 replications under a random-effects
model (DerSimonian-Laird method). f, allelic frequency. Scenarios with alternative magnitudes of heterogeneity or use of a fixed-effects model
yielded qualitatively identical results.
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highly correlated to those obtained by both LAT and
per-allele ORs, resulting in similar type-I error rates and
power compared to these traditional multiplicative mod-
els of analysis. In addition, a real meta-analysis of three
GWAs in Alzheimer’s disease indicates that gain from
using the GOR method may be limited. For example,

under a fixed-effects framework and assumption of a
threshold of P<10-5 (probably realistic due to the small
samples sizes available), the total number of markers
considered promising for further replication [9] would
be 10, 13, 13, 14 and two for the per-allele, LAT, GOR,
dominant and recessive approaches, respectively. Under

Table 2 Summary results according to different models of analysis for the seven strongest association signals
obtained by a meta-analysis of three independent genome-wide association studies in Alzheimer’s disease (TGen data
sets, Reiman et al. 2007)

SNP Chr Gene MAFa Model of analysis OR (95% IC) P-value P(Q) I2

Fixed Random Fixed Random

rs41377151 19q13.32 APOC1(3’region) 0.30 Allelic 3.00 (2.50-3.59) 3.15 (2.20-4.53) 2.14 × 10-32 4.65 × 10-10 0.05 67

LAT 2.94 (2.43-3.56) 3.06 (2.12-4.43) 1.62 × 10-28 2.79 × 10-9 0.05 66

GOR 3.44 (2.79-4.25) 3.64 (2.38-5.57) 1.73 × 10-30 2.73 × 10-9 0.04 68

Domi 3.51 (2.81-4.40) 3.78 (2.35-6.08) 3.33 × 10-28 4.19 × 10-8 0.04 70

Rece 5.51 (3.32-9.14) 5.51 (3.32-9.14) 4.31 × 10-11 4.31 × 10-11 0.59 0

rs17330779b 7q31 NRCAM (intron) 0.10 Allelic 0.53 (0.41-0.69) 0.53 (0.41-0.69) 1.61 × 10-6 1.61 × 10-6 0.42 0

LAT 0.50 (0.38-0.65) 0.50 (0.38-0.65) 5.96 × 10-7 5.96 × 10-7 0.38 0

GOR 0.49 (0.37-0.65) 0.49 (0.37-0.65) 4.72 × 10-7 4.72 × 10-7 0.42 0

Domi 0.49 (0.37-0.65) 0.49 (0.37-0.65) 5.01 × 10-7 5.01 × 10-7 0.44 0

Rece - - - - - -

rs10824310b 10q11.23 PRKG1 (intron) 0.06 Allelic 0.47 (0.35-0.64) 0.47 (0.35-0.64) 2.11 × 10-6 2.11 × 10-6 0.63 0

LAT 0.45 (0.33-0.62) 0.45 (0.33-0.62) 1.41 × 10-6 1.41 × 10-6 0.56 0

GOR 0.44 (0.31-0.61) 0.44 (0.31-0.61) 7.37 × 10-7 7.37 × 10-7 0.67 0

Domi 0.43 (0.31-0.60) 0.43 (0.31-0.60) 7.04 × 10-7 7.04 × 10-7 0.68 0

Rece - - - - - -

rs12162084 16 Unknown 0.16 Allelic 0.61 (0.50-0.75) 0.61 (0.50-0.75) 2.28 × 10-6 2.28 × 10-6 1.00 0

LAT 0.59 (0.48-0.73) 0.59 (0.48-0.73) 1.56 × 10-6 1.56 × 10-6 0.99 0

GOR 0.56 (0.45-0.71) 0.56 (0.45-0.71) 9.50 × 10-7 9.50 × 10-7 0.94 0

Domi 0.56 (0.44-0.70) 0.56 (0.44-0.70) 1.15 × 10-6 1.15 × 10-6 0.84 0

Rece 0.55 (0.26-1.15) 0.52 (0.17-1.60) 1.13 × 10-1 2.55 × 10-1 0.22 34

rs7077757 10q25.2 RBM20 (intron) 0.21 Allelic 0.64 (0.53-0.77) 0.64 (0.53-0.77) 2.45 × 10-6 2.45 × 10-6 0.92 0

LAT 0.62 (0.51-0.76) 0.62 (0.51-0.76) 2.10 × 10-6 2.10 × 10-6 0.99 0

GOR 0.59 (0.47-0.73) 0.59 (0.47-0.73) 1.34 × 10-6 1.34 × 10-6 0.99 0

Domi 0.57 (0.46-0.72) 0.57 (0.46-0.72) 1.85 × 10-6 1.85 × 10-6 0.94 0

Rece 0.58 (0.34-1.00) 0.57 (0.30-1.10) 4.81 × 10-2 9.25 × 10-2 0.29 20

rs10747758 12q14.2 OR6U2P 0.37 Allelic 0.69 (0.58-0.81) 0.69 (0.58-0.81) 3.97 × 10-6 3.97 × 10-6 0.50 0

LAT 0.68 (0.57-0.80) 0.68 (0.57-0.80) 4.01 × 10-6 4.01 × 10-6 0.53 0

GOR 0.62 (0.51-0.76) 0.62 (0.51-0.76) 2.04 × 10-6 2.04 × 10-6 0.52 0

Domi 0.58 (0.46-0.73) 0.58 (0.46-0.73) 3.40 × 10-6 3.40 × 10-6 0.67 0

Rece 0.66 (0.48-0.90) 0.66 (0.48-0.90) 9.70 × 10-3 9.70 × 10-3 0.54 0

rs2517509b 6p21.33 HCG22 0.03 Allelic 3.22 (1.94-5.34) 3.22 (1.94-5.34) 5.77 × 10-6 5.77 × 10-6 0.45 0

LAT 3.27 (1.96-5.46) 3.30 (1.93-5.63) 5.85 × 10-6 1.27 × 10-5 0.35 4.7

GOR 3.31 (1.97-5.57) 3.33 (1.95-5.70) 6.58 × 10-6 1.14 × 10-5 0.36 3.3

Domi 3.31 (1.96-5.58) 3.32 (1.94-5.69) 7.53 × 10-6 1.19 × 10-5 0.36 2.8

Rece - - - - - -
aMAF, study size-weighted average minor allelic frequency. OR, odds ratio. 95% CI, 95% confidence intervals. Allelic, per-allele odds ratio. LAT, log-additive trend.
GOR, generalized odds ratio. Domi, dominant. Rece, recessive. P(Q), P-value for the Cochran Q-statistic. Chr, chromosome. APOC1, Apolipoprotein C1. NRCAM,
neuronal cell adhesion molecule. PRKG1, protein kinase, cGMP-dependent, type I. RBM20, RNA binding motif protein 20. OR6U2P, olfactory receptor, family 6,
subfamily U, member 2 pseudogene. HCG22, HLA complex group 22. bFor the rs17330779, rs10824310 and rs2517509 variants, analyses under a recessive model
were not possible due to the small minor allelic frequency (i.e. sparse data). Results are based on crude odds ratios (i.e. individual study estimates were not
adjusted for gender and APOE status).
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a random-effects model, the correspondent numbers
would be two for the recessive model and 8 for the
remaining approaches.
Nonetheless, other important considerations in meta-

analysis of genetic association studies involving bi-allelic
polymorphism are biases in the estimated effect size
[10] and heterogeneity [11]. In this respect, the most
negative aspect of using the GOR as a measure of

association in practice is that this measure provides
inflated effects for bi-allelic variants following a multipli-
cative model of action. Although this inflation may be
only mild for less common markers (i.e. median bias of
~5% for variants with MAF = 10%), the average upward
bias in the observed genetic effect augments with
increasing MAFs, reaching up to 20% for MAFs around
40%.

( )+ ( ) ( ){ }⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦

ρ = ρ =

ρ =ρ =

ρ = ρ =

ρ = ρ =

Figure 5 Bland-Altman plots depicting agreement between random-effects model-based summary odds ratios (Panels A, C, E and G)
and P-values (Panels B, D, F and H) obtained by traditional genetic models of analysis and the generalized odds ratio (GOR). P-values
are given on a -log10 scale. Dashed lines represent 95% confidence limits of agreement, computed as Δ ± 1.96(standard deviation of Δ). Within
each panel, the spearman coefficient (r) is shown, and the summarizes the correlation between estimates obtained from GOR and other models
of analysis.
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On the other hand, our data showed that the use of
the GOR may be advantageous in meta-analyses invol-
ving tri-allelic polymorphisms as long as genotypes can
be correctly ordered in terms of mutation load. In fact,
a reasonable gain in power in the order of 2 to 15% may
be achieved for the detection of association signals from
variants with small frequencies (e.g. f ~10%) compared
to the use of per-allele or LAT odds ratios. The observa-
tion that higher power might be obtained with GOR in
scenarios with a larger number of alleles of low fre-
quency may serve as hypothesis-generating information
to extent the use of the GOR to meta-analysis of differ-
ent types of genetic variants. For example, a special case
might the use of the GOR in meta-analysis of structural
variants such as copy-number variations (CNVs), which
tend to exhibit a substantial number of alleles, yielding a
correspondent large number of possible genotype cate-
gories [12]. Since the GOR handles categories with zero
counts [13], and a different number of genotypes may
be considered per study (for instance, in the case of spe-
cific allele sizes in some populations), the properties of
the GOR in meta-analysis of CNVs is a topic worth of
further investigation.
In summary, although there are differences in the sta-

tistical properties among the investigated approaches for
bi-allelic variants, the absolute magnitude of these dif-
ferences may be actually small and likely to be of very
limited practical significance. An exception might be the
use of the GOR in meta-analyses involving tri-allelic
polymorphisms with less common alleles, since GOR
uses of the complete genotypic distribution (e.g. the
GOR less affected by zero cells). For these scenarios, the
use of the GOR as a measure of effect may be slightly
more powerful than traditional measures. However, the
performance of GOR-based meta-analyses will depend
on some knowledge about the direction of the effects
when there are two alleles modulating the risk of disease
in opposite directions.

Material and methods
Simulation procedures and scenarios
We simulated meta-analyses of association studies
using approaches that rely on multinomial distribu-
tions described in detail elsewhere (autosomal mar-
kers) [9,10]. Hardy-Weinberg equilibrium is assumed
to hold for the whole population, whereas the suscept-
ibility alleles are considered the causal variants or sur-
rogate markers in tight linkage disequilibrium (r2 =
1.0). For the bi-allelic case, we simulated data assum-
ing the susceptibility variant A2 (minor allele) and
non-risk allele A1.
Under a three-allele model, we denote A1, A2 and A3

as the possible alleles with frequencies f(A1), f(A2) and f

(A3
), respectively, yielding six possible distinct genotypes

(A1A1, A1A2, A1A3, A2A2, A2A3 and A3A3).
For each possible combination of the parameters pre-

sented in Table 3 we considered meta-analyses that
included two up to 30 studies (case-to-control ratio of
1:1).
For the tri-allelic case, three possible scenarios were

considered: (i), among the alleles, two were susceptibility
variants (e.g. both increase the susceptibility for the trait
with the same magnitude), (ii) two alleles were asso-
ciated with the trait, but in opposite directions (i.e. one
increases, while the other decreases the risk for the trait
in a similar magnitude) and (iii) only one out of the
three alleles displays significant effects on the trait. We
further assumed that the mechanism of action is similar
for both alleles when there are two alleles with genuine
effects on the trait (e.g. both act multiplicatively, or both
act dominantly, and so forth). For scenarios with two
alleles modulating the risk of disease, two additional
situations of practical interest were investigated: (ii-a)
the two alleles are associated with the susceptibility of
disease in opposite directions and investigators have no
prior evidence on the direction of these effects (e.g.
initial agnostic screenings) and (ii-b) two alleles are
associated with the susceptibility of disease in opposite
directions, but investigators posses prior evidence on the
direction of the effects (e.g. meta-analyses from the lit-
erature). For consistency, allele A2 is coined to be the
protective variant, whereas allele A3 is the susceptibility
one in these scenarios.

Bi-allelic polymorphisms
Assessment of bias

The percentage bias was computed as

(
θ -μ
μ

)
× 100 and(

τ̂ 2 − τ 2

τ 2

)
× 100 for genetic effect sizes and between-

study variance, respectively, where θ is the (average)
observed summary effect, μ is the true average genetic
effect across population-specific genetic effects, τ2 is the
true between-study variance and τ2 is the method-of-
moments-based estimate of τ2. Both θ and μ are captured
as the natural logarithm of the odds ratio (Table 3). Use
of alternative bias estimators (e.g. mean squared error)
yielded qualitatively analogous results (data not shown).

Tri-allelic polymorphisms
Meta-analyses involving three-allele polymorphisms may
rely on a diversity of approaches to summarize effects
across studies. However, because the assumption of
multiplicative effects yields, on average, the lowest rates
of false-positive results in bi-allelic markers [9,10], we
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compared the GOR to two approaches that assume a
multiplicative mode of action: the per-allele OR, which
yields to three correlated odds ratios (OR[A3 vs A1], OR
[A3 vs A2] and OR[A2 vs A1]) and the log-additive trend
approach.

The generalized odds ratio
For a binary trait (e.g. case-control studies), GOR mea-
sures the probability that a randomly sampled case has
a genotype with a higher mutation load (i.e. a larger
number of high-risk alleles) than a randomly sampled
control divided by the probability that a randomly
sampled case has a genotype with lower mutation load
than a randomly sampled control [1].
The GOR for a binary trait and an m-allelic variant

can be computed as [13]:

GOR =

J−1∑
j=1

J∑
j′=j+1

pj|0pj′|1

J∑
j=2

j−1∑
j′=1

pj|0pj′|1

(1)

where J is the total number of genotypes (categories)
given the number of alleles, i.e., J = m(m+1)/2, m is the

number of alleles,
pj|i =

nj|i
J∑

j=1
nj|i

(i.e. the proportion of the

subjects with genotype j, for j = 1,..,J, in which the
higher the value of j, the higher the mutation load) in
the group i (i = 0 or 1 for controls and cases, respec-
tively). In the present investigation, the large-sample
variance for GOR was computed from the asymptotic
standard error of the Goodman-Kruskal g [1]. Stata and
R codes to compute the GOR and its large-sample var-
iance are available from the first author upon request.

Mutational load order
The order of the jth genotypic category (i.e. mutational
load) for the GOR and log-additive trend is anticipated
to impact statistical power. Hence, for the situation ii-a

(initial agnostic screenings), we set j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6, genotype is A3A3

5, genotype is A2A3

4, genotype is A2A2

3, genotype is A1A3

2, genotype is A1A2

1, genotype is A1A1

as genotypic order and j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6, genotype is A3A3

5, genotype is A1A3

4, genotype is A2A3

3, genotype is A1A1

2, genotype is A1A2

1, genotype is A2A2

for situation

ii-b (meta-analyses from the literature with prior infor-
mation on the direction of effects).

Assessment of power and type-I error
Empirical power and type-I error rates (i.e. false-positive
discoveries) were computed as the proportion of simula-
tions that gave a two-sided P-value < 5%. Because there
are three correlated OR estimates for the tri-allelic case
for the per-allele model, we corrected the a level using
the Dunn-Šidák procedure. Specifically, power and type-
I error rates for the per-allele model (tri-allelic case)
were computed as the proportion of the simulations
that gave one or more P-values < acorrected, where

αcorrected = 1 − 3
√
(1 − α).

Real application
We compared results based on the GOR as a summary
effect to those obtained by usual approaches of model
specification in a real meta-analysis of three indepen-
dent genome-wide studies in late-onset Alzheimer’s dis-
ease. After standard control measures, a total of 311,915
bi-allelic polymorphisms were scored in 1411 partici-
pants (961 cases and 560 controls). Detailed description
on the samples, genotyping platforms and diagnostics
criteria are available elsewhere [4]. Results from indivi-
dual studies were corrected for residual inflation of the
test statistic using genomic control methods [14].

Meta-analysis methods
Meta-analyses were carried out under both fixed- and
random-effects models, represented by the general

Table 3 Parameters and simulated scenarios (trait prevalence = 10%).

True underlying genetic model OR f τ2 N per study Genetic model of analysis

Null 1.0 0
(homogeneity)

GOR

0.10 LAT

0.33 0.025
(mild heterogeneity)

500-1000 Per-allele

0.40 Dominant

Dominant Multiplicative Recessive Over-dominant 1.3
(modest effect)

0.05
(strong heterogeneity)

Recessive

OR, true underlying odds ratio. f, allelic frequency for the risk allele. τ2, between-study variance. N, number of participants per study. GOR, generalized odds ratio.
LAT, log-additive trend. The size for each study was randomly sampled from a uniform distribution on the interval [500-1000] and split equally into cases and
controls (i.e. case to control ratio = 1).
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inverse-variance and DerSimonian-Laird methods,
respectively [15,16]. For the real application, statistical
heterogeneity was test using the Cochran’s Q test [11],
and quantified using the I2 index [17].
All simulations were performed in Stata 11.1 package

(Stata Corporation), whereas the meta-analysis of real
data sets were carried out in PLINK [18].

Additional material

Additional file 1: Supplementary tables S1 through S10.
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