Shi et al. BMC Research Notes 2011, 4:189
http://www.biomedcentral.com/1756-0500/4/189

BMC
Research Notes

TECHNICAL NOTE Open Access

Parallel mutual information estimation for
inferring gene regulatory networks on GPUs

Haixiang Shi’, Bertil Schmidt, Weiguo Liu and Wolfgang Miiller-Wittig

Abstract

Background: Mutual information is a measure of similarity between two variables. It has been widely used in
various application domains including computational biology, machine learning, statistics, image processing, and
financial computing. Previously used simple histogram based mutual information estimators lack the precision in
quality compared to kernel based methods. The recently introduced B-spline function based mutual information
estimation method is competitive to the kernel based methods in terms of quality but at a lower computational
complexity.

Results: We present a new approach to accelerate the B-spline function based mutual information estimation
algorithm with commodity graphics hardware. To derive an efficient mapping onto this type of architecture, we
have used the Compute Unified Device Architecture (CUDA) programming model to design and implement a new
parallel algorithm. Our implementation, called CUDA-MI, can achieve speedups of up to 82 using double precision
on a single GPU compared to a multi-threaded implementation on a quad-core CPU for large microarray datasets.
We have used the results obtained by CUDA-MI to infer gene regulatory networks (GRNs) from microarray data.
The comparisons to existing methods including ARACNE and TINGe show that CUDA-MI produces GRNs of higher

quality in less time.

Conclusions: CUDA-MI is publicly available open-source software, written in CUDA and C++ programming
languages. It obtains significant speedup over sequential multi-threaded implementation by fully exploiting the
compute capability of commonly used CUDA-enabled low-cost GPUs.

Background

Mutual information (MI) is used to measure the mutual
dependence between two random variables in informa-
tion theory. As an information theoretic approach, it has
been used in various areas including physics [1], image
processing [2,3], speech recognition [4], and bioinfor-
matics [5,6]. An advantage of MI compared to many
other similarity measures (such as Pearson correlation),
is its capability to detect non-linear correlations between
the two variables [7]. In [1], a recursive method for cal-
culating MI is presented and used on dynamical systems
and chaotic data. An overview about MI used in medical
imaging applications is presented in [2]. An MI applica-
tion to find features for audio-visual speech recognition
tasks is proposed in [4]. Zhou et al. [5] used MI for
gene clustering to determine gene regulations. In [6],

* Correspondence: hxshi@ntu.edu.sg
School of Computer Engineering, Nanyang Technological University,
Singapore

() BiolVled Central

MI is used to measure nonlinear relationships between
the expressions of two genes. Because of its inherent
algorithmic complexity, the reverse engineering or infer-
ence of gene regulatory networks (GRNs) from gene-
expression profile (microarray) data remains a big chal-
lenge in system biology [7-9]. Approaches such as rele-
vance networks [10], information-theoretic methods
[11], and Bayesian networks [12,13] have been used to
infer GRNs. However, due to their high computational
complexities, these methods are very time-consuming
and cannot be used to process large datasets. Daub et
al. [7] proposed a B-spline function based MI estimation
algorithm which can achieve accuracy comparable to
kernel-based MI approaches. Since the B-spline based
approach has a lower computational complexity, it is
widely used in practice. However, it is still highly time-
consuming for big gene expression datasets. Since avail-
ability and size of such datasets is growing rapidly,

© 2011 Shi et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:hxshi@ntu.edu.sg
http://creativecommons.org/licenses/by/2.0

Shi et al. BMC Research Notes 2011, 4:189
http://www.biomedcentral.com/1756-0500/4/189

finding fast solutions is of high importance to research
in this area.

In this paper, we present a new approach to acceler-
ate B-spline function based MI estimation using the
CUDA programming model. We take advantage of
shared memory for fast I/O operations to gain effi-
ciency. We further use double precision floating point
arithmetic as well as an efficient partitioning scheme
to overcome the GPU device memory limitation for
big datasets. We evaluate our implementation for a
number of microarray datasets. It achieves speedups
up to 82 on an Nvidia Tesla C2050 GPU compared to
the publicly available multi-threaded implementation
by Daub et al. [7] running on an Intel i7 quad-core
CPU. We use our MI results to infer GRNs by repla-
cing the time-consuming MI calculation in ARACNE
[14]. The results show that the runtime needed for
inferring GRNs is much shorter and quality of the
resulting network is better by using our MI values
compared to the original ARACNE.

The paper presented by Wilson et al. [15] is similar
to the approach presented in this paper since it also
uses CUDA-enabled GPUs to accelerate B-spline
based MI estimation. However, it only implements
the weighting matrix computation on the GPU.
Weighting matrix calculation is only one step in the
B-spline based MI estimation algorithm. The remain-
ing steps are performed on the CPU, thus limits the
possible speedup. The solution presented in this
paper overcomes this limitation by accelerating all
steps of the B-spline based MI estimation using mul-
tiple CUDA kernels. Our experiments therefore show
significant higher speedups than the ones reported in
[15].

B-spline Based Mutual Information Estimator

Definition of Mutual Information

Mutual information (MI) is used as a quantity to mea-
sure the dependence of two discrete random variables.
For a random variable X with values over a finite set of
M possible values (or states) {x;, x5, ..., ¥y}, the Shannon
entropy H(X) is defined as follows:

M
H(X) = =) p(x;)log(p(xi)) (1)

i=1

where p(x;) is the probability of the value x;. The
Shannon entropy is a measure of the uncertainty of X. If
the outcome of a measurement of X is completely deter-
mined, then p(x;) = 1 and the entropy will be 0. The
joint entropy H (X, Y') of two discrete variables (X and
Y) consisting of states {x1, ..., x;; and {y1, ... ¥31 } can
be defined by the following equation:

Page 2 of 10

M M
HX,Y) = =) > plxi,)log(p(xi,))

i=1 j=1

where p(x;, y;) is the joint probability between two
states x; and y;. The joint entropy denotes the quantity
of entropy contained in a joint system of two variables.
The MI for X and Y can then be defined by:

MI(X,Y) = H(X) + H(Y) — H(X, Y) 3)

From Eqn. (3), we can see that the MI is zero when X
and Y are independent
Estimating Mutual Information for Continuous Data
MI can be easily estimated for discrete data. In order to
estimate MI for continuous data (or measurements)
which are supplied by many practical applications, a
common method is to divide the continuous values into
R discrete bins {ay, ..., ag}. Each bin may contain several
data points. Assume the continuous dataset consists of
M measurements {¥1, ..., ¥»). The indicator function 6;
is used to count the number of measurements within
each bin a; (j = 1, ..., R) [7]. The probability for each bin
then equals to the number of measurements within the
bin divided by the total number of measurements (see
Eqn. (4)).

1 M
pla) = > 0x))
i=1

The indicator function 6; is a binary function defined
as:

1if x; € a;
0 otherwise

) - | ©

The joint probability p’(a;, bi) for two random vari-
ables with measurements {xi, ..., %57} and {y1, ..., yar }
and two given bins a; and by, can be calculated as fol-
lows:

M
Pt = | Y 60) x 600) ©
i=1

After estimating the probabilities using Eqns. (4) and
(6), we can compute MI using Eqns. (1) to (3). In the
simple binning method mentioned above, each continu-
ous value is assigned to exactly one bin. Values near to
the border of a bin can be shifted to neighboring bins
by small fluctuations. Thus, the MI result is strongly
affected by noise. In order to overcome this shortcoming
of the simple binning method, Daub et al. [7] intro-
duced the B-spline approach. In Daub’s approach, each
measurement can be assigned to multiple bins with
weights given by B-spline functions.

Shi et al. BMC Research Notes 2011, 4:189
http://www.biomedcentral.com/1756-0500/4/189

B-spline Functions

We use the same knot vector in the B-spline function as
in [7]. A knot vector t; with R bins and the spline order
k is defined in Eqn. (7). The spline order k should meet
the condition ke {1, .., R - 1}

Oifi<k
=3 i—k+1ifk<i<R-1 (7)
R—k+1i>R-1

The degree of the polynomial functions is determined
by the spline order k. The B-spline function is defined
as follows.

B (2) 1 ift <z <t
() =
v 0 otherwise

tisk — 2
+Biii-1(z) (8)

Z— 1
Bix(z) = Bir-1(z
ik(2) ie—1()ti+ tivke — Lis1

k-1 — L

where i € [1, R] and z € [0, R - k + 1] is the domain
interval of the B-spline function. Note that continuous
values should be normalized to fit into the domain
interval. Assume we have M continuous data points in
the dataset, x1, ..., x3; , the normalization procedure is as
follows.

1. Find the minimum and maximum value x,,;, and
Xmax @among all M data points.

2. Compute the normalized value z; (i = 1, ..., M) for
the continuous value using

. (i — Xmin) X (R—k+1) ©)
Xmax — Xmin

where R is the number of bins used in the B-spline
algorithm and k is the spline order of the B-spline
function.
Sequential Ml estimator
Our parallel CUDA algorithm (described in Methods)
extensively uses the concept of the weighting matrix of
each given random variable, which is defined as follows.

Definition Weighting Matrix (WM): Consider a ran-
dom variable X = {x;, x9, ..., X}, R bins {ay, ..., ag}, and
the B-spline function order k. The weighting matrix for
X is an M x R matrix denoted as W (X), where W (X);;
contains weighting coefficient of value x; in bin a; i.e.
W (X);; = Bjx (z;) where z; is the B-spline domain nor-
malized value of x; for each 1 <i<Mand 1 <j<R

Based on Eqns. (1) to (8), we can now outline the
sequential B-spline based MI estimation algorithm. It
consists of two parts: WM(X, R, k) and Single_MI (X, Y,
R, k), which are described in Algorithm 1 and Algorithm
2.

Algorithm 1: W M(X, R, k)

Page 3 of 10

Input: Random variable X = {x;, ..., x); }, number of
bins R, B-Spline order k

Output: W (X)

foreach i, 1 < i< M do

Calculate the normalized variable z;, (i = 1, ..., M)
using Eqn. (9);
foreach j, 1 <j < R do
Calculate the weighting coefficient B; ; (z;)
using Eqn. (7) and (8) with the normalized value
Zi;
end
end
Output W (X);; = Bjx (z)
Algorithm 2: Single M I (X, Y, R, k)

Input: Random variable measurements X = {x;, ...,
xy) and Y = {yy, ...,yar}, number of bins R, B-Spline
order k

Output: M I (X, Y)

Call WM (X, R, k) to get W (X);

Call WM (Y, R, k) to get W (Y);

foreach j, 1 <j < R do

Calculate the probability of each bin for X and Y';

1
px(a) = M Zf‘fl W(X)ij:

1
(b)) =, S Wi
end
Calculate the self entropy H (X) and H (Y);

HX) = = Y laiog(Pu(@));

R
H(Y) = = py(by)log(Py(b));
foreach k, 1 < k< R do

foreach /, 1 </ <R do
Calculate joint probabilities;

plaw) = | S (W) x W)

end
end
Calculate the joint entropy;

R R
HX,Y) == > plaw bi)log(p(ar, br));
Calculate the mutual information using Eqn. (3);
The Single_MI algorithm shows how the MI for one
pair of random variables is calculated. Practical applica-
tions of MI usually have a large number of random vari-
ables as input, where the mutual information of each
pair of variables needs to be computed. For example, in
this paper we are interested in the analysis of gene
expression data, where the input consists of N genes Q
= {Xy, .., Xn}, where N is typically a few thousands. For
each gene X; we have M gene expression measurements;
ie. X; = {wi1, ..., x;pr }. We then want to calculate M [
(Xi, X;) for all 1< i < N - 1, i <j < N. The resulting

Shi et al. BMC Research Notes 2011, 4:189
http://www.biomedcentral.com/1756-0500/4/189

matrix of pairwise MI values can be used as input to a

subsequent clustering algorithm. The algorithm to cal-

culate all pairwise MI values is outlined in Algorithm 3.
Algorithm 3: Pairwise_MI (Q, R, k)

Input: N Random Variables Q = {Xj, ..., X5} con-
sisting of M measurements each; i.e., X; = {¥;1, .., X;ar }
for all 1 < i < N; number of bins: R; B-Spline order: k.

Output: M I (X;, X)) forall1<i<N-1,i<j<N

foreach i, 1 <i < N do

W M (X, R, k);
end
foreach i, 1 <i<N-1do

foreach j, i <j < N do

Call Single _MI (X;, X}, R, k) to calculate MI for
this gene pair using Algorithm 2;

end

end

Complexity Analysis

The most time consuming step of Algorithm 1 is the
inner for-loop. Assuming that the evaluation of a B-
spline function call takes O(k) time, the time complexity
of this step is O(M x R x k). We further need O (M x
R) space to store the output weighting matrix. Since W
M (X, R, k) is called N times in Algorithm 3, this leads
to a time complexity of O (N x M x R x k) and space
complexity of O (N x M x R) for the first for-loop. The
nested for-loop of Algorithm 3 calls Algorithm 2 O(N?)
times. The time consuming part of Algorithm 2 is deter-
mined by the nested for-loop which has time complexity
O (M x R*). Thus, the overall time complexity of Algo-
rithm 3 is O (N?> x M x R?). Note that k and R are
usually significantly smaller than N and M.

CUDA Programming Model

As an extension of C/C++, CUDA (Compute Unified
Device Architecture) is used to write scalable multi-
threaded programs for CUDA-enabled GPUs [16].
CUDA programs can be executed on GPUs with NVI-
DIA’s Tesla unified computing architecture. Examples of
CUDA enabled GPUs ranging from GeForce 8/9/200,
Tesla 800/1000, C1060, C2050, to Quadro FX 3000/
4000/5000 series.

CUDA programs contain a sequential part, called the
kernel program. The kernel is written in conventional
scalar C-code. It represents the operations to be per-
formed by a single thread and is invoked as a set of con-
currently executing threads. These threads are organized
in a hierarchy consisting of so-called thread blocks and
grids. A thread block is a set of concurrent threads and
a grid is a set of independent thread blocks. Each thread
has an associated unique ID. Similar to MPI processes,
CUDA provides each thread access to its unique ID
through corresponding variables. The total size of a grid

Page 4 of 10

(dimGrid) and a thread block (dimBlock) is explicitly
specified in the kernel function-call:

Kernel <<<dimGrid, dimBlock >>>(parameter list);

The hierarchical organization into blocks and grids
has implications for thread communication and syn-
chronization. Although threads located in different
blocks cannot communicate or synchronize directly,
threads within a thread block can communicate through
a per-block shared memory (PBSM) and may synchro-
nize using barriers. The Tesla architecture supports
CUDA applications using a scalable processor array.
The array consists of a number of streaming multipro-
cessors (SM). In the latest Fermi architecture [17], each
SM contains 32 scalar streaming processor (SP) cores,
which share a PBSM of size up to 48 KB. All threads of
a thread block are executed concurrently on a single
SM. The SM executes threads in small groups of 32,
called warps, in single-instruction multiple-thread
(SIMT) fashion. Thus, parallel performance is generally
penalized by data-dependent conditional branches and
improved if all threads in a warp follow the same execu-
tion path. There are two types of parallelism supported
by CUDA. First, a large number of threads can run in
parallel independently. We call this type of parallelism
the coarse-grained. Second, multiple threads within each
thread blocks can co-operate on some memory spaces
(such as the shared memory) simultaneously. For
instance, shared memory I/O request made of n
addresses can be serviced in a single clock cycle at the
same time. Threads in the same thread block can coop-
erate together by efficiently sharing data and synchro-
nizing their execution to coordinate memory access
with other threads. We call this type of parallelism fine-
grained.

Previous work on using CUDA for computational
biology focused on sequence alignment [18-21], and
molecular dynamics simulations [22]. In this paper we
present the parallel B-spline function based MI estima-
tion which can help to infer GRNs using CUDA. So far,
parallel MI estimation using B-splines has been limited
to multi-threading on multi-core CPUs [7] and MPI on
distributed memory clusters [8,23]. The results pre-
sented in this paper indicate that the CUDA approach
can provide higher performance at reasonable hardware
cost.

Methods
Parallel MI Estimation using CUDA
Algorithm 4: CUDA-based MI estimation algorithm

Input: N genes, each with M experiments.
Output: Pairwise MI values.

/*Host programs executed on CPU*/
Initialize parameters controlling MI estimation;

Shi et al. BMC Research Notes 2011, 4:189
http://www.biomedcentral.com/1756-0500/4/189

Load gene expression data into GPU device memory
and launch the kernels;

/*Kernel program executed on GPU*/;

Compute the WM for each gene (Kernel 1);

Check the data integrity of the input data (Kernel 2);
Compute the self entropy for each gene (Kernel 3);
Compute the joint entropy and MI value for each
gene pair (Kernel 4);

/*Host programs executed on CPU*/

Read back results to CPU and output;

Algorithm 4 shows the pseudocode of our CUDA-
based MI estimation algorithm. There are four CUDA
kernel programs in our algorithm. In Kernel 1 the gene
expression data is divided evenly into subsets according
to the total number of thread blocks. All thread blocks
then work in parallel to compute the probabilities for
the local gene subset using the Algorithm 1. The prob-
abilities of each gene are stored in the WMs. In Kernel
1, threads in the same thread block process each WM
in a fine-grained parallel fashion. Before computing the
self entropy for each gene using Kernel 3, we use Kernel
2 to check the integrity of the gene expression data first.
The execution of Kernel 2 is necessary if there are blank
values (caused by missing experiments) in the gene
expression data. In Kernel 4, WM pairs are distributed
evenly to all thread blocks. Threads in the same thread
block then work in a fine-grained way to compute the
MI value for each gene pair. Figure 1 shows our algo-
rithm framework for CUDA-MI.

Parallel Computation of WM

Kernel 1 is used to compute WMs from gene expression
data. We take advantage of the inherent parallelism of
WM calculation and design parallel algorithms using
the fine-grained method. In our algorithm, the gene
expression data is first divided evenly into subsets
according to the total number of thread blocks. Each
thread block then computes WMs for the allocated sub-
sets of gene expression data. Since all elements in the
same row of the WM can be computed independently,
the WM can be computed row by row in parallel. In
order to speed up the I/O operations, the rows are
stored in high-performance shared memory arrays. The
size of each shared memory array is R values, which
equals the number of bins. In the kernel program there
are R threads working in the ne-grained concurrent way
to calculate each row of the WM. Assuming there are
M rows in a WM, we partition the WM into small sized
batches so that each batch can be mapped into the
shared memory (see Figure 2). In Figure 2, the size of
each batch is Q x R. The WM can then be computed
batch by batch. Figure 3 shows that totally Q x R shared
memory space is required to calculate each batch.

Page 5 of 10

Initialization and data
preprocessing

'

Thread block 1 «ee | Thread block m,

Thread 1 e« Thread n,

CPU host

Thread 1 eee Thread n,
Calculating WMs in a Calculating WMs in a
fine-grained parallel fine-grained parallel
way way

GPU
kernel 1

The WMs are stored in the GPU global
memory for further processing

Check data integrity using Kernel 2

v

Compute self entropy using Kernel 3

WM pair set 1 WM pair set m

Thread block m,

Thread 1 e« Thread n,
. ‘ Computing MI in a fine-

grained parallel way
‘ }CPU host

Thread block 1

Thread 1 e+ Thread n,

GPU
kernel 4

Computing MI in a fine-
grained parallel way

~

\

‘ Result readback to CPU for output

Figure 1 The algorithm framework for CUDA-MI.

In practice, there are R + k - 1 threads working in
Kernel 1 in the fine-grained concurrent way to calculate
each row of the WM. Thus there are totally Q x (R + k
- 1) threads to compute the WM for each gene. It
should be noted that the computation of the WM for
each gene may span into different thread blocks because
the maximum threads for each GPU block is limited
and the size of the WM is varying with the size of the
experiment A, the bin number R and the spline order k.

The reason for using R + k - 1 threads instead of R
threads for computing each row of WM is because the
B-spline function in Eqn. (8) is recursively defined. In
order to compute each row of the WM efficiently, we
unwind the recursion relationships in Eqn. (8) into k
dependent steps. In each step, R + k - 1 threads work in
the fine-grained concurrent way to calculate the values
of the shared memory array. In the first step, the shared

Shi et al. BMC Research Notes 2011, 4:189
http://www.biomedcentral.com/1756-0500/4/189

Page 6 of 10

0

;
Yo
!
;

M< :

0

~

Figure 2 Assuming there are R bins and M rows in a WM. We
partition the WM into small batches so that the size of each batch
is QxR

.

memory array is initialized using Eqn. (8). In the subse-
quent step, the calculation of each cell on the shared
memory array follows the dependency relationship in
Figure 4. After the last step is done, the first R values of
the shared memory array are the final results for the
current row calculation. Figure 4 illustrates this method
for the parameters k = 3 and R = 10.

After all WMs are computed, Kernel 2 will be invoked
to check the data integrity. Kernel 3 then follows the
first for-loop of Algorithm 2 to compute the self entropy
for each gene. WMs and the self entropy calculated in
Kernel 1 and 3 will be passed to Kernel 4 to compute
the MI values for all gene pairs.

Parallel Computation of Ml
According to Algorithm 3, two steps are involved in
Kernel 4. Firstly, the joint entropy should be calculated

] 2 3 e R

S] X

S2 (XX]

[d [d [d

(] (] (]

L] L] L]

SQ (XX]
Figure 3 There are R bins and Q rows in a WM batch. S, S, ..,
So are shared memory arrays to store each row of the batch. The
size of each shared memory array is R values (the number of bins).

1 2 3 4 5 6 7 8 9 10 11 I

SIUMALAALR LA A

\MAMAMANN
BHGESUGHGE.
\/ AVAVAV!

1
FAVAVAVAVAYAYAYA

AR AR 2R 2R 2R 2R AR |

1 2 3 4 5 6 7 8 9 10

Figure 4 lllustration of unwinding the recursive Eqn. (8) into k
dependent steps using k = 3 and R = 10 for computing one
row of a WM. S is the shared memory array. In each step, 12
threads work together to compute the values of S. After 3 steps, the
first 10 values in S is the final result.

N

using Eqn. (2) and (6). Secondly, we need to compute
the MI values using Eqn (3). Profiling of these two steps
for different datasets reveals that more than 99% of the
overall runtime is spent on the first step. In order to
calculate the joint entropy for a pair of genes, we need
to perform matrix multiplication operations between the
corresponding WMs using Eqn. (6). We have designed
and implemented a tiled matrix multiplication algorithm
to carry out this step (see Figure 5). Our method is
similar to the matrix multiplication with shared memory
example in the CUDA SDK [24]. However, instead of
dividing WMs into square matrices as in [24], we divide
them into sub-matrices of size Tile width x Bin_ num-
ber in order to make full use of the power of shared

s
Tilel B E
- [}
™
H
Weighting Matrix B <
k=
. 2
Tile2 B 2
2
=
Weighting Matrix A
A
P
o]
Joint 2
Tilel A Tile2_A Weighting %
Matrix C g
3]
«——P> >
Tile width Tile width Bin number
Figure 5 The tiled method to carry out matrix multiplication
operations between two WMs.

Shi et al. BMC Research Notes 2011, 4:189
http://www.biomedcentral.com/1756-0500/4/189

memory. We call these sub-matrices the tiles. In Figure
5 each WM is divided into two tiles. Then the matrix
multiplication C = A x B can be implemented as C =
Tilel A x Tilel B + Tile2 A x Tile2 B. Here, C is the
joint WM. By dividing WMs into small tiles, we can
store them in the fast shared memory and thus improve
the performance greatly.
Algorithm 5: CUDA Kernel 4
Input: WMs for each gene.
Output: Pairwise MI values.
foreach i, <1 <i<N-1do
foreach j, i <j < N do
Assign (i, j)-th pair of WM to one thread block;
R x R threads in each thread block work in
parallel following the two for-loops in Algorithm 2 to
compute the joint WM by doing tiled matrix multiplica-
tion for the current WM pair;
One thread in this block is used to compute
the joint entropy and MI;
end
end
In practice, a cyclic procedure is used in the kernel
program to implement the tiled matrix multiplica-
tions. Each thread block first loads the current tile
pair from global memory to shared memory. Then
each thread computes one element of the tiled multi-
plication matrix. In the subsequent iteration, the next
tile pair is loaded and multiplied. The tiled multipli-
cation matrix will then be updated. This procedure
will continue until all tile pairs are computed. The
final tiled multiplication matrix is the joint WM we
want to compute. At last, we calculate the MI value
for the current gene pair. Algorithm 5 shows the
pseudocode of our CUDA implementation of the par-
allel algorithm for Kernel 4.

Partitioning
Algorithm 6: CUDA-based MI estimation with partition
Input: N genes, each with M experiments.
Output: Pairwise MI values.
/*Host program executed on CPU*/
Initialize parameters controlling MI estimation;
Partition gene expression data into P groups ;
foreach i, 1 < i< P do
/*Kernel program executed on each thread*/
Load i-th gene data group into the GPU device
memory and compute WM for each gene using Algo-
rithm 1;
Write the WMs to CPU RAM,;
end
Partition WMs into Q groups;
foreach i, 1 <i < Qdo
/*Kernel program executed on each thread*/

Page 7 of 10

Load i-th WM group into the GPU device mem-
ory and compute MI values using Kernel 2, Kernel 3
and Kernel 4;

Read MI values for current WM group back to
CPU;

Write MI values to les;

end
The space complexity for storing all WMs is O(N x M
x R). Using double precision floating point numbers this
translates to 8 x N x M x R bytes of memory. The GPU
global memory is not sufficient to load all WMs for par-
allel computation in the kernel for large datasets. There-
fore, a method is required to partition the pairwise MI
computation into a number of steps, where each step
requires only a subset of WMs. By partitioning both the
gene expression data and WMs into small groups, we can
process large datasets using limited GPU device memory.
Our partitioning method is illustrated in Algorithm 6.
The method shown in Algorithm 6 divides the gene

expression data and WMs into smaller groups, which
can be stored within the GPU global memory. Note
that, the memory complexity of O(N x M x R) is domi-
nated by the computational complexity of O(N* x M x
R?). Therefore, the required data transfer time can be
completely hidden by the computation time.

Results and Discussion

We have implemented the double precision CUDA-MI
using CUDA Toolkit 3.0 and evaluated it on the follow-
ing CUDA-enabled hardware:

- Nvidia Tesla C2050: 1.15 GHz engine clock speed,
14 multiprocessors, 3 GB GDDR5 device memory, 48
KB shared memory/multiprocessor.

Tests have been conducted with this card installed in
a PC with an Intel Quad-Core i7-920 2.66 GHz CPU, 12
GB RAM running Linux Fedora 10.

We have used CUDA-MI to estimate MI values for
different gene expression datasets. Two types of datasets
are used in our simulations. One type consists of real
datasets, the other type contains randomly generated
simulated datasets for testing scalability. The number of
genes and experiments in these datasets are shown in
Table 1. In this table, the “nne” and “nasc” prefixed
datasets are downloaded from. The two Yeast datasets
are downloaded from the Eisen Lab website http://rana.
Ibl.gov/EisenData.htm. They are all real gene expression
datasets. To further test the scalability of our CUDA-
MI, we have additionally used simulated datasets with a
varying number of genes and experiments. The simu-
lated datasets were produced by ourselves and are listed
as $2000_1000 to S10000_4000 in Table 1. We have
compared the performance of our implementation to a
widely used B-spline function based sequential MI

http://rana.lbl.gov/EisenData.htm
http://rana.lbl.gov/EisenData.htm

Shi et al. BMC Research Notes 2011, 4:189
http://www.biomedcentral.com/1756-0500/4/189

Table 1 Datasets used for performance evaluation
Dataset ID

Number of Genes Number of Experiments

nne2048_911 2048 911
nne4096_911 4096 911
nasc2048_2996 2048 2996
nasc4096_2996 4096 2996

Yeast_6221_80 6221 80

Yeast_6307_215 6307 215
$2000_1000 2000 1000
54000_1000 4000 1000
S8000_1000 8000 1000
54000_3000 4000 3000
54000_4000 4000 4000
54000_5000 4000 5000
$10000_2000 10000 2000
510000_3000 10000 3000
510000_4000 10000 4000

estimation program - MIBE which is available from the
author of [7]. In our tests we have used the double pre-
cision and multi-threaded version of MIBE with four
threads on our quad-core workstation. It is compiled by
gce 4.3.2 with all available compiler optimizations
enabled and runs on an Intel Quad-Core i7-920 2.66
GHz CPU. In our experiments, we used the MIBE
default parameters R = 10 and k = 3 for both MIBE and
CUDA-MI. Both tools use double precision floating
point accuracy.

Table 2 shows the runtime performance of MIBE and
CUDA-MI for processing different gene expression

Table 2 Comparison of runtime (in seconds) between
multi-threaded MIBE (4 threads) and CUDA-MI

Page 8 of 10

datasets. From Table 2 we can see that CUDA-MI
achieves speedups of up to 82 compared to the multi-
threaded MIBE. Because of the big memory usages of
datasets S10000_2000, S10000_3000, and S10000_4000,
the partitioning method (discussed later in Methods) is
used to process them. Performance using the partitioning
method is shown in bold characters in Table 2. From
Table 2 we can see that the speedup of CUDA-MI
improves for a larger number of genes and measure-
ments. There are two reasons for this observation. Firstly,
there is higher arithmetic intensity for a larger number of
genes and measurements. Secondly, the relative influence
of the kernel overhead is reduced for bigger datasets.
Table 3 shows the runtime performance of MIBE and
CUDA-MI for processing the n1ne4096_911 dataset using
different parameters. The value of spline order ranges
from 3 to 5 and the number of bins ranges from 10 to 20.
From Table 3 we can make two observations:

1. The speedup does not change significantly with a
larger value of spline order.

2. The speedup improves significantly with a larger
number of bins.

The reason for Observation 1 is that the spline order k
does not have much impact on the overall runtime of
the MI estimation algorithm. On the contrary because
of the quadratic item R? in the Big O notion, the value
of R influences the performance greatly. From Algo-
rithm 5 we can see that in CUDA-MI totally R x R
threads are used. This means a larger number of threads
are used with a larger number of bins. Therefore
CUDA-MI can work more efficiently with larger num-
ber of bins R, which explains Observation 2. We also
have compared the runtime performance of CUDA-MI
to the MPI based TINGe software [23] running with
MPI installed on an Intel Quad-Core i7-920 and eight
MPI processes for the datasets shown in Table 1. For all

ID MIBE CUDA-MI Speedup tested datasets except the nasc2048_2996 dataset, MIBE
nNe2048_911 22087 1478 149 is able to outperform TINGe on the same hardware.
nne4096_911 867.35 4517 19.2
nasc2048_2996 217465 4489 484 Table 3 Comparison of runtimes (in seconds) for
nasc4096_2996 864528 15346 563 processing the nne4096_911 dataset with various
Yeast_6221_80 246.01 30 82 parameters

Yeast_6307_215 49046 4218 116 Bin Number Spline Order MIBE (4 threads) CUDA-MI Speedup
$2000_1000 229.52 14.58 15.7 10 3 867.35 4517 19.2
S4000_1000 904.86 50.89 17.8 10 4 867.24 46.18 18.8
S8000_1000 3635.11 192.05 189 10 5 868.3 46.54 18.7
S4000_3000 5960.87 148.09 403 15 3 1926.67 60.02 32.1
S4000_4000 7993.99 199.07 40.2 15 4 194745 60.83 320
S4000 5000 13790.19 256.76 53.7 15 5 1949.65 61.77 316

$10000_2000 34315.69 520.12 66.0 20 3 3468.07 10445 332
$10000_3000 51705.18 781.73 66.1 20 4 3657.64 10540 34.7
$10000_4000 68799.74 838.74 82.0 20 5 3658.83 10561 346

Shi et al. BMC Research Notes 2011, 4:189
http://www.biomedcentral.com/1756-0500/4/189

Thus, we have decided only to include a runtime com-
parison between CUDA-MI and MIBE in this paper.

Figure 6 shows the CUDA-MI runtime pro le for data-
set nne4096_911(created using the CUDA profiler). It
can be seen that the Kernel 4 ("joint_matrix_mult”)
takes 61.39% of the total runtime. Kernel 2 ("scan_data”)
occupies 31:93% of the total runtime. As Kernel 2 is
optional, the runtime for the CUDA-MI can be further
reduced if Kernel 2 is bypassed.

Further profiling of CUDA-MI is performed with fixed
spline order 3 and different bin numbers, 10, 15, 20. The
bin number determines the number of threads used in
Kernel 4 and therefore influences efficiency and complex-
ity. The results in Table 4 show that the GPU runtime for
Kernel 4 takes 61.39%, 71.9%, 79.38% of the total runtime
for different bin number. The amount of floating point
operations for the matrix multiplication in Kernel 4 is N
x M x R*. The GFlops for matrix multiplication in Kernel
4 can then be computed as N> x M x R*/t where t is the
Kernel 4 runtime in Table 4. It can be seen that the
GFlops for matrix multiplication is increased by using a
larger bin number. This is because CUDA-MI works
more efficiently with larger number of bins.

We have used the SynTReN [25] software to generate
synthetic datasets from known underlying gene networks.
Three synthetic networks are generated as shown in
Table 5. The networks consist of the same number of
genes (250) and a variable number of experiments (500,
900, and 1200). In order to use CUDA-MI to infer GRNSs,
we convert its output into an adjacency matrix. The adja-
cency matrix is then used by ARACNE [14] to infer
GRNs. We call this method “C-ARACNE”. We have used
the same parameters for ARACNE and TINGe for infer-
ring GRNS, i.e., the P-value for MI threshold is 0.00001
and DPI tolerance is 0.01. TINGe runs on 4 cores using 8
MPI processes. As the underlying network structure is

Hjoint_matrix_mult
Hscan data

B compute_matrix

B compute_self_entropy
B memcpyHtoD

B memcpyDtoH

Figure 6 Pie chart of CUDA-MI kernel functions using the
visual profiler for dataset nne4096_911.

Page 9 of 10

Table 4 GFlops and GPU runtime (in Sec.) of Kernel 4 for
dataset nne4096_911 with fixed spline order and variable
bin number

Bin Number Runtime Percentage GFlops
10 13.24 61.39% 11541
15 22.96 71.9% 149.74
20 3693 79.38% 165.56

known, we can compute the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
by comparing the output with the known network. In
this paper, TP stands for the correctly inferred edges, TN
stands for the correctly removed edges, FP represents
wrongly added edges, and FN refers to wrongly removed
edges. We have calculated sensitivity, specificity and pre-

cision as follows: specificity = , sensitivit
pecificity TN + FP 4
.. P
= , and precision = .
TP + EN TP + FP

The results for inferring GRNs using ARACNE,
TINGe, and C-ARACNE are shown in Table 5. From
Table 5 we can see that C-ARACNE achieves the best
performance in terms of both runtime and quality of
inferred GRNSs.

Conclusions

In this paper we have proposed a CUDA-based parallel
algorithm - CUDA-MI for accelerating MI estimation
using the B-spline function. In order to exploit the
GPU'’s capabilities to accelerate MI estimation, we have
used the fast shared memory, fine-grained parallelism,
and partitioning to implement our algorithm. Our
implementation achieves speedups up to 82 compared
to the multi-threaded MIBE on a modern Intel quad-
core. This result indicates that CUDA-enabled architec-
tures are a highly efficient hardware platform for this
type computation. We also have used the output of
CUDA-MI to infer GRNs. Our experiments show that
compared to ARACNE and TINGe, CUDA-MI can
achieve better performance in terms of both runtime
and inferred GRNs’ quality for synthetic datasets.

Availability and requirements
+ Project name: CUDA-MI
« Project home page: https://sites.google.com/site/
liuweiguohome/cuda-mi
+ Operating System: Linux
+ Programming language: CUDA and C
« Other requirements: CUDA SDK and Toolkits 3.0
or higher, CUDA-enabled GPU with at least 3 G
memory.
« License: none

https://sites.google.com/site/liuweiguohome/cuda-mi
https://sites.google.com/site/liuweiguohome/cuda-mi

Shi et al. BMC Research Notes 2011, 4:189
http://www.biomedcentral.com/1756-0500/4/189

Page 10 of 10

Table 5 Comparison of ARACNE, TINGe and C-ARACNE using synthetic networks

Time (Sec.) Specificity Sensitivity Precision TP TN FP FN

m = 500 ARACNE 188.28 0.995 0.255 0373 98 30575 165 287
TINGe 374 0.995 0.257 0404 99 30594 146 286

C-ARACNE 1.07 0.996 0.291 0448 112 30602 138 273

m = 900 ARACNE 637.56 0.994 027 0378 104 30569 171 281
TINGe 39 0.995 0.265 0.394 102 30583 157 283

C-ARACNE 13 0.996 0.294 0454 113 30604 136 272

m = 1200 ARACNE 13123 0.995 0.283 0.394 109 30572 168 276
TINGe 4.86 0.995 0.273 04 105 30581 159 280

C-ARACNE 146 0.995 0.29 044 114 30595 145 271

Authors’ contributions

HS conceptualized the study, carried out the design and implementation of
the algorithm, performed benchmark tests, analyzed the results and drafted
the manuscript; BS and WL conceptualized the study, participated in the
algorithm optimization and analysis of the results and contributed to the
revising of the manuscript; WMW conceptualized the study and contributed
to the revising of the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 1 March 2011 Accepted: 15 June 2011
Published: 15 June 2011

References

1. Fraser AM, Swinney HL: Independent coordinates for strange attractors
from mutual information. Physical Review A 1986, 33:2318-2321.

2. Pluim JPW, Maintz JBA, Viergever MA: Mutual-information-based
registration of medical images: a survey. IEEE Transactions on Medical
Imaging 2003, 22:986-1004.

3. Tebmann M, Eisenacher C, Enders F, Stamminger M, Hastreiter P: GPU
accelerated normalized mutual information and B-spline transformation.
Eurographics Workshop on Visual Computing for Biomedicine Eurographics
Association; 2008, 117-124.

4. Arsic |, Thiran JP: Mutual information eigenlips for audio-visual speech
recognition. Proc 14th Eur Signal Processing Conf (EUSIPCO) 2006.

5. Zhou X, Wang X, Dougherty ER: Construction of genomic networks using
mutual-information clustering and reversible-jump Markov-chain-Monte-
Carlo predictor design. Signal Processing 2003, 83:745-761.

6. Zhou X, Wang X, Dougherty ER, Russ D, Suh E: Gene Clustering Based on
Clusterwide Mutual Information. Journal of Computational Biology 2004,
11:147-161.

7. Daub CO, Steuer R, Selbig J, Kloska S: Estimating mutual information
using B-spline functions-an improved similarity measure for analysing
gene expression data. 2004, 5.

8. Zola J, Aluru M, Aluru S: Parallel information theory based construction of
gene regulatory networks. Hipc 2008, 336-349.

9. Butte AJ, Kohane IS: Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. Pacific
Symposium on Biocomputing 2000, 415-426.

10. Schéfer J, Strimmer K: An empirical Bayes approach to inferring large-
scale gene association networks. Bioinformatics 2005, 21(6):754-764.

11. D'Haeseleer P, Wen X, Fuhrman S, Somogyi R: Mining the gene expression
matrix: Inferring gene relationshops from large scale gene expression
data. Second International Workshop on Information Processing in Cells and
Tissues 1998, 203-212.

12. Friedman N, Linial M, Nachman |, Pe'er D: Using Bayesian networks to
analyze expression data. Journal of Computational Biology 2000, 7:601-620.

13. Chen X, Chen M, Ning K: BNArray: an R package for constructing gene
regulatory networks from microarray data by using Bayesian network.
Bioinformatics Application Note 2006, 22:2952-2954.

14. Margolin AA, Nemenman |, Basso K, Wiggins C, Stolovitzky G, Favera RD,
Califano A: ARACNE: An Algorithm for the Reconstruction of Gene
Regulatory Networks in a Mammalian Cellular Context. BMC
Bioinformatics 2006, 7(S7).

15. Wilson J, Dai M, Jakupovic E, Watson S, Meng F: Supercomputing with
toys: harnessing the power of NVIDIA 8800GTX and playstation 3 for
bioinformatics problems. Comput Syst Bioinformatics Conf 2007, 387-390.

16. Lindholm E, Nickolls J, Oberman S, Montrym J: NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro 2008, 28:40-52.

17. Nvidia: NvidiaFermiArchitecture.[http://www.nvidia.com/object/
fermi_architecture.html].

18. Manavski SA, Valle G: CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics
2008, 9.

19. Schatz MC, Trapnell C, Delcher AL, Varshney A: High-throughput sequence
alignment using graphics processing units. BMC Bioinformatics 2007,
8(474).

20. Liu'Y, Maskell DL, Schmidt B: CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing
units. BMC Research Notes 2009, 2(73).

21, Liu'Y, Schmidt B, Maskell DL: CUDASW++2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and
virtualized SIMD abstractions. BMC Research Notes 2010, 3(93).

22, Liu W, Schmidt B, Voss G, Mller-Wittig W: Accelerating Molecular
Dynamics simulations using Graphics Processing Units with CUDA.
Computer Physics Communications 2008, 179:634-641.

23, Zola J, Aluru M, Sarje A, Aluru S: Parallel Information Theory Based
Construction of Genome-wide Gene Regulatory Networks. IFEE
Transactions on Parallel and Distributed Systems 2010, 21:1721-1733.

24. CUDA N: NVIDIA CUDA C Programming Guide Version 3.1.1. 2010.

25. den Bulcke TV, Leemput KV, Naudts B, van Remortel P, Ma H, Verschoren A,
Moor BD, Marchal K: SynTReN: a generator of synthetic gene expression
data for design and analysis of structure learning algorithms. BMC
Bioinformatics 2006, 7(43).

doi:10.1186/1756-0500-4-189

Cite this article as: Shi et al.: Parallel mutual information estimation for
inferring gene regulatory networks on GPUs. BMC Research Notes 2011
4:189.

http://www.ncbi.nlm.nih.gov/pubmed/12906253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12906253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15072693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15072693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15479708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15479708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108481?dopt=Abstract
http://www.nvidia.com/object/fermi_architecture.html
http://www.nvidia.com/object/fermi_architecture.html

	Abstract
	Background
	Results
	Conclusions

	Background
	B-spline Based Mutual Information Estimator
	Definition of Mutual Information
	Estimating Mutual Information for Continuous Data
	B-spline Functions
	Sequential MI estimator

	Complexity Analysis
	CUDA Programming Model

	Methods
	Parallel MI Estimation using CUDA
	Parallel Computation of WM
	Parallel Computation of MI
	Partitioning

	Results and Discussion
	Conclusions
	Availability and requirements
	Authors' contributions
	Competing interests
	References

