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Abstract

polysaccharide metabolism and arginine kynase activity.

Background: Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for
studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are
agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming
to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally
friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata,
one of the pest ants with broad geographic distribution in South America.

Results: The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta
laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level
of gene expression, being responsible for three basic biological functions: energy conservation through redox
reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism.
Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified
146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis,
development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior,

Conclusion: The generation and analysis of expressed sequence tags from Atta laevigata have provided important
genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a
more specific and environmentally friendly method for the control of agricultural pest leafcutters.

Background

The tribe Attini comprises over 200 ant species [1]
which culture mutualistic fungi for their feeding [2].
The most evolutionary derived attines are the leaf-cut-
ting ants in the genera Atta and Acromyrmex which are
considered major herbivores in the tropics [3].

Some Atta species contributes to nutrient cycling,
aeration and drainage of water in the soil [4], as well as
maintenance of plant diversity [5,6]. Their nests were
also found to host arthropods [7-9], reptiles and amphi-
bians [4], and microorganisms [10-14].
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However, despite of these ecological roles, many leaf-
cutter species are considered agricultural pests which
impose severe economic damages to agriculture [15,16].
Some of the characteristics contributing to the pest sta-
tus of leafcutters are their ability of exploiting a great
variety of plant species [17], reaching high population
density [15] and long life spanning queens constantly
laying eggs for up to 15 years [18].

Atta laevigata is a pest leafcutter distinguished by a
very large and shiny head in soldiers, a characteristic
which has rendered the species with the popular name
“cabeca de vidro” (meaning glass head). It can be found
in Venezuela, Colombia, Guyana, Bolivia, Paraguay and,
in Brazil, from the Amazonian Rain Forest in the North
to the Parand state in the South [19]. It cuts leaves from
many plantations, like pine tree [20], cocoa [21] and
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eucalyptus [22], as well as wide variety of native plants
from different biomes such as the Cerrado or the Rain
Forest, where its intense herbivory challenges reforesta-
tion of degraded areas [23,24].

The control of pest leafcutters in small properties can be
done by biological methods [25] or even utilizing the
waste material generated by the ants [26], but in extensive
monocultures this control utilizes massive amounts of
broad spectrum insecticides which are toxic to other ani-
mals and persist in the environment [27]. Thus, the devel-
opment of a more specific and environmentally friendly
process for controlling the leafcutters is required [28].

Genomic studies can contribute with that by charac-
terizing genes involved in key functions for the leafcut-
ters, like longevity, fertility and plasticity to exploit
different vegetations, raising more specific targets for
the ant control. Genomics is also a valuable resource for
ecological and evolutionary studies of leaf-cutting ants.

In the present investigation, we carried out a genomic
study in the pest leafcutter Atta laevigata by generating
3,203 expressed sequence tags (ESTs) which character-
ized 2,006 unique sequences (US). We postulate impor-
tant differences in expression level among the
transcripts and identified 146 potential target sequences
for the control of pest leaf-cutting ants.

Methods

EST generation

Two grams of soldiers and major workers of Atta laevi-
gata were macerated under liquid nitrogen, total RNA
was extracted with the TRIzol method (Invitrogen, UK)
and mRNA was purified using the PolyATract System
(Promega, USA). The CloneMiner cDNA Library Con-
struction Kit (Invitrogen, UK) and 2 pg of mRNA were
utilized for the synthesis of first and second cDNA
strands which were then size-fractioned in a 1.0 ml
Sephacryl S-500 resin column, inserted in a pDONR222
plasmid (Invitrogen, UK) and transformed into DH10B
Escherichia coli. Cells were plated onto solid Circle
Grow medium (QBIO-GENE, Canada) containing 25 pg.
ml™ kanamicin and individually picked into a perma-
nent culture plate with 96 wells. After 22 hours growth
in liquid Circle Grow medium (25 mg.ml™ kanamicin),
plasmid DNA was purified by alkaline lysis [29] and
sequenced in reactions containing 300 ng template
DNA, 5 pmol M13 forward primer and the DYEnamic
ET Dye Terminator kit reactant (GE Healthcare, UK),
according to the manufacturer’s protocol. The amplified
products were resolved in a MEGA-BACE 1000 auto-
mated DNA sequence machine (GE Healthcare, UK).

EST analysis
The pipeline generation system EGene [30] was used to
clean and assemble ESTs in contigs and singlets.
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Sequences were filtered by quality using phred values
>20 and 90% of minimum identity percent in window.
Filtered sequences were then masked against vector and
primer sequences, selected by size (>100 bp) and
assembled using CAP3 [31] with an overlap percent
identity cutoff (p) of 90 and a minimum overlap length
cutoff (o) of 50.

The program Blast2GO (B2G) [32] was used to associ-
ate every Atta laevigata singlet and contig to blastx [33]
results (nr protein database; E-value < 107°), Gene
Ontology (GO) terms [34], InterProScan classification
[35,36] including signal peptide [37] and transmembrane
regions predictions, Kyoto Encyclopedia of Genes and
Genomes (KEGG) maps (http://www.genome.jp/kegg/),
and Enzyme Commission (EC) numbers (IUBMB). The
results generated by B2G and those obtained from Con-
served Domain Database (CCD) were manually
inspected, in order to group contigs and singlets in
functional categories and to infer transcript abundance
in Atta laevigata.

Results and Discussion
EST generation and assembly
The 5" ends of 4,704 clones from the Atta laevigata
¢DNA library were sequenced, resulting 4,482 reads. We
were able to selected 3,203 of these reads, which pre-
sented high-quality and with average length of 418 bp
(Table 1; [GenBank:JG659458 to JG662660, dbEST
ID:73713535 to 73716737, Genome Project 1D:63563]).
The high-quality sequences were assembled in 340
contigs (619 bp average) and 1,666 singlets which we
assume to represent 2,006 unique sequences (US). It is
likely that some of the US came from the same gene
due to non-overlapping ESTs from a single gene or pro-
ducts of alternative splicing [38].

Comparative analysis of Atta laevigata genes

Using Blastx we found that 1,165 (58%) of the character-
ized Atta laevigata US matched significantly (E-value <
10°) with GenBank sequences in the non-redundant
(nr) database (Figure 1A). Most of the best hits (Figure
1B) came from the hymenopterans Apis mellifera [39]

Table 1 EST processing.

Sequence Number %
Reads 4,482 100.00
Filtered by quality 1,241 27.69
Filtered by size 38 0.85
High-quality (after filtering) 3,203 7146
Unique Sequences (US) 2,006 100.00
Singlets 1,666 83.05
Contigs* 340 16.95

*Contigs were composed by 1,537 reads.


http://www.genome.jp/kegg/
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=JG659458
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=JG662660
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Figure 1 Summary of Blastx search results for Atta laevigata sequences. (A) Percent of Atta laevigata sequences with significant matches
(red, Blastx E-value < 10) and non-significant matches (blue) in the GenBank. (B) Number of best hits found in different biological species.
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(677) and Nasonia vitripenis [40] (334) genomes, but
only 10 hits came from the ants Solenopsis invicta,
Lasius niger or Myrmica rubra because ant sequences
are relatively poorly represented in the nr database.

We used B2G program and found GO terms (Figure
2) to 865, EC numbers to 250, predicted signal peptides
in 229, and domain information for 66 Atta laevigata
US, as well as KEGG information. This bulk of retrieved
information and data obtained from CDD were manu-
ally inspected to annotate Atta laevigata US in 27 func-
tional categories (Figure 3).

The number of US per category gives us an idea on
the diversity of genes existing in each cell function. This
diversity was found high within transcripts related with
signaling pathways, membrane or regulation of gene
expression, but very low within transcripts related to
secondary metabolism, cuticular and peritrophic mem-
branes or homeobox.

Variation of the number of reads per contig

The number of reads per contig varied from two to 123,
with 73% of the contigs containing two or three reads
and only 7% containing 10 or more reads (Figure 4).
Therefore few contigs concentrated many reads, i.e.
1.1% (23 out of 2,006) of the contigs contained 18.8%
(603 out of 3,203) of the reads. By dividing the number
of reads (3,203) by the number of US (2,006) it was
found the average of 1.6 reads per contig. Some of the
contigs exceeding this average value are shown in Table
2. Whether the number of reads per contig is related to
gene expression level, it can be assumed that Atta laevi-
gata contains a set of 23 highly expressed genes. Sixteen
of these genes are involved with three major cellular
processes (Table 2): (i) ATP synthesis coupled to redox
reactions in mitochondria (273 reads); (ii) muscle or
cytoskeleton structure (135 reads); (iii) transcription reg-
ulatory processes through homeobox or signaling pro-
teins (95 reads). Gene expression is energetically

expensive and is accompanied by protein synthesis for
the translational process which is even more expensive.
The increasing of the number of transcripts of a given
gene, even in a very small extent, is not a neutral pro-
cess but rather strongly constrained by evolution [41],
and expected to occur only if positively selected. There-
fore, our results suggest that high expression levels have
been positively selected in Atta laevigata for genes
responsible for energy conservation, cell structure and
regulation.

Identification of candidate genes for the control of pest
leafcutters
Inhibition of the translation of genes which play essen-
tial functions in insects by feeding these insects with
dsRNA [42] or using transgenic plants [43] seems a pro-
mising procedure for the control of agricultural pests
[44]. One of the advantages of this procedure is that it
targets mRNA molecules which may be species-specific.

In order to control pest leafcutters by inhibiting gene
translation, one needs to identify and sequence target
candidate genes. Our library was found to contain 146
US which represent potential target genes for the con-
trol of leafcutters, because these US are likely playing
essential functions in Atta laevigata (Table 3). These
target genes are related to antixenobiosis (including
insecticide detoxification), queen longevity, larval devel-
opment, insect immunity or resistance to pathogens,
communication necessary to social tasks, polysaccharide
metabolism or insecticide action.

The function and potential utilization of these 146 US
as targets for the control of pest leafcutters are consid-
ered below.

Antixenobiotic genes

Cytochrome P450, carboxylesterases, and glutathione
transferases are involved in insecticide metabolism [45].
In insects, P450 also participates in the metabolism of
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Figure 2 Distribution of GO terms. The graphic displays the GO terms at level 2 for each category.

many endogenous (including juvenile hormones, ecdys-
teroids, and pheromones) and exogenous compounds
(plant allelochemicals and insecticides) [46].

The enzyme glutathione S-transferase catalyzes the
initial conjugation of insecticides with glutathione. Both
enzyme and glutathione are very abundant in the cells
and essential for detoxification of electrophiles causing
cytotoxic or genotoxic damage [47]. The enzyme may
play a role in insecticide resistance [48], herbicide resis-
tance in plants [49], resistance of cancer cells to che-
motherapeutic agents [50], and antibiotic resistance in
bacteria [51]. In our study we found 25 US in the cyto-
chrome P450 family and 12 US probably related with
detoxification of xenobiotics, including glutathione S-
transferase, glutamate cysteine ligase and aldehyde oxi-
dase (Table 3). All these genes may be important targets
for the control of leafcutters.

Development and longevity genes

Of the 18 US we found (Table 3) involved with develop-
ment, growth and differentiation, four are putatively
related with nervous system development, two of which

contained the immunoglobulin domain: one wrapper
one lachesin homolog. The protein lachesin has a role
in early neuronal differentiation as well in axon out-
growth, cell recognition events, cell adhesion or intercel-
lular communication [52]. The other 14 US in this
category (Table 3) may be involved in different phases
of insect development like egg, or larvae, or develop-
ment of tissues or organs like mesoderma, spermatechae
and antennae.

Queen and worker ants develop from identical eggs,
being genetically identical, but the caste system pro-
duces a long-lived queen and a short-lived worker
with up to ten-fold lifespan differences [3]. Harman
[53] stated that lifespan is determined by the rate at
which oxidative damage occurs due to the accumula-
tion of by-products of oxidative energy metabolism.
Harman’s theory implicates that long-lived organisms
produce fewer reactive oxygen species or have
increased antioxidant production [54], although the
degree of lifespan extension can be sex- or genotype-
specific [55] and sometimes poorly correlated with
antioxidant levels [56].
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Figure 3 Functional classification of Atta laevigata genes. The graphic displays the 1,165 US grouped in 27 functional categories. The colors
represent major functions: blue: metabolism; green: structural; purple: regulation; orange: other; red: control candidates.
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Table 2 Contigs with high read number in the Atta laevigata cDNA library
Contig Reads Rate* Best hit (organism) Function®

311 123 769 COX | (Myrmica rubra) 1

235 52 32.5 Similar to paramyosin CG5939-PA (Apis mellifera) 2

183 47 294 ATP synthase FO subunit 6 (Camponotus sayi) 1

037 43 269 COX Il (Bombyx mandarina) 1

294 40 250 Similar to muscle protein 20 CG4696-PA (Apis mellifera) 2

056 30 188 COX Il (Atta colombica) 1

330 30 188 Actin-5 (Bactrocera dorsalis) 2

289 25 15.6 Similar to limpet CG32171-PD (Apis mellifera) 3

337 20 12.5 Muscle LIM protein (Nasonia vitripennis) 3

273 19 11.9 Cytochrome b (Formica pratensis) 1

268 14 8.8 Similar to muscle LIM protein at 848 (Apis mellifera) 3

046 14 8.8 Similar to CG5023-PA (Apis mellifera) 3

015 13 8.1 Troponin | (Apis mellifera) 2

116 12 7.5 Similar to muscle LIM protein at 84B (Apis mellifera) 3

069 11 6.9 NADH dehydrogenase subunit 4 (Harpiosquilla harpax) 1

328 10 6.3 AGAP005400-PA (Anopheles gambiae) 3

* Number of reads divided per 1.6 which is the mean number of reads (3,203) per US (2,006).
*1. ATP synthesis coupled to redox reactions in mitochondria (273 reads). 2. Muscle or cytoskeleton structure (135 reads). 3. Transcription regulatory processes

through homeobox or signaling proteins (95 reads).

The characterization of genes which are related to
development and longevity in Atta laevigata allows
future investigation on the effect of the expression of
these genes on queen maturation and lifespan, which
are a key features associated with leafcutter pest ability.

Genes associated with immunity and resistance to
pathogens

Pathogens, parasites or injury triggers in insects innate
immune responses that are in essence similar and

comprise both cellular and humoral components. Cellu-
lar mechanisms include phagocytosis by special blood
cells and encapsulation of large invaders [60]. Humoral
responses involve events of proteolytic cascades leading
to melanization [60] and the production of antimicrobial
peptides initiated via two distinct signaling pathways,
Toll and Immune Deficiency, which depend on the
pathogen recognition [61]. There are two types of recog-
nition proteins: peptidoglycan recognition proteins and
Gram-negative bacteria-binding proteins.

Table 3 Candidate genes for the control of pest leafcutter ants

Process [GenBank Acc*] Description us
Antixenobiosis Cytochrome P450 activity 25
[J1332418-J1332429, JI332686-J1332710] Cell detoxification 12
Development and longevity Development, growth and differentiation 18
[JI1332430- JI332440, JI332711-J1332736] Oxidative stress protection 13

Juvenile hormone binding and synthesis 6
Immunity and resistance to pathogens Immune response 29
[J1332441-J1332452, JI332737-)1332761] Serine protease inhibitor 4

Melanization and pathogen encapsulation 4
Communication [JI332453-J1332457, JI1332762-J1332767] Pheromone/odorant binding and transport Ihl
Signaling Generation and stability of signaling 6
[J1332458, JI1332459, JI1332768-J1332773] Acetylcholine receptor 2
Behavior Courtship and behavior 5
[J1332460, JI1332461, JI332774-)1332782] Learning and memory 3

Others 3
Polysaccharide metabolism [JI332462, JI332463, JI332783] Glycogen and starch degradation 3
Intermediary metabolism [JI332464, JI332465] Arginine kynase activity 2
Total 146

*Transcriptome Shotgun Assembly database.


http://www.ncbi.nlm.nih.gov/pubmed/332418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332430?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332711?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332453?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332461?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332782?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/332465?dopt=Abstract
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We found 37 US that may be involved with immunity
or pathogen resistance (Table 3), including the putative
toll like interacting protein, prophenoloxidase subunit 3
and easter CG4920-PA, the last two with role in mela-
nin synthesis. We also found sequences putatively cod-
ing for the antimicrobial peptides hymenoptaecin and
defensin 2, and for the peptidoglycan recognition protein
precursor, as well as transferrin and transferrin 2 which
participate in response to microbial infection by seques-
tering iron that is an essential nutrient for some patho-
gens [62].

Leaf-cutting ants and their mutualistic fungus are con-
stantly challenged by pathogenic microorganisms [63]
which ultimately regulate host population [64]. There-
fore, the 37 US we found probably involved in resistance
to microbial pathogens are important markers for
understanding antimicrobial mechanisms in leafcutters
and putative targets for controlling pest leafcutters.

Communication genes

Communication plays a central part in social insects
necessary for division of labor and task partitioning
which are essential for harvesting food, nursing the
broods and sexual reproduction [65]. Thus, targeting
genes involved in communication seems a promising
strategy for the control of leaf-cutting ants.

Our library contained 11 US probably related to com-
munication, one of them putatively coding for the pher-
omone binding protein (PBP), which is important for
chemical recognition of insect conspecifics by transport-
ing odorant molecules from cuticular pores to receptors
[66]. In Solenopsis invicta, the gene Gp-9, which is a
PBP homolog, seems to have a role in worker ability to
discriminate queens and regulate their numbers [67].
Other important communication gene found putatively
codes for fatty acid binding protein involved in transport
of communication molecules in insects [68].

Four of the communication US we found were in the
lipocalin family which is composed of secreted proteins
binding small hydrophobic molecules or forming macro-
molecular complexes associated with cell surface recep-
tors important for transport, pheromone signaling and
olfaction [69]. These sequences putatively code for the
odorant binding proteins, apolipophorin III or PP238.

We also found three homologs to the chemosensory
protein from Nasonia vitripennis, chemosensory protein
2 from Apis mellifera and chemosensory protein 5 from
Bombyx mori. Chemosensory proteins may be specifi-
cally expressed in sensory organs which are important
in ant behavior [70] and participate in cellular processes
that require lipophilic compounds [71].

The putative genes gustatory receptor and dihidroora-
tate dehydrogenase involved in odorant reception in
insects were also found.
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Signaling genes

Tetraspanin is an important signaling membrane protein
expressed in antennae of moths and honeybees [72],
being a molecular facilitator of signal transduction and
cell adhesion [73]. In our library, six US putatively cod-
ing for tetraspanin were present.

We also found two US corresponding to nicotinic
acetylcholine receptor which plays a role in visual pro-
cessing, learning and memory, olfactory signal proces-
sing, and mechanosensory antennal input in honeybee
[74]. These receptors are targets of neonicotinoids insec-
ticides used against piercing-sucking pests [75].

Behavior genes

Eleven Atta laevigata US in this category (Table 3) were
homolog to genes involved in behavior, learning, mem-
ory and courtship in Apis mellifera, Drosophila melano-
gaster or Solenopsis invicta. Some of the genes
controlling social behavior and complex tasks or abilities
may be specific to Hymenoptera [38] and thus may be
specific targets for the control of pest leafcutters.

Polysaccharide metabolism genes

Food sources for worker leafcutters relies mostly on the
plant polysaccharides cellulose, xylane and starch, which
are degraded by extracellular enzymes secreted by the
mutualistic fungus [76], generating mono and disacchar-
ides readily assimilated by the ants [77]. Degradation of
cellulose by the mutualistic fungus generates cellobiose
[10] and degradation of starch generates maltose, both
disaccharides being consumed by leafcutters [77]
through the production of alpha- and beta-glucosidase,
respectively. In addition, workers assimilate starch at
certain extent [77], which demands production of alpha-
amylase.

Our library contained 59 US (Figure 3) corresponding
to genes related to carbohydrate metabolism, including
alpha-glucosidase-like, beta-glucosidase and alpha-amy-
lase (Table 3) which are promising targets for leafcutters
control.

Arginine kinase gene

Arginine kinase catalyses the reversible transfer of phos-
phate between ATP and guanidine substrates and acts
in cells that need readily available energy sources [78].
This enzyme activity in cockroaches was found to be
inhibited by nitrates and borates [79] which were then
used as insecticides. Our library contained two US
which are putative arginine kinase genes (Table 3) that
may also be important for the control of leafcutters.

Future perspectives
The 146 US here proposed as targets for the control of
leaf-cutting ants can be used for primer designing in order
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to study gene expression through real time PCR. For
instance, over-expression of sequences here proposed as
related to immunity or antixenobiosis in A. laevigata chal-
lenged by pathogens or insecticides should validate the
protective role of the respective gene products in leafcut-
ters exposed to adverse conditions, helping us to under-
stand the molecular basis of pest ant resistance to
hazardous chemicals. A future scenario can be envisaged
in which inhibition of gene expression, gene translation or
the related protein activities would make pest leafcutters
more susceptible to pathogens, insecticides or anti-herbiv-
ory chemicals produced by crops. In summary, inhibition
of genes or gene products related to the processes
described in Table 3 may specifically hamper the coloniza-
tion of crop areas by pest leafcutters.

Conclusion

Leaf-cutting ants are the major neotropical herbivores,
many of which are important agricultural pests. We
characterized 2,006 unique sequences (US) in Atta laevi-
gata, one of the most geographically spread pest leaf-
cutting ant in South America, and found that 16 of the
genes are likely under positively selected high expression
and responsible for energy conservation or cell structur-
ing or regulation. Another set of 146 US which play
important part in anti-xenobiosis, longevity, immunity,
development, communication, nutrition or insecticide
action were identified as putative targets for the control
of pest leafcutters. Our findings provided genetic back-
ground for basic and applied studies on these ants.
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