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Abstract

Background: Snakes provide a unique vertebrate system for studying a diversity of extreme adaptations, including
those related to development, metabolism, physiology, and venom. Despite their importance as research models,
genomic resources for snakes are few. Among snakes, the Burmese python is the premier model for studying
extremes of metabolic fluctuation and physiological remodelling. In this species, the consumption of large
infrequent meals can induce a 40-fold increase in metabolic rate and more than a doubling in size of some
organs. To provide a foundation for research utilizing the python, our aim was to assemble and annotate a
transcriptome reference from the heart and liver. To accomplish this aim, we used the 454-FLX sequencing
platform to collect sequence data from multiple cDNA libraries.

Results: We collected nearly 1 million 454 sequence reads, and assembled these into 37,245 contigs with a
combined length of 13,409,006 bp. To identify known genes, these contigs were compared to chicken and lizard
gene sets, and to all Genbank sequences. A total of 13,286 of these contigs were annotated based on similarity to
known genes or Genbank sequences. We used gene ontology (GO) assignments to characterize the types of genes
in this transcriptome resource. The raw data, transcript contig assembly, and transcript annotations are made
available online for use by the broader research community.

Conclusion: These data should facilitate future studies using pythons and snakes in general, helping to further
contribute to the utilization of snakes as a model evolutionary and physiological system. This sequence collection
represents a major genomic resource for the Burmese python, and the large number of transcript sequences
characterized should contribute to future research in this and other snake species.

Background

A major innovation enabled by next-generation sequen-
cing technologies has been the ability to assemble exten-
sive genomic resources for non-traditional model
species. This expanding ability has in turn enabled a
renaissance in the use of diverse model species to deli-
ver novel insights not previously possible. Among the
emerging model species archetypes are species that
demonstrate extreme phenotypes. There is widespread
interest in generating necessary genomic resources to
facilitate research on these new models of extreme ver-
tebrate phenotypes.
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One such group for studying extreme phenotypes are
the snakes. Snakes have become increasingly prominent
model systems [1], primarily because they represent a
vertebrate model system that possesses numerous
important extreme adaptations at the morphological and
developmental [2-4], physiological and metabolic [5,6],
and molecular levels [7-11]. The Burmese python
(Python molurus bivittatus) in particular has become a
focal model system for studying extreme physiological
remodelling and metabolic fluctuations that accompany
feeding [12-14]. A major problem in studying snakes,
however, is that they are highly divergent from other
model vertebrate systems that already have genomic
resources. The closest vertebrate to snakes with an avail-
able complete genome sequence is the Anolis lizard (just
now being formally published [15]), which last shared a
common ancestor with the python ~166 MYA [9,16].
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Otherwise, the next closest vertebrates with complete
genomes are birds (chicken, finch), which last shared a
common ancestor with snakes ~275 MYA [16].
Although some studies have utilized high-throughput
sequencing with short reads to study snake transcrip-
tomics, prior to the Anolis genome they have been con-
strained to using bird reference genomes, and have not
produced sets of assembled and annotated transcripts
[17,18]. Other than the Anolis genome, the only existing
genomic/transcriptomic resource relevant for studying
snakes is a transcriptome data set for the garter snake
(Thamnophis sirtalis) [19]. Although more closely
related than the lizard, this species is also highly evolu-
tionarily distant from the python, as these two species
last shared a common ancestor 60-100 MYA [9,16].
Thus, to advance prospects for research utilizing
pythons as a model system, a python-specific transcrip-
tome set is needed.

Here, we have assembled a moderate-sized set of tran-
scriptome data from 454 pyrosequencing to create a
robust transcriptome reference for future studies utilizing
pythons as models for research. We specifically chose to
use the more expensive per-base 454 platform for its
longer read lengths, which should favor higher assembly
accuracy and de novo assembly of transcripts. Since our
primary goal was to establish a relatively large well-anno-
tated baseline set of snake transcript sequences, we
sequenced cDNA libraries generated from multiple
sources (heart and liver) and various time points before
and after feeding. These sequences were assembled into a
combined set of annotated transcript contigs.

Results and Discussion

Sequencing and contig assembly

In sum, 983,979 reads totaling >210 megabases (Mbp)
were sequenced from python cDNA libraries from heart
and liver tissue (Table 1). Combining all ¢cDNA
sequences from python heart and liver samples, we
assembled 37,245 contigs with a total length of
13,409,006 bp, and with an average GC content of
41.52%. This assembly included 669,607 of our reads,
leaving 314,372 singleton reads not incorporated into
contigs. Among these contigs, most were sampled by
multiple reads, a large number (805) had 100 reads or

Table 1 Summary of the number of reads and base pairs
(bp) collected for tissues and conditions

Heart Heart Fed Heart Fed Liver Total
Fasted (24h) (72h)
Reads 446,027 215218 148,230 174,504 983,979
b.p. 104623915 38,684,247 27,785,727 38,983,279 210,077,168

Data tabulated includes post quality filtered 454 sequence reads. Raw data
are deposited in the NCBI Sequence Read Archive (SRA: SRX018167 and
SRX057862)
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Figure 1 Contig length versus reads per contig (A) and contig
coverage depth (B). Results shown on a log scale for all contigs.

more (Figure 1). The top 5,000 contigs had lengths
greater than 573 bp, and the top 1,000 contigs were
longer than 1,420 bp (Figure 1 and 2A).

In the bulk of the data, there is a clear correlation
between contig size and read number (Figure 1A), as is
expected from random sequencing. The nucleotide-level
contig coverage (estimated based on the average read
length of ~235 bp) had a mean of 10.5 and a median of
3.5, with 8,084 contigs having > 5 fold average nucleo-
tide coverage. Most contigs are probably close to but
not quite full length, since most are covered 2-12 fold
with reads at the nucleotide level (Figure 1B).

Annotation of contigs
We annotated genes based on BLAST similarity to
known genes in a hierarchical fashion, first based on
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Figure 2 Contig length distributions for various contig sets.
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best tBLASTx hits to known Ensembl Anolis and
chicken genes that are thought to be one-to-one ortho-
logs with human genes. Transcript contigs were also
matched to known genes based on BLASTx searches
against the Genbank non-redundant (nr) protein data-
base (and annotated based on matches), and any
remaining genes were annotated based on megaBLAST
hits to the entire nr nucleotide collection. Of the 37,245
assembled transcript contigs, 13,286 were matched to
some known gene through this hierarchical process, and
were thus annotated based on similarity to known
genes. Thus, we were able to assign some annotation to
35.7% of all contigs. Compared to the length distribution
of all contigs (Figure 2A), the distribution of contig
lengths for those with any annotation shows a notable
enrichment for the annotation of longer contigs (>1,000
bp; Figure 2B).

Among the contigs that were annotated, 3,822 had a
best BLAST match to known chicken genes that are
one-to-one human orthologs, and 4,302 hit known Ano-
lis lizard one-to-one human orthologs. Ensembl gene
IDs were assigned to transcript contigs based on hits
with chicken and Anolis genes, and human orthologs
were assigned to each contig based on the Ensembl
orthologous gene relationship estimates. We considered
the annotation of our contigs to be “high confidence
annotations” when Ensembl IDs from Anolis and
chicken BLAST hits both linked back to the same
human ortholog; 3,046 of our contigs fell into this class
(Figure 2C).

For contigs with high-confidence annotations, we
compared the protein sequence divergence between our
python contigs and the lizard and chicken matches. It is
estimated that the python and the Anolis lizard last
shared a common ancestor ~166 MYA [9,16], whereas
the chicken and python last shared an ancestor ~275
MY [16] (Figure 3A). Thus, as expected, the protein
sequence divergence between the lizard and python pro-
teins (mean = 0.73) is notably less than that between
chicken and python proteins (mean = 0.66), although
the variation in divergence is quite large (Figure 3B-C).
There also is a fairly consistent linear relationship (R* =
0.35389; Figure 3C) between the python-lizard and
python-chicken protein divergence. This indicates that,
overall, the protein sequence divergence between python
and lizard BLAST matches tends to be proportional to
that between the corresponding python and chicken
BLAST matches. This correlation fits the expectation
that the chicken and lizard BLAST matches tend to be
orthologs of one another, wheras poor correlations
might indicate BLAST matches to lizard and chicken
paralogs.
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Gene ontology (GO) analysis

For the purpose of GO annotation, we were able to
associate GO terms to 12,370 python contigs that were
BLASTx-matched with known proteins in the NCBI nr
database. The frequencies of second-level GO term
annotations for our set of 12,370 python matched con-
tigs are shown in Figure 4. Pythons are important mod-
els for studying physiological and metabolic remodelling.
It is therefore notable that our set of annotated genes
includes high frequencies of genes with Biological Pro-
cess GO annotations that include metabolism, develop-
ment, cell organization, and morphogenesis that are all
likely categories of genes likely to be important for later
functional studies of adaptations in pythons (Figure 4).

Data deposition and accessibility

Raw data from heart cDNA libraries is accessioned in
the NCBI Sequence Read Archive (SRA: SRX018167). A
minority of the data analysed here, from liver cDNA,
were published previously, although not previously
assembled [20], and related raw data is accessioned in
the SRA (SRA: SRX057862). The set of assembled tran-
script contigs from this study, together with an extensive
table with coordinated information and annotation for
contigs, are available online via the journals website (as
Additional File 1 and Additional File 2, respectively);
these files are also available at http://www.snakege-
nomics.org/SnakeGenomics/Processed_Data.html.

Conclusions

Our ultimate goal is to use the python, and other snake
species, as models for studying extreme adaptation at
various biological levels, from the extreme evolution of
proteins [8,10,11] to the extreme systems biology of
physiological redesign accompanying feeding [12,21].
We therefore consider it a necessary first step to estab-
lish baseline resources, such as this transcriptome set.
Here, we chose to use the relatively long sequences
available from the 454 platform to conduct de novo
assembly of transcripts for the python because having
such longer sequences is expected to generally favor
longer and more accurate transcript assemblies. Addi-
tionally, having longer transcript reconstructions is also
expected to lead to greater success in identification of
orthologous genes in other more well-studies model
species, particularly in the case of the python, which is
more than ~160 MY diverged from the next closest
reference genome of the Anolis lizard (Figure 3C).

The results of our de novo assembly did indeed pro-
duce a relatively large number of long reconstructed
transcripts, with nearly 2,000 contigs greater than 1 kb
in length. Contrary to expectation, however, we had
relatively low success in matching these contigs to
known vertebrate genes, with ~35% of contigs matching
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known genes. Similarly, in a recent analysis of 454-based
transcriptome data from diverse tissues for the garter
snake, only 34% of transcript contigs were matched to
known genes [19]. These numbers for snakes are rela-
tively low compared with percentages of gene identifica-
tion from other recent transcriptome projects. For
example, a recent study on the heart transcriptome of
the vole was able to identify ~43% of transcripts based
on homology with known mouse transcripts [22].

One obvious explanation for the difficulty in identify-
ing transcripts to known genes for snakes is the rela-
tively low numbers of known genes deposited in NCBI
for snakes and reptiles in general. For example, of the
~2.35 million vertebrate proteins on NCBI, 1.61 million
are from mammals, compared to ~195,000 for birds,
~90,000 for squamate reptiles (lizards and snakes), and
~24,000 for snakes. Furthermore, because a large pro-
portion of proteins deposited from reptiles are from
phylogenetic studies (with one gene sequenced from
many species), the diversity of proteins represented is
even lower than might be expected from the above
numbers. This paucity of genetic information for reptiles
highlights the importance for deposition of data from
studies like this one, and further argues for the need for
additional data to complement our knowledge of
amniote genetic diversity.

There are ongoing initiatives to sequence the gen-
omes of the Burmese python [20], as well as the garter
snake [1], which should collectively contribute substan-
tial information on reptilian and snake genomics help-
ing to fill a void in our current knowledge of the
genomics of amniotes. The genome project for the
python will include the addition of more transcriptome
data from diverse tissues, and the transcriptome set
here will be combined with future data for annotating
the python genome [20], and serve as a valuable refer-
ence for thousands of annotated python genes in the
meantime.

Methods
RNA isolation and cDNA library creation
Tissues were procured from a total of 4 animals (one
sample per tissue, each tissue from a distinct animal)
obtained from commercial pet trade breeders under
approved animal care protocols, and stored in RNAlater
or snap-frozen in liquid nitrogen prior to RNA extrac-
tion. Prior to tissue extraction, two animals were fed
and then euthanized either 1 day or 3 days after feeding
[13], following existing IACUC protocols in place at the
University of Texas Arlington and The University of
Colorado.

Total RNA was extracted using Trizol Reagent (Invi-
trogen), following the manufacturer’s protocol. Extracted
RNA was enriched for mature mRNA transcripts using
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kit (Invitrogen). The remaining RNA was destroyed
using RNAse A and RNAse H, and the sample was puri-
fied using RNA Clean beads (Ambion). Two pairs of
double-stranded adapter oligonucleotides with single-
stranded overhang were directionally ligated onto the
previously synthesized first strand using T4 DNA Ligase
(Invitrogen). Adapter oligonucleotide sequences were:
Adapter-A (5-prime adapter), oligo A-prime 5-NNN
NNNCTGATGGCGCGAGGGAGG-dideoxyC-3’, and
oligo A 5-GCCTCCCTCGCGCCATGAG-3’; and Adap-
ter-B (3-prime adapter) oligo B 5-biotin-GCCTTGC
CAGCCCGCTCAGNNNNNN-phosphate-3’, and oligo
B-prime 5’-phosphate-CTGAGCGGGCTGCAAGG-
dideoxyC-3’.

Following adapter ligation, ligation products were pur-
ified using RNA Clean beads three successive times, and
then with streptavidin beads (PureBiotech). Samples
were then melted from the streptavidin beads using
0.1M NaOH and precipitated (as above). Completed
libraries were then quantified and checked for appropri-
ate size distribution using the DNA-nano chip on a
BioAnalyzer (Agilent). Where necessary, libraries were
PCR amplified using Platinum Taq polymerase (Invitro-
gen) using a minimal number of amplification cycles
(less than 25 cycles).

454-sequencing of cDNA libraries

All ¢cDNA libraries were sequenced using the 454 GS
FLX sequencer using the LR70 sequencing kit and 70 x
75 mm PicoTiterPlate (Roche). Emulsion PCR kits II
and III (Roche) were used for sequencing cDNA
libraries to obtain sequence from both ends of tran-
scripts, because cDNA libraries were directional (with
kit IT sequencing from the 5’ end, and kit III sequencing
from the 3’ end).

Assembly of cDNA contigs, and identification of
orthologous genes

All of our python cDNA data were assembled into con-
tigs using the Newbler de novo assembler algorithm of
the gsassembler (Roche 454). Contig coverage was esti-
mated by multiplying the number of reads per contig by
the average read length divided by contig length. All con-
tigs were compared to the set of Anolis (lizard) and
chicken Ensembl protein-coding genes that are estimated
by Ensembl Compara to be one-to-one orthologs with
Human genes using BLASTx. When contigs had hits to
both chicken and Anolis one-to-one orthologs, Ensembl
IDs were used to link back to the predicted human
ortholog using Ensembl Compara’s one-to-one ortholog
predictions. If both chicken and Anolis hits liked to the
same human gene, these were considered ‘high-confi-
dence annotated contigs’. Contigs were also compared to
the complete NCBI nr database first using BLASTx
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against all proteins (at an E-value threshold 107%). If con-
tigs had no hits to nr proteins, they were compared at
the nucleotide level to all nr sequences megaBLAST. We
preferentially annotated contigs (with best BLAST hits)
based first on similarity to Anolis and chicken one-to-one
orthologs, then based on nr proteins, and finally on
nucleotide comparisons where available.

For gene ontology analysis, results of the NCBI nr
protein database BLASTx search were used to connect
python transcript contigs with known gene ontology
annotations. Gene ontology annotations were identified
using the Blast2GO bioinformatics suite based upon the
BLASTXx output [23]. For the purpose of annotating and
displaying GO annotations, we used GO-slims, which
depicts second level GO terms that are most conducive
to graphical interpretation.

Links
Consortium for Snake Genomics website and data
clearinghouse [http://www.snakegenomics.org]

Additional material

Additional file 1:
Additional file 2:
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