
TECHNICAL NOTE Open Access

Agile parallel bioinformatics workflow
management using Pwrake
Hiroyuki Mishima1,2*, Kensaku Sasaki1,2, Masahiro Tanaka3,4, Osamu Tatebe3,4,5 and Koh-ichiro Yoshiura1

Abstract

Background: In bioinformatics projects, scientific workflow systems are widely used to manage computational
procedures. Full-featured workflow systems have been proposed to fulfil the demand for workflow management.
However, such systems tend to be over-weighted for actual bioinformatics practices. We realize that quick
deployment of cutting-edge software implementing advanced algorithms and data formats, and continuous
adaptation to changes in computational resources and the environment are often prioritized in scientific workflow
management. These features have a greater affinity with the agile software development method through iterative
development phases after trial and error.
Here, we show the application of a scientific workflow system Pwrake to bioinformatics workflows. Pwrake is a
parallel workflow extension of Ruby’s standard build tool Rake, the flexibility of which has been demonstrated in
the astronomy domain. Therefore, we hypothesize that Pwrake also has advantages in actual bioinformatics
workflows.

Findings: We implemented the Pwrake workflows to process next generation sequencing data using the Genomic
Analysis Toolkit (GATK) and Dindel. GATK and Dindel workflows are typical examples of sequential and parallel
workflows, respectively. We found that in practice, actual scientific workflow development iterates over two phases,
the workflow definition phase and the parameter adjustment phase. We introduced separate workflow definitions
to help focus on each of the two developmental phases, as well as helper methods to simplify the descriptions.
This approach increased iterative development efficiency. Moreover, we implemented combined workflows to
demonstrate modularity of the GATK and Dindel workflows.

Conclusions: Pwrake enables agile management of scientific workflows in the bioinformatics domain. The internal
domain specific language design built on Ruby gives the flexibility of rakefiles for writing scientific workflows.
Furthermore, readability and maintainability of rakefiles may facilitate sharing workflows among the scientific
community. Workflows for GATK and Dindel are available at http://github.com/misshie/Workflows.

Background
The concept of workflows has traditionally been used in
the areas of process modelling and coordination in indus-
tries [1]. Now the concept is being applied to the compu-
tational process including the scientific domain. Zhao
et al. found that general scientific workflow systems are
employed in and applied to four aspects of scientific
computations: 1) describing complex scientific proce-
dures, 2) automating data derivation processes, 3) high-
performance computing (HPC) to improve throughput

and performance, and 4) provenance management
and query [2]. Although naïve methods such as shell
scripts or batch files can be used to describe scientific
workflows, the necessity of workflow systems arises to
satisfy the four aspects mentioned above. Therefore, full-
featured scientific workflow systems including Biopipe
[3], Pegasus [4], Ptolemy II [5], Taverna [6], Pegasys [7],
Kepler [8], Triana [9], Biowep [10], Swift [11], BioWMS
[12], Cyrille2 [13], KNIME [14], Ergatis [15], and Galaxy
[16] have been applied in the bioinformatics domain.
Their features, however, have some disadvantages for
actual practices in bioinformatics. It is not always easy to
describe actual complex workflows using graphical work-
flow composition, and some workflow language formats,

* Correspondence: hmishima@nagasaki-u.ac.jp
1Department of Human Genetics, Nagasaki University Graduate School of
Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
Full list of author information is available at the end of the article

Mishima et al. BMC Research Notes 2011, 4:331
http://www.biomedcentral.com/1756-0500/4/331

© 2011 Mishima et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://github.com/misshie/Workflows
mailto:hmishima@nagasaki-u.ac.jp
http://creativecommons.org/licenses/by/2.0

such as XML, are not very readable for humans. More-
over, these workflow systems often require wrapper tools,
which are called “shims”, to handle third-party unsup-
ported existing code or data sources [17,18]. This some-
times obstructs quick deployment of newer tools. In
actual bioinformatics projects, we realized that scientific
workflow systems often require quick deployment of cut-
ting-edge software to implement new algorithms and
data formats, frequent workflow optimization after trial
and error and in following changes in computational
resources and the environment. The agile software devel-
opment method considers similar problems in software
development projects. Kane et al. summarized this by
stating that “Agile is an iterative approach to software
development on strong collaboration and automation to
keep pace with dynamic environment”, and “Agile meth-
ods are well suited to the exploratory and iterative nature
of scientific inquiry” [19]. Therefore, scientific workflow
systems require both rigidity in workflow management
and agility in workflow development.
One of the traditional solutions for balancing the two

aspects of a workflow system is the make command, a
standard build tool in the Unix system. The make com-
mand interprets a Makefile, which defines dependen-
cies between files in a declarative programming manner,
and then generates the final target by resolving depen-
dencies, by only executing out-of-date steps. This
approach has been extended to cluster environments
such as GXP make [20]. However, the make-based
approach has limitations in describing scientific work-
flows because it is intended for building software. For
example, it is difficult to describe the “multiple instances
with a priori runtime knowledge” pattern, which is one
of the workflow patterns defined by Van der Aalst et al.
[1], in makefiles without external tools. In this pattern,
the number of instances is unknown before the work-
flow is started, but becomes known at some stage dur-
ing runtime. In other words, this situation requires
dynamic workflow definition at runtime. This pattern
appears frequently in scientific workflows as well as
embarrassingly parallel problems. Introduction of inter-
nal domain specific languages (DSLs) to workflow
description is an approach to overcome this limitation.
Internal DSLs are implemented as libraries of the host
languages. Thus, an internal DSL retains the descriptive-
ness of the host language.
Introduction of the internal DSL into make-like work-

flow systems has been shown in object-oriented scripting
languages including Python [21] and Ruby [22]. An
implementation in Python is Ruffus [23], which is a
scientific workflow system supporting execution limited
to out-of-date stages, dynamic workflow definition, flow-
chart generation, and parallelism. PaPy [24], another
workflow system in Python, was implemented with a

modular design and offers parallel and distributed work-
flow management. On the other hand, the Ruby pro-
gramming language also has a greater affinity to the
internal DSL approach because of its flexible syntax,
including omissible parentheses and a code-block gram-
mar [25]. Rake [26] is a ‘Ruby Make’, which is a build
tool with workflow definition implemented as an internal
DSL in Ruby and a standard library of Ruby version 1.9
or later. Rake supports execution of workflows limited to
out-of-date stages and dynamic workflow definition dur-
ing workflow execution. The following is a simple exam-
ple of a workflow definition file, a Rakefile:
1: CC = “gcc”
2: rule ‘.o’ = > ‘.c’ do |t|
3: sh “#{CC} -c #{t.source}”
4: end
5: file “sample” = > ["sample.o"] do |t|
6: sh “#{CC} -o #{t.name} #{t.

prerequisites}”
7: end
8: task :default = > “sample”
This example defines a workflow to generate an

executable sample from sample.c via sample.o. If
sample.c is out-of-date, i.e., older than sample.o,
Rake skips compiling sample.c and just links sam-
ple.o to generate sample. Note that the grammar of
the rakefile is fully compatible with that of Ruby.
Recently Tanaka and Tatebe developed Pwrake [27], a

parallel workflow extension of Rake. Pwrake has been
demonstrated to be a flexible scientific workflow system in
the astronomy domain [28]. It interprets rakefiles that are
fully compatible with Rake. Pwrake supports parallelism
by automatically detecting parallelizable tasks and execut-
ing them via SSH connections. Pwrake generates a flow-
chart as a directed acyclic graph in the DOT language,
which is then visualized by software such as Graphviz [29].
Although we focus on workflow management using a local
multiprocessor and multicore environment, Pwrake can be
used with computer clusters together with the support of a
distributed filesystem such as NFS. Pwrake is especially
designed for scalable parallel I/O performance using the
Gfarm global distributed filesystem [28,30].
In this paper, we show agile workflow management

using Pwrake in the bioinformatics domain.

Implementation
Rakefiles
In actual bioinformatics workflow development, we
found that the scientific workflow development iterates
over two phases, the workflow definition phase and the
parameter adjustment phase. The former focuses on the
functional combination and order of tasks, while the lat-
ter focuses on the optimization of command-line para-
meters for invoking tools. We therefore, designed

Mishima et al. BMC Research Notes 2011, 4:331
http://www.biomedcentral.com/1756-0500/4/331

Page 2 of 8

separate rakefiles corresponding to these two phases.
Task dependencies are defined in Rakefile, while
command-line programs and parameters are defined in
Rakefile.invoke. To simplify the description, we
also implemented a file to define helper methods,
Rakefile.helper (Figure 1).
Rakefile is the main and default task definition file.

It loads two other rakefiles, sets target filenames in con-
stants, and declares task dependencies. Other rakefiles
are loaded by the Kernel#load method to enable
reloading to reflect changes immediately.
Rakefile.invoke defines a class with a unique

name in the RakefileInvoke module. In the class, paths
to commands and common files, as well as adjustable
parameters are set to constants. It also defines methods
to invoke command-lines using FileUtils#sh meth-
ods. These methods are defined as singleton methods
(eigenmethods) of the class. This is an internal DSL
technique in Ruby to enable invocation in rakefiles as in
“RakefileInvoke::Gatk::command t, opts“,
where t is an instance of the Rake::Task class and
opts is a hash object containing the optional informa-
tion to invoke commands. Rakefile.helper defines
helper methods to simplify the rakefile descriptions. For

example, the suffix method in the top level allows
the replacement of the filename suffix using expressions
with arrows. Additionally, Pwrake requires a nodefile to
specify hostnames and maximum numbers of processes
to be submitted via SSH connections. A nodefile declar-
ing a local machine that can execute 16 processes simul-
taneously is set as “localhost 16“.
Command-lines to start the workflow using Rake and

Pwrake are “rake“ and “pwrake NODEFILE = node-
file“, respectively. By default, Rake and Pwrake load
the file called “Rakefile“ in the current directory.
Rakefiles are usually placed in the topmost directory in
a project file tree. To simplify provenance management,
we recommend that each project file tree has its own
copy of the rakefile.

Example workflows
To demonstrate the workflows described in Pwrake rake-
files, we implemented two kinds of workflows for the
Genome Analysis Toolkit (GATK) [31,32] and Dindel
[33] using rakefiles. Both GATK and Dindel have been
used in whole genome sequencing projects including the
1000 genomes project [34]. We selected GATK and
Dindel as typical examples for sequential and parallel
workflows, respectively. Furthermore, we implemented a
combined workflow loading externally defined GATK
and Dindel workflows to show the modularity thereof.

The GATK workflow
GATK is a program suite written mainly in Java to pro-
cess mapped reads obtained from massively parallel
sequencing data to detect genetic variants including sin-
gle nucleotide variants (SNVs). The GATK development
team offers several recommended workflows depending
on the samples and analyses. We implemented their ‘bet-
ter’ workflow (Figure 2A). In Rakefile, the Rake-
file::Gatk class defines constants indicating the
target files in each step of the workflow. These constants
are used to define the :default task to obtain the final
product of the workflow. In Rakefile.invoke, the
RakefileInvoke::Gatk class defines constants indi-
cating the file paths to executables and downloaded pub-
lic data files, such as the reference genome sequence and
dbSNP data. These help the workflow configuration in
other environments and improve readability. The class
also defines methods to execute command-lines for each
step in the workflow.

The Dindel workflow
Dindel is a suite of tools for detecting small genetic
insertions and deletions (indel) from massively parallel
sequencing data. The overview of the rakefile structure
for GATK and Dindel is the same; however, a Dindel
workflow is a good example of a parallel workflow using

Rakefile Rakefile.invoke

Rakefile.helper

task

task

command-line

command-line

command-linetask

command-line

Rake::Task
Hash

task

helper method

Figure 1 Structure of distinct rakefiles. A Rakefile file consists
of task dependency descriptions. Tasks may be executed in parallel,
if possible automatically. The rakefile.invoke file defines a
class of the RakefileInvoke module. This class defines class
methods to invoke command-lines and constants of command
paths and parameters. Tasks in the rakefile call methods with an
instance of the Rake::Task class and a hash containing
additional parameters for invoking the command-line. The
Rakefile.helper file defines helper methods to simplify
descriptions in the Rakefile and Rakefile.invoke files.

Mishima et al. BMC Research Notes 2011, 4:331
http://www.biomedcentral.com/1756-0500/4/331

Page 3 of 8

the dynamic task definition (Figure 2B). Such a work-
flow generates many intermediate files. In the authors’
experience, one human exome generates more than 300
“window” files, where each window file can contain a
maximum of 1000 windows. These intermediate window
files are named systematically; however, the number of
window files is unknown prior to the workflow execu-
tion. A rakefile can describe this situation using a
dynamic task definition. Furthermore, Pwrake can auto-
matically detect tasks that can be executed in parallel.
The following is an example of dynamic task definition
codes based on the stage 3 definition of the Dindel
workflow in Rakefile and Rakefile.invoke.

1: # Rakefile
2: task :stage3 = > :stage2 do
3: Rakefile::Dindel::BAM.each do |bam|
4: prefix =
5: bam.sub(/\.bam$/, “.dindel.

realign_windows”)
6: FileList["#{prefix}.*.txt"].each

do |f|
7: target = f.sub(/\.realign_win-

dows\./,
9: ”.output_regions.”).
6: sub(/\.txt$/, “.glf.txt”)
7: prerequisites =

*.bam

all_snvs.filtered.vcf

GATK: VariantFiltration

all_snvs.raw.vcf

GATK: UnifiedGenotyper for SNVs

*.dedup.realig.fix.recal.bai

GATK: IndelGenotyperV2

*.dedup.realig.fix.recal.bam

*.dedup.realig.fix.bam

*.dedup.realig.fix.bam.recal.csv

*.dedup.realig.bam

*.dedup.bam

*.dedup.bam.intervals

all_indels.mask.bed

GATK: makeIndelMask

all_indels.bed all_indels.vcf

*.dindel.vcf

*.dindel.realign_windows

*.dindel.variants.txt

*.bam *.dindel.libraries.txt

*.dindel.output_regions.3.glf.txt

*.dindel.output_regions.1.glf.txt

*.dindel.output_regions.5.glf.txt

*.dindel.output_regions.6.glf.txt

*.dindel.output_regions.4.glf.txt

*.dindel.output_regions.2.glf.txt

*.dindel.output_regions.9.glf.txt

*.dindel.output_regions.8.glf.txt

*.dindel.output_regions.10.glf.txt

*.dindel.output_regions.7.glf.txt

*.dindel.output_regions.11.glf.txt

*.dindel.realign_windows.3.txt

*.dindel.realign_windows.1.txt

*.dindel.realign_windows.5.txt

*.dindel.realign_windows.6.txt

*.dindel.realign_windows.4.txt

*.dindel.realign_windows.2.txt

*.dindel.realign_windows.9.txt

*.dindel.realign_windows.8.txt

*.dindel.realign_windows.10.txt

*.dindel.realign_windows.7.txt

*.dindel.realign_windows.11.txt

A B

Figure 2 Directed acyclic graphs of GATK and Dindel workflows. Directed acyclic graphs to describe GATK (A) and Dindel (B) workflows are
generated by Pwrake, manually adjusted, and visualized using Graphviz. (A) depicts a workflow from a *.bam file to an all_snvs.
filtered.vcf, while (B) depicts a workflow from a *.bam file to a *.dindel.vcf file. Tasks to process the *.dindel.
realign_windows.N.txt files are dynamically generated during the embarrassingly parallel stage (stage 3) depending on *.dindel.
libraries.txt and *.libralies.txt. Prior to stage 3, an option “–numWindowsPerFile 1000“ is applied to makeWindows.py
to generate 11 files containing windows. File *.didndel_reagion_window is a dummy file representing all the *.dindel.
realign_windows.N.txt files.

Mishima et al. BMC Research Notes 2011, 4:331
http://www.biomedcentral.com/1756-0500/4/331

Page 4 of 8

8: [f,
9: f.sub(/\.dindel\.realign_windows

\..*/, “.bam”),
10: f.sub(/\.dindel\.realign_windows

\..*/,
11: ”.dindel.libraries.txt”),]
12: file target = > prerequisites do

|t|
13: RakefileInvoke::Dindel.din-

del_stage3 t
14: end
15: file :stage3_invoke = > target
16: end
17: end
18: (task :stage3_invoke).invoke
18: end
1: # Rakefile.invoke
2: def dindel_stage3(t)
3: sh [DINDEL,
4: "–analysis indels”,
5: "–doDiploid”,
6: "–bamFile #{t.prerequisites[1]}”,
7: "–ref #{REFERENCE}”,
8: "–varFile #{t.prerequisites[0]}”,
9: "–libFile #{t.prerequisites[2]}”,
10: "–outputFile #{t.name.sub(/\.glf

\.txt$/, “”)}”,
11: "1 > #{t.name.sub(/\.glf\.txt$/,

“”)}.log 2 > &1”,
12:].join(” “)
13: end
In this sample rakefile, the :stage3 task expects that

the previous task :stage2 generates files that are
named *.dindel.realign_windows.N.txt,
where N is the serial number of the intermediate file.
The maximum value of N is unknown prior to execu-
tion of the :stage2 task. The dependency of the fol-
lowing stages can be defined using the task name :
stage3.
Pwrake automatically detects that :stage3 consists

of independent file tasks and executes them as an
embarrassingly parallel stage. In the :stage2 definition
in Rakefile.invoke, the granularity of parallelism
can be defined by the “–numWindowsPerFile“ option
of makeWindows.py. For the exome dataset aligned to
chromosome 21, we used 1000 and 1 for this option
and obtained 11 and 3381 intermediate realign_-
windows files, respectively.

Combination of rakefiles
Existing rakefiles can be combined by being loaded into
another rakefile. Constants and methods defined in
rakefile.invoke files have independent name-
spaces. Moreover, a task with the same identifier, such

as the :default task, can be defined multiple times
and thus can be appended. Pwrake and Rake do not
overwrite, but append the files. For example, a rakefile
to define GATK and Dindel workflows simultaneously
simply contains the following:
1: load “../GATK/Rakefile”
2: load “../Dindel/Rakefile”

Results
Performance
To evaluate the performance of the GATK and Dindel
workflows, we analysed publicly available short read
sequence data using a Linux system that can execute 16
concurrent threads (2 processors × 4 cores with hyper-
threading). Whole genome sequencing data [35] obtained
from a HapMap [36] JPT sample NA18943 was used as
the test dataset. The dataset was mapped to the GRCh37
referential genome sequence using the Burrows-Wheeler
Alignment tool (BWA) [37] to generate a SAM file [38].
The SAM file was converted to a BAM file using Picard
[39]. Reads mapped on chromosome 21 were used as
initial data for both the GATK and Dindel workflows. We
executed both Rake and Pwrake with the same rakefiles to
compare the performance with parallelism. The wall-clock
times for the GATK workflows executed by Rake and
Pwrake were almost identical (approximately 12.0 min).
We assume that this is due to the high sequentiality of the
workflow. For the Dindel workflow, we assessed different
parallelism granularities. When the task was divided into
11 processes in stage 3, the Dindel workflow executed by
Pwrake was 2.6 times faster (approximately 6.0 min) than
that by Rake (approximately 15.5 min). When the task was
divided into 3381 processes in stage 3, the Pwrake execu-
tion was 4.6 times faster (approximately 4.0 min) than the
Rake execution (approximately 18.3 min). While the ideal
parallel acceleration efficiency was 16 times for our com-
puter environment, the actual efficiency differed. These
results can be explained by the fact that the required
CPU-time to finish each process was uneven, and a few
heavy processes were bottlenecks in the workflow execu-
tion. This is a limitation of process-based parallelism
because of the relatively coarse parallelization granularity.

Agility in workflow development
A characteristic of agile software development is the
iterative development process. We introduced an agile
scientific workflow development that employed the itera-
tion of two developmental phases, i.e., the workflow defi-
nition phase and the parameter adjustment phase. In
each phase, our implementation of distinct rakefiles
enabled the separate files to be modified. This separation
increased efficiency in the iterative development.
Here, we show an example of the iterative develop-

ment in our GATK workflow. In the workflow definition

Mishima et al. BMC Research Notes 2011, 4:331
http://www.biomedcentral.com/1756-0500/4/331

Page 5 of 8

phase, we focus on describing a task dependency in a
rakefile as shown below:
1: rule ‘.dedup.bam.intervals’ = >
2: [suffix_proc(”.bam.intervals” = > “.

bam”)] do |t|
3: RakefileInvoke::Gatk.gatk_rea-

ligner_target_creater t
4: end
Next, in the parameter adjustment phase, we focus on

describing command-line parameters for invoking exter-
nal tools in the rakefile.invoke such as the following:
1: def gatk_realigner_target_creater(t)
2: sh [Java,
3: "-Xmx#{JavaMemory}”,
4: "-Djava.io.tmpdir = #

{JavaTempFile}”,
5: "-jar #{GATK_JAR}”,
6: "-T RealignerTargetCreator”,
7: "-R #{REFERENCE}”,
8: "-o #{t.name}”,
9: "-I #{t.source}”,
10: "-D #{DBSNP}”,
11: RakefileInvoke::Gatk::

INTERVAL_OPTION,
12: ” > #{t.name}.log 2 > &1”,
13:].join(” “)
14: end
Note that all constants with names starting with upper-

case letters are defined at the top of the file, rakefile.
invoke. The next iteration starts with the workflow defi-
nition phase again to extend the workflow. Modification
or optimization after the workflow has completed can be
achieved by iterating the same two phases using two dis-
tinct files. Separating the rakefiles simplifies finding files
and places to be modified.

Procedure to describe new workflows
As a summary of the agile workflow development, the
general procedure for describing new workflows in
Pwrake is given below.
1) Workflow definition phase. Describe file dependen-

cies in Rakefile.
1: task “output.dat” = > “input.dat” do |

t|
2: RakefileInvoke::generate_target t
3: end
2) Parameter adjustment phase: Define the Rakefi-

leInvoke::generate_target method in Rake.
invoke.
1: module RakefileInvoke
2: def generate_target(t)
3: sh “command-line #{t.prerequisite}

> #{t.name}”
4: end

5: end
3) Iteration of phases. Parameter adjustments require

modifications to Rakefile.invoke only. Similarly,
changes in file dependencies require modification to
Rakefile only.

Discussion
Advantages in workflow execution
Workflows involving actively developed software packages,
such as GATK, require frequent updates of details, such as
combinations of data and programs, recommended para-
meters, and command-line options. Thus, well-organized
workflow management helps GATK users to follow
updates and process their data in improved workflows. A
GATK workflow consists of multiple steps and takes a
relatively longer time to finish. Pwrake has advantages of
continuous execution of workflow tasks and selective task
execution to ignore already executed tasks. Such ignorable
tasks can be obtained from unexpected workflow suspen-
sion. Thus far, Pwrake cannot automatically remove out-
put files containing partial results; such files have to be
removed manually prior to restarting the workflow.
For the Dindel workflows, the parallelism offered by

Pwrake improved performance. The parallelization model
of Pwrake is process-based. Parallel programs based on
technologies such as message passing interface (MPI) [40]
enable efficient parallelization with fine granularity. How-
ever, scientists implementing bioinformatics software
often focus not on parallelization, but on the novel imple-
mentation methodology. Therefore, process-based paralle-
lization using non-parallel programs is a realistic solution
and still has the advantage [41]. Furthermore, process-
based parallelization can be efficient enough for embar-
rassingly parallel problems that can easily be separated
into independent tasks and executed in parallel. For exam-
ple, a stage in the Dindel workflow creates multiple inter-
mediate files. Processes using these files as input are
independent and do not need to communicate with each
other. This stage is a typical embarrassingly parallel pro-
blem. Although the GATK framework supports the func-
tional programming concept of MapReduce [42] and
parallelism in the GATK framework is expected to
improve its performance, it has only been supported to a
limited extent by GATK components to date. Therefore,
Pwrake still has the advantage with respect to parallelism.

Workflow description flexibility
One of the advantages of using an internal DSL is that
the power of the host language is also available in the
DSL scripts. The rakefile description is an internal DSL
in Ruby, which is a programming language with a shallow
learning curve for biologists [43]. Thus, rakefiles can
make full use of the control flow features of Ruby, as well
as the rich libraries for text processing, file manipulation,

Mishima et al. BMC Research Notes 2011, 4:331
http://www.biomedcentral.com/1756-0500/4/331

Page 6 of 8

network access, and so on. In particular, the BioRuby [44]
library offers highly abstracted data processing methods
for bioinformatics.

Sharing workflows
One of the key characteristics of agile software develop-
ment is strong collaboration among all the people involved
in the project. This can be accomplished naturally in pro-
jects in small laboratories. However, the nature of science
is a global collaboration. Indeed, efforts to share and reuse
workflows in the science community, such as the myEx-
periment project [45] and Wf4Ever [46], have already been
started. From this point of view, the simplicity and read-
ability of the rakefile DSL are advantageous, and improve-
ment of helper methods to standardize the scripting style
on the “Do not Repeat Yourself (DRY)” principle may
enhance the advantages.

Conclusions
We have shown an appreciation of Pwrake as an agile
parallel workflow system suitable for the bioinformatics
domain using examples of GATK and Dindel workflows.
Pwrake is able to invoke command-line tools without any
“shims”, define tasks dynamically during the workflow
execution, and invoke tasks automatically in parallel.
Separating a rakefile into two files for the workflow defi-
nition phase and the parameter adjustment phase
increases the efficiency of the iterative workflow develop-
ment. The nature of scientific projects is explorative and
iterative. This is also a characteristic of agile software
development. Another aspect of agile development, the
reliance on the strong collaboration, may be enhanced by
sharing and reusing workflows among the scientific com-
munity by taking advantage of the simplicity, readability
and maintainability of rakefiles.

Availability and requirements
Project name: Workflows
Project home page: http://github.com/misshie/Workflows
Operating system(s): Platform independent
Programming language: Ruby 1.9.1 or higher
Other requirement: Pwrake or Rake
License: the MIT license
Any restrictions for use by non-academics: none

Availability of supporting data
Sample short read data for workflow evaluation:
http://trace.ddbj.nig.ac.jp/DRASearch/experiment?
acc=DRX000358

List of abbreviations used
HPC: high-performance computing; DSL: domain specific language; GATK:
Genome Analysis Toolkit; SNV: single nucleotide variant; BWA: Burrows-

Wheeler Alignment tool; MPI: message passing interface; DRY: do not repeat
yourself.

Acknowledgements
The authors would like to thank members of the BioRuby mailing list for
their informative discussions. HM is supported by the MEXT Grant-in-Aid for
Young Scientists (B) 21791566 and 23791230. OT is supported by the MEXT
Grant-in-Aid for Scientific Research on Priority Areas 21013005. OT and MT
are supported by the MEXT Promotion of Research for Next Generation IT
Infrastructure “Resources Linkage for e-Science (RENKEI)”, and JST CREST
“Development of System Software Technologies for post-Peta Scale High
Performance Computing”. KY is supported by grants from the Ministry of
Health, Labour and Welfare, Grant-in-Aid for Scientific Research (B) 21390100
and the Takeda Scientific Foundation.

Author details
1Department of Human Genetics, Nagasaki University Graduate School of
Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan. 2Nagasaki
University Global Center of Excellence Program, 1-12-4 Sakamoto, Nagasaki,
Nagasaki, Japan. 3Center for Computational Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, Japan. 4Core Research for Evolutional
Science and Technology, Japan Science and Technology Agency, 4-1-8
Honcho, Kawaguchi, Saitama, Japan. 5Departmentent of Computer Science,
Graduate School of Systems and Information Engineering, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.

Authors’ contributions
HM conceived the study, implemented the workflows, and co-authored the
manuscript. KS implemented the workflows. MT and OT developed Pwrake
and evaluated the details of the workflows and the computational
performance. KY conceived the study and co-authored the manuscript. All
authors read and approved the final manuscript

Competing interests
The authors declare that they have no competing interests.

Received: 27 May 2011 Accepted: 8 September 2011
Published: 8 September 2011

References
1. Van der Aalst WMP, Ter Hofstede AHM, Kiepuszewski B, Barros AP:

Workflow patterns. Distrib Parallel Dat 2003, 14:5-51.
2. Zhao Y, Raicu I, Foster I: Scientific Workflow Systems for 21st Century,

New Bottle or New Wine? 2008 IEEE Congress on Services - Part I Honolulu,
HI, USA; 2008, 467-471.

3. Hoon S, Ratnapu KK, J-ming Chia, Kumarasamy B, Juguang X, Clamp M,
Stabenau A, Potter S, Clarke L, Stupka E: Biopipe: A Flexible Framework for
Protocol-Based Bioinformatics Analysis. Genome Res 2003, 13:1904-1915.

4. Deelman E, Blythe J, Gil Y, Baker C, Mehta G, Vahi K, Blackburn K,
Lazzarini A, Arbree A, Cavanaugh R: Mapping complex scientific workflows
onto distributed systems. J Grid Comp 2003, 1:25-39.

5. Eker J, Janneck JW, Lee EA, Liu J, Liu X, Lidvig J, Neuendorffer S, Sachs S,
Xiong Y: Taming heterogeneity - the Ptolemy approach. Proc IEEE 2003,
91:127-144.

6. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T,
Glover K, Pocock MR, Wipat A, Li P: Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformatics 2004,
20:3045-3054.

7. Shah S, He D, Sawkins J, Druce J, Quon G, Lett D, Zheng G, Xu T,
Ouellette BF: Pegasys: software for executing and integrating analyses of
biological sequences. BMC Bioinformatics 2004, 5:40.

8. Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee EA,
Tao J, Zhao Y: Scientific workflow management and the Kepler system.
Concurrency Computat Pract Exper 2006, 18:1039-1065.

9. Churches D, Gombas G, Harrison A, Maassen J, Robinson C, Shields M,
Taylor I, Wang I: Programming scientific and distributed workflow with
Triana services. Concurrency Computat Pract Exper 2006, 18:1021-1037.

10. Romano P, Bartocci E, Bertolini G, De Paoli F, Marra D, Mauri G, Merelli E,
Milanesi L: Biowep: a workflow enactment portal for bioinformatics
applications. BMC Bioinformatics 2007, 8:S19.

Mishima et al. BMC Research Notes 2011, 4:331
http://www.biomedcentral.com/1756-0500/4/331

Page 7 of 8

http://github.com/misshie/Workflows
http://trace.ddbj.nig.ac.jp/DRASearch/experiment?acc=DRX000358
http://trace.ddbj.nig.ac.jp/DRASearch/experiment?acc=DRX000358
http://www.ncbi.nlm.nih.gov/pubmed/12869579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12869579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15201187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15201187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15096276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15096276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18047718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18047718?dopt=Abstract

11. Zhao Y, Hategan M, Clifford B, Foster I, Von Laszewski G, Nefedova V,
Raicu I, Stef-Praun T, Wilde M: Swift: Fast, reliable, loosely coupled parallel
computation. Proceedings - 2007 IEEE Congress on Services, SERVICES 2007
2007, 199-206.

12. Bartocci E, Corradini F, Merelli E, Scortichini L: BioWMS: a web-based
Workflow Management System for bioinformatics. BMC Bioinformatics
2007, 8:S2.

13. Fiers M, van der Burgt A, Datema E, de Groot J, van Ham R: High-
throughput bioinformatics with the Cyrille2 pipeline system. BMC
Bioinformatics 2008, 9:96.

14. Berthold MR, Cebron N, Dill F, Gabriel TR, Kotter T, Meinl T, Thiel K,
Wiswedel B: KNIME - The Konstanz Information Miner. SIGKDD
Explorations 2009, 11:26-31.

15. Orvis J, Crabtree J, Galens K, Gussman A, Inman JM, Lee E, Nampally S,
Riley D, Sundaram JP, Felix V, Whitty B, Mahurkar A, Wortman J, White O,
Angiuoli SV: Ergatis: a web interface and scalable software system for
bioinformatics workflows. Bioinformatics 2010, 26:1488-1492.

16. Goecks J, Nekrutenko A, Taylor J, Galaxy Team T: Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 2010, 11:R86.

17. Radetzki U, Leser U, Schulze-Rauschenbach SC, Zimmermann J, Lüssem J,
Bode T, Cremers AB: Adapters, shims, and glue–service interoperability
for in silico experiments. Bioinformatics 2006, 22:1137-1143.

18. Lin C, Lu S, Fei X, Pai D, Hua J: A Task Abstraction and Mapping
Approach to the Shimming Problem in Scientific Workflows. In Services
Computing, IEEE International Conference on. Volume 0. Los Alamitos, CA,
USA: IEEE Computer Society; 2009:284-291.

19. Kane D, Hohman M, Cerami E, McCormick M, Kuhlmman K, Byrd J: Agile
methods in biomedical software development: a multi-site experience
report. BMC Bioinformatics 2006, 7:273.

20. Taura K: Grid Explorer: A Tool for Discovering, Selecting, and Using
Distributed Resources Efficiently. IPSJ SIG Technical Report 2004, 2004-HPC-
099:235-240.

21. Python Programming Language. [http://www.python.org/].
22. Ruby Programming Language. [http://www.ruby-lang.org/].
23. Goodstadt L: Ruffus: a lightweight Python library for computational

pipelines. Bioinformatics 2010, 26:2778-2779.
24. Cieslik M, Mura C: A lightweight, flow-based toolkit for parallel and

distributed bioinformatics pipelines. BMC Bioinformatics 2011, 12:61.
25. Cunningham HC: A little language for surveys: Constructing an internal

DSL in Ruby. Proceedings of the 46th Annual Southeast Regional Conference
on XX, ACM-SE 46 2008, 282-287.

26. Rake. [http://rake.rubyforge.org/].
27. Pwrake. [https://github.com/masa16/pwrake].
28. Tanaka M, Tatebe O: Pwrake: a parallel and distributed flexible workflow

management tool for wide-area data intensive computing. Proceedings of
the 19th ACM International Symposium on High Performance Distributed
Computing New York, NY, USA: ACM; 2010, 356-359.

29. Graphviz. [http://graphviz.org/].
30. Tatebe O, Hiraga K: Gfarm Grid File System. New Generat Comput 2010,

28:257-275.
31. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,

Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome
Analysis Toolkit: A MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Res 2010, 20:1297-1303.

32. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C,
Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ,
Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ: A
framework for variation discovery and genotyping using next-
generation DNA sequencing data. Nat Genet 2011.

33. Albers CA, Lunter G, MacArthur DG, McVean G, Ouwehand WH, Durbin R:
Dindel: Accurate indel calls from short-read data. Genome Res 2010.

34. The 1000 Genomes Project Consortium: A map of human genome
variation from population-scale sequencing. Nature 2010, 467:1061-1073.

35. Fujimoto A, Nakagawa H, Hosono N, Nakano K, Abe T, Boroevich KA,
Nagasaki M, Yamaguchi R, Shibuya T, Kubo M, Miyano S, Nakamura Y,
Tsunoda T: Whole-genome sequencing and comprehensive variant
analysis of a Japanese individual using massively parallel sequencing.
Nat Genet 2010, 42:931-936.

36. The International HapMap Consortium: A haplotype map of the human
genome. Nature 2005, 437:1299-1320.

37. Li H, Durbin R: Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009, 25:1754-1760.

38. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup: The
Sequence Alignment/Map format and SAMtools. Bioinformatics 2009,
25:2078-2079.

39. Picard. [http://picard.sourceforge.net/].
40. Gropp W, Lusk E, Doss N, Skjellum A: A high-performance, portable

implementation of the MPI message passing interface standard. Parallel
Comput 1996, 22:789-828.

41. Mishima H, Lidral AC, Ni J: Application of the Linux cluster for exhaustive
window haplotype analysis using the FBAT and Unphased programs.
BMC Bioinformatics 2008, 9(Suppl 6):S10.

42. Dean J, Ghemawat S: MapReduce: simplified data processing on large
clusters. Commun ACM 2008, 51:107-113.

43. Aerts J, Law A: An introduction to scripting in Ruby for biologists. BMC
Bioinformatics 2009, 10:221.

44. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T: BioRuby:
Bioinformatics software for the Ruby programming language.
Bioinformatics 2010, btq475.

45. Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D, Newman D,
Borkum M, Bechhofer S, Roos M, Li P, De Roure D: myExperiment: a
repository and social network for the sharing of bioinformatics
workflows. Nucleic Acids Res 2010, 38:W677-W682.

46. Wf4ever. [http://www.wf4ever-project.org/].

doi:10.1186/1756-0500-4-331
Cite this article as: Mishima et al.: Agile parallel bioinformatics workflow
management using Pwrake. BMC Research Notes 2011 4:331.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Mishima et al. BMC Research Notes 2011, 4:331
http://www.biomedcentral.com/1756-0500/4/331

Page 8 of 8

http://www.ncbi.nlm.nih.gov/pubmed/18269696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18269696?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18269742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18269742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20738864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16481335?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16734914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16734914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16734914?dopt=Abstract
http://www.python.org/
http://www.ruby-lang.org/
http://www.ncbi.nlm.nih.gov/pubmed/20847218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20847218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21352538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21352538?dopt=Abstract
http://rake.rubyforge.org/
https://github.com/masa16/pwrake
http://graphviz.org/
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20972442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20972442?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16255080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16255080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19451168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19505943?dopt=Abstract
http://picard.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/19091009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19607723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20501605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20501605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20501605?dopt=Abstract
http://www.wf4ever-project.org/

	Abstract
	Background
	Findings
	Conclusions

	Background
	Implementation
	Rakefiles
	Example workflows
	The GATK workflow
	The Dindel workflow
	Combination of rakefiles

	Results
	Performance
	Agility in workflow development
	Procedure to describe new workflows

	Discussion
	Advantages in workflow execution
	Workflow description flexibility
	Sharing workflows

	Conclusions
	Availability and requirements
	Availability of supporting data

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

