
TECHNICAL NOTE Open Access

ATOM - an OMERO add-on for automated import
of image data
Oliver Müller1,2*, Peter Lipp1,3 and Lars Kaestner1,3

Abstract

Background: Modern microscope platforms are able to generate multiple gigabytes of image data in a single
experimental session. In a routine research laboratory workflow, these data are initially stored on the local
acquisition computer from which files need to be transferred to the experimenter’s (remote) image repository (e.g.,
DVDs, portable hard discs or server-based storage) because of limited local data storage. Although manual
solutions for this migration, such as OMERO - a client-server software for visualising and managing large amounts
of image data - exist, this import process may be a time-consuming and tedious task.

Findings: We have developed ATOM, a Java-based and thus platform-independent add-on for OMERO enabling
automated transfer of image data from a wide variety of acquisition software packages into OMERO. ATOM
provides a graphical user interface and allows pre-organisation of experimental data for the transfer.

Conclusions: ATOM is a convenient extension of the OMERO software system. An automated interface to OMERO
will be a useful tool for scientists working with file formats supported by the Bio-Formats file format library, a
platform-independent library for reading the most common file formats of microscope images.

Background
The development of video enhanced microscope systems
in the 1980s [1] has enabled digital microscope images
in life sciences. Images were stored as a sequence of
bits, analysed and organised with the aid of computer
software. Initially, microscopes were predominantly
operated manually, allowing a relatively low data
throughput. With the emergence of high-content
screening in the late 1990s [2] and thus the application
of automated (i.e., software-controlled) microscopy plat-
forms, image acquisition was accelerated [3]. As a con-
sequence the number of stored digital images increased
massively. These data had to be stored and organised
following an imaging experiment. Moreover, an increas-
ing variety of different image file formats emerged. To
keep pace with this development, the imaging commu-
nity requested a tool to handle arbitrary image file for-
mats. In 2004, the Open Microscopy Environment
(OME) consortium (University of Dundee, Scotland)
developed the open-source software OME-Remote
Objects (OMERO) and developed it further ever since

[4,5]. OMERO allows users to visualise, manage and
annotate digital microscope images and their corre-
sponding metadata. Additionally, OMERO enables
researchers and collaboration partners to share their
digital image data over the intra- and internet. It pro-
vides the Java-based client OMERO.importer that can
be used to read various image file formats and manually
upload them to an OMERO server. However, manual
import of image data has several drawbacks: (i) the user
has to keep track and therefore spend time for the
image file transfer; (ii) the transfer process cannot start
until the file is closed. Manual import may thus lead to
an increased booking time of the data acquisition
(DAQ) system; (iii) if multiple images are recorded dur-
ing an imaging experiment, manual import can either be
done after each recording period or at the end of the
experiment. While the first approach may lead to an
interrupted workflow, the latter import compromises
data safety.

Approach
In the following sections we describe our software solu-
tion called AuTO.iMporter (ATOM), an OMERO add-
on which enables users to circumvent most of the above

* Correspondence: oliver.mueller@bioinf.uni-sb.de
1Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
Full list of author information is available at the end of the article

Müller et al. BMC Research Notes 2011, 4:382
http://www.biomedcentral.com/1756-0500/4/382

© 2011 Müller et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:oliver.mueller@bioinf.uni-sb.de
http://creativecommons.org/licenses/by/2.0


mentioned shortcomings by automating the import pro-
cess. Automation comprises monitoring of the DAQ
system’s image directory and periodic migration of new/
modified image files to an OMERO server.

Flow diagram of the approach
The data flow of ATOM is depicted in Figure 1: during
an imaging experiment, image files are stored in a local
image directory on the DAQ system. This image direc-
tory has to be specified in ATOM and will be continu-
ously monitored. In each monitoring cycle, new and
modified files are migrated to the dedicated OMERO
server automatically. Ideally, during an imaging experi-
ment the transfer process should run in the background,
without negatively affecting the DAQ process and the
user interactions should be kept to a minimum.

OMERO allows the user to organise image data follow-
ing a hierarchical pattern: at the top level, the user may
specify a project name. Projects again can contain multi-
ple datasets. The latter typically contain the actual
images. If the user has neither specified a project nor a
dataset, images are imported “freely” and can be
arranged according to the above mentioned hierarchy at
a later time point. Following this strategy, ATOM allows
the user to specify a predefined project/dataset. This
enables the user to pre-organise images already during
the imaging experiment. During each monitoring cycle,
ATOM generates a snapshot of the image directory and
stores its current state (i.e., filenames, creation and
modification dates). The current snapshot is then com-
pared to a previous one, enabling ATOM to detect new
and modified files. Once all information about valid

Figure 1 Operation overview. DAQ software stores image data in a defined image directory. Concurrently, ATOM monitors this directory and
adds new/modified files to an import list. After connecting to the OMERO server software, ATOM processes the import list and migrates each
file from the list to a remote OMERO server. Typically, images are then stored on a redundant array of independent discs (RAID) and additionally
backed up on tape. Once the entire import list has been processed, ATOM continues monitoring the image directory.

Müller et al. BMC Research Notes 2011, 4:382
http://www.biomedcentral.com/1756-0500/4/382

Page 2 of 5



import candidates have been collected and stored in an
import list, ATOM connects to the OMERO server and
sequentially imports all files from the list. After the
entire list has been processed, the connection to the ser-
ver is closed again and the monitoring cycle restarts.
Thereby, ATOM ensures a resource-saving operation.
The cycle interval can be adapted by the user. A simple
user’s guide is provided as Additional File 1.

Salient features
Handling of multi-file formats
Automated import of image data implies rules for multi-
file formats. These rules are defined in a dedicated Java
class. While many file formats - like the commonly used
Tagged Image File Format (TIFF) (Aldus Corporation,
Seattle, USA) for instance - consist of a single image file
that can be migrated to the OMERO server once it has
been closed, other formats may be composed of multiple
files. This is the case, if metadata and image data are
stored separately. An example for such data handling is
the VisiTech (Sunderland, United Kingdom) XYS file
format. Here, image data are stored in a data file, while
metadata are stored in a separate file. Both files are then
linked using a third file. Importing this third file ensures
that both, image data and metadata are imported cor-
rectly, while importing only one of the other files inevi-
tably leads to an import of the incomplete dataset. In
contrast, importing each of the three files leads to data

duplication: both, image data and metadata then occur
twice and occupy unnecessary storage space. To avoid
such redundant data as well as to prevent separating
and/or confusing metadata and image data, multi-file
formats require special care. The OMERO.importer cli-
ent per se has not been designed for automated import.
Therefore, ATOM provides the functionality for hand-
ling multi-file image formats properly. In the case of the
above mentioned XYS file format, the implemented rule
causes ATOM to only import the file linking metadata
and image data, if a file with suffix .xys has been
found in the image directory. Since ATOM is open
source, the above mentioned class can be updated and
enhanced to support future multi-file formats.

Graphical user interface
To make ATOM easy-to-use, it provides a graphical
user interface (GUI), which is shown in Figure 2: the
user has to specify an image directory, which is then
monitored with a user-defined frequency. If no project
name and dataset identifier are provided, images are
imported using the default settings of OMERO. After
specifying the server address and user account informa-
tion, the monitoring process can be started. Messages
describing the state of the import process are stored in
a log file. The GUI is available for all major operating
systems (see section “Availability and requirements” for
details).

Figure 2 Graphical user interface of ATOM. Available for all major operating systems, the GUI allows to connect to an OMERO server and to
monitor a specified image directory with a minimum amount of user interaction.

Müller et al. BMC Research Notes 2011, 4:382
http://www.biomedcentral.com/1756-0500/4/382

Page 3 of 5



ATOM in commercial high-content screening
environments
During the last two years, an increasing number of ven-
dors of automated microscope platforms such as Perkin
Elmer ("Opera”), TILL Photonics ("more”) or Leica
Microsystems ("Leica HCS A”) have recognised the ben-
efits of OMERO. Having a quasi-standard for managing
arbitrary image file formats enables cooperations
between different research groups working with different
DAQ systems. Therefore, vendors have started deliver-
ing their image acquisition platforms with an interface
to OMERO, allowing users to store and share their
image data in a common format. Thus, ATOM can
serve as the interface to transfer image sequences in
high-content/high-throughput applications.

Implementation details
ATOM is implemented in Java (version 1.6.0) (Sun
Microsystems, Santa Clara, USA) and thus provides
platform-independence. It uses the application program-
ming interface (API) of the OMERO.importer client
(OME consortium, Dundee, Scotland) as well as the Java
archive (JAR) file of the Bio-Formats file formats library
(Laboratory for Optical and Computational Instrumen-
tation, Wisconsin-Madison, USA). The latter is required
for reading microscope image files and converting them
into the OME file format. ATOM supports all DAQ
platforms with file formats which can be handled by the
Bio-Formats library. For a full list of compatible formats
see [6].
For this publication, version 4.2.2 of the OMERO API

has been used. Thus, ATOM is able to handle the same
file formats as OMERO, i.e., all file formats supported
by the Bio-Formats library [7]. To ensure compatibility
between ATOM and the OMERO server, the ATOM
version number must match the OMERO version
number.

Results
On our test site (Molecular Cell Biology, Homburg, Ger-
many), four instances of ATOM were running simulta-
neously. Each set-up is equipped with a standard
workstation (i.e., personal computers with an up to date
quad-core processor and 4 GB of RAM). On average,
each set-up generates 10 GB of image data (approxi-
mately 20 files) per imaging experiment. Using standard
100 Mbit/s ethernet cards, this results in a total transfer
time of 15 minutes per set-up. Since the transfer is per-
formed in the background during an experiment, this
time does not add to the total booking time. To ensure
data safety with respect to redundancy, in addition to
the transfer of the data to the OMERO server, an addi-
tional copy of the data was also stored on the DAQ sys-
tem. As a consequence, at this state of ATOM a manual

delete process on the DAQ system was necessary after
the data import into OMERO.
We have, for example, developed a high-content

screening system for the analysis of primary cultured
heart muscle cells incorporating an automated micro-
scope platform [8]. In the meantime, this system has
been enhanced by using OMERO as the image manage-
ment system. About 15 GB of image data per experi-
ment are automatically transferred to the OMERO
server using ATOM. Since ATOM can be considered as
an individual module, we believe that each screening
environment can be easily enhanced to support auto-
mated image file transfer to an OMERO server.

Discussion
Comparison with OMERO system components
As an integral part of OMERO version beta 4 the
OMERO.fs component (OME consortium, Dundee,
Scotland), which provides the functionality of a file sys-
tem monitor, has been released. Its first application
OMERO.dropbox (OME consortium, Dundee, Scotland)
pursues the same goal as ATOM but has a different
approach: ATOM monitors a local image directory of
the DAQ system while OMERO.dropbox monitors a
remote subdirectory of the OMERO image repository.
Thus, triggering an import process using OMERO.drop-
box implies data transfer from the DAQ system to the
remote directory. The development of OMERO.dropbox
is still in progress. Currently, copying a large number of
files “may result in files failing to import” [9]. Since
monitoring a network-attached share (NAS) is “strictly
not supported” [9], users have to manually copy their
image data into the dropbox directory on the computer
hosting the OMERO server, from where it is then
imported into OMERO automatically. By circumventing
such difficulties, ATOM provides a more convenient
way for importing images into OMERO.

ATOM in a multi-user environment
From the OMERO point of view, ATOM acts like any
other OMERO client. Therefore it is obvious that multi-
ple instances of ATOM running on dedicated set-ups
can connect in parallel to one OMERO server. Never-
theless, this process as well as the login of each user
into OMERO using the ATOM GUI (see Figure 2) can
be further automated. A potential scenario could include
software that is dedicated to run imaging core facilities,
such as the Pasteur/Rockefeller Platform Management
System (PPMS) [10]. This platform makes use of the
user’s PPMS login information to gain access to the
DAQ system (to allow exact accounting). This could be
further synchronised with the OMERO login informa-
tion and thus even the start-up of ATOM could then be
automated - either requesting the OMERO import

Müller et al. BMC Research Notes 2011, 4:382
http://www.biomedcentral.com/1756-0500/4/382

Page 4 of 5



information (project name & dataset ID) from the user
or taking default values.

Conclusions
ATOM is an easy-to-use add-on for OMERO, that
offers automated import of digital images into an
OMERO server, easing up data handling and increasing
data safety significantly. Thus, ATOM is an interesting
tool for scientists working with large amounts of ima-
ging data in file formats that are supported by the Bio-
Formats file format library.

Availability and requirements
Project name: ATOM - AuTO.iMporter
Project home page: http://auto-importer.sourceforge.

net/
Operating systems: Linux, MacOS X and Windows
Programming language: Java
Other requirements: Java 1.6.0 or higher, OMERO

(note: the ATOM version number must match the
OMERO version number)
License: GNU GPL
Restrictions to use by non-academics: none

Additional material

Additional File 1: User’s guide. A simple user’s guide.

Abbreviations
API: Application programming interface; ATOM: AuTO.iMporter; DAQ: Data
acquisition; DVD: Digital versatile disc; GB: Giga byte; GHz: Giga Hertz; ID:
Identification; JAR: Java archive file; MBit: Mega bit; NAS: Network-attached
share; OME: Open Microscopy Environment; OMERO: OME remote objects;
RAID: Redundant array of independent discs; RAM: Random access memory;
TIFF: Tagged Image File Format.

Acknowledgements
We would like to thank Prof. Jason Swedlow and the OME developer team
for continuous support during the development of ATOM. This work was
supported by the Federal Ministry of Education and Research (BMBF,
Germany), the German Research Foundation (DFG) and the
Landesgraduiertenförderungsgesetz (LGFG, Saarland, Germany).

Author details
1Institute for Molecular Cell Biology, Saarland University, Homburg, Germany.
2Center for Bioinformatics Saar, Saarland University, Saarbrücken, Germany.
3Research Center for Molecular Imaging and Screening, Saarland University,
Homburg, Germany.

Authors’ contributions
OM has developed and programmed the software ATOM. OM, LK and PL
have designed the research and equally contributed to the manuscript. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 31 May 2011 Accepted: 6 October 2011
Published: 6 October 2011

References
1. Past, Present, and Future of High Content Screening and the Field of

Cellomics. In High Content Screening. Edited by: Taylor DL, Haskins JR,
Giuliano KA. Human Press, Totowa New Jersey; 2007:3-18.

2. Approaching High Content Screening and Analysis: Practical Advice for
Users. In High Content Screening. Edited by: Haney SA. John Wiley
2008:3-24.

3. Image based High Content Screening - A View from Basic Science. In
High-Throughput Screening in Drug Discovery. Edited by: Hüser J. Weinheim:
WileyVCH; 2006:129-149.

4. Moore J, Allan C, Burel JM, Loranger B, MacDonald D, Monk J, Swedlow JR:
Open Tools for Storage and Management of Quantitative Image Data.
Methods in Cell Biology 2008, 85:555-570.

5. Swedlow JR, Goldberg IG, Eliceiri KW: Bioimage Informatics for
Experimental Biology. Annual Review of Biophysics 2009, 38:327-346.

6. The Bio-Formats Library. [http://loci.wisc.edu/software/bio-formats/].
7. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B,

Moore J, Neves C, MacDonald D, Tarkowska A, Sticco C, Hill E, Rossner M,
Eliceiri KW, Swedlow JR: Metadata Matters: Access to Image Data in the
Real world. Journal of Cell Biology 2010, 189:777-782.

8. Müller O, Tian Q, Zantl R, Kahl V, Lipp P, Kaestner L: A System for Optical
High Resolution Screening of Electrical Excitable Cells. Cell Calcium 2010,
47(3):224-233.

9. OMERO.fs. [http://openmicroscopy.org/site/support/omero4/server/fs/].
10. PPMS - Pasteur/Rockefeller Platform Management System. [http://ppms.

info/].

doi:10.1186/1756-0500-4-382
Cite this article as: Müller et al.: ATOM - an OMERO add-on for
automated import of image data. BMC Research Notes 2011 4:382.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Müller et al. BMC Research Notes 2011, 4:382
http://www.biomedcentral.com/1756-0500/4/382

Page 5 of 5

http://auto-importer.sourceforge.net/
http://auto-importer.sourceforge.net/
http://www.biomedcentral.com/content/supplementary/1756-0500-4-382-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/18155479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416072?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416072?dopt=Abstract
http://loci.wisc.edu/software/bio-formats/
http://www.ncbi.nlm.nih.gov/pubmed/20513764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20513764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20036001?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20036001?dopt=Abstract
http://openmicroscopy.org/site/support/omero4/server/fs/
http://ppms.info/
http://ppms.info/

	Abstract
	Background
	Findings
	Conclusions

	Background
	Approach
	Flow diagram of the approach
	Salient features
	Handling of multi-file formats
	Graphical user interface
	ATOM in commercial high-content screening environments

	Implementation details
	Results
	Discussion
	Comparison with OMERO system components
	ATOM in a multi-user environment

	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

