
TECHNICAL NOTE Open Access

Functional Genomics Assistant (FUGA): a toolbox
for the analysis of complex biological networks
Ignat Drozdov1,2*, Christos A Ouzounis2,3,4, Ajay M Shah1 and Sophia Tsoka2*

Abstract

Background: Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that
regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that
detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and
pathology. Representation and analysis of cellular constituents through network principles is a promising and
popular analytical avenue towards a deeper understanding of molecular mechanisms in a system-wide context.

Findings: We present Functional Genomics Assistant (FUGA) - an extensible and portable MATLAB toolbox for the
inference of biological relationships, graph topology analysis, random network simulation, network clustering, and
functional enrichment statistics. In contrast to conventional differential expression analysis of individual genes,
FUGA offers a framework for the study of system-wide properties of biological networks and highlights putative
molecular targets using concepts of systems biology.

Conclusion: FUGA offers a simple and customizable framework for network analysis in a variety of systems biology
applications. It is freely available for individual or academic use at http://code.google.com/p/fuga.

Background
Advances in high throughput data collection and analy-
sis have shown that a discrete biological function can
only rarely be attributed to individual molecules [1].
Instead, complex cellular activities can be achieved
through a system of interactions between macromole-
cules such as proteins, DNA, and RNA. Quantitative
understanding of these patterns is critical for an in-
depth characterization of fundamental principles in cel-
lular biology and pathology.
Network biology is an emerging area of scientific

interest aiming at the elucidation of the dynamic struc-
ture and pleiotropic function of genes and their pro-
ducts in cellular networks in a systematic and unbiased
fashion. The treatment of biological data as graphs,
where typically nodes signify cellular entities (e.g. genes,
proteins, metabolites) and connections (edges) denote

the corresponding functional or physical interactions, is
a promising representation in molecular systems biol-
ogy. Successful applications of network biology have led,
for instance, to the classification of breast cancer at the
interactome level [2], the characterization of signaling
pathways in gastric cancer [3] and the delineation of
fundamental organizational principles in metabolic net-
works [4]. In addition, integration of gene expression
and network topological properties have led to more
efficient methods for novel biomarker identification in
critical conditions such as heart failure [5] and cancer
[2].
Analysis of topological features and dynamic proper-

ties of cellular networks remains a highly active area of
research. Indeed, several tools have been developed to
address the need for system-wide analysis (NeAT [6],
Systems Biology Toolbox [7]) or visualization (Cytoscape
[8], BioLayout [9]). Nonetheless, the adoption of such
approaches within the wider biomedical community has
been rather limited, possibly due to challenges posed by
the integration of experimental (e.g. microarray) and
computational (e.g. databases) platforms [10]. Therefore,
it is desirable that network-driven pipelines become
more accessible to end users, thus facilitating the
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transformation of information hidden in multi-dimen-
sional datasets into useful hints for the discovery of bio-
markers and therapeutic targets.

Implementation
We have developed a system called Functional Geno-
mics Assistant (FUGA), a MATLAB toolbox for the
inference of cellular networks, graph topology analysis,
random network simulation, network clustering, and
functional enrichment (shown schematically in Figure
1). The toolbox is easily customizable and scalable to
networks with thousands of nodes and millions of
edges. Additionally, FUGA can integrate high through-
put datasets into a unified framework, within which
other applications can be embedded. Our objective in
designing FUGA has been to simplify network analysis
concepts and techniques for end users, by providing
intuitive MATLAB functions for complex system
exploration and network analysis.
MATLAB was the language of choice for the develop-

ment of FUGA, due to its matrix- and vector-based
architecture, simple syntax, and powerful graphics. The
code is designed to run on Unix or Mac machines;
advanced users may compile sources for other plat-
forms. Overall, FUGA is seamlessly integrated into

MATLAB, so as to permit extensive analytical and
visualization operations.

Results and Discussion
Recently, FUGA functionality was applied on experi-
mentally derived datasets to define a population-based
miRNA signature of type 2 diabetes [11], elucidate the
expression patterns of iron regulatory protein 2 (IRP2)
[12], and characterize genome-wide expression patterns
in physiological cardiac hypertrophy [13]. The current
FUGA release contains 137 functions and the main
operating features are described briefly below.

Network reconstruction
Biological networks can be inferred with FUGA from
computationally or experimentally derived datasets (e.g.
BLAST similarity matrices, microarray data) using any
form of similarity measure (e.g. Pearson Correlation
Coefficient or PCC) to define pairs of nodes. It is also
possible to import network edge lists from a text file or
download interactomes of interest from the STRING
database of known or predicted protein-protein interac-
tions [14] via a web API. In the future releases, FUGA
will support a wider range of public interaction data-
bases. Network graphs are typically undirected and may
be weighted. Network-specific information, such as node
labels and attributes are stored as MATLAB objects for
further access.

Global and local network topology
Complex interactions between constituents that regulate
phenotypic diversity necessitate the study of a biological
system in the context of the entire interactome, rather
than just the over- or under- expression of individual
entities. FUGA provides access to global network para-
meters such as shortest path, diameter, or link density
in the interaction network. Topological features such as
node betweenness and clustering coefficients can also be
computed by accessing the Markov clustering (MCL)
toolset [15] through the FUGA interface. To compare
against random effects in large networks with hundreds
of nodes and thousands of edges from high-throughput
experiments, FUGA can construct random networks
using link rewiring and the Erdos-Rényi model, or it can
build a random modular graph, as reported elsewhere
[16]. For comparing two or more networks, FUGA
implements simple network similarity estimations using
the Jaccard index and handles boolean set operations
such as network union, intersection, and difference.

Network clustering
Because functionally related genes or proteins tend to
co-localize in network vicinity, FUGA offers to identify
the modular network structure via the MCL [15] or

Figure 1 An overview of the most prominent FUGA features.
FUGA is used for gene regulatory network inference, random
modeling, network topology analysis, clustering, and network
comparison. It is also possible to import biological networks from
the STRING web-based database. Integration of biomedical data
such as gene expression with interactome information may facilitate
molecular pathway analysis, network-based target prioritization, and
drug target discovery.
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SPICi protocols [17]. Additionally, FUGA implements a
greedy algorithm for community detection that uses net-
work modularity as a measure of community structure
[18], as well as several functions for spectral graph parti-
tioning [19]. Such unsupervised algorithms are well
adapted to large biological networks and may uncover
previously undetected interactions.

Biological interpretation
By default, FUGA works with the ENSEMBL database
[20] to annotate network nodes using all major function
classification schemes (e.g. Gene Ontology [21] [GO]
Biological Process [BP], Molecular Function [MF], Cellu-
lar Component [CC], GOSlim, or Reactome pathway
terms). In addition, it is possible to define a custom
annotation schema such as gene-disease associations.
Cluster enrichment is performed by calculating the
hypergeometric probability between inter- and intra-
cluster gene counts assigned to a priori-defined terms.
To facilitate biological discovery, nodes can be explored
by merit of their topologies and subsequently linked to
databases such as ENTREZ, GeneCards, or UniProt.
Similar topological analyses have been previously used
to uncover high-quality therapeutic targets in psoriasis
[22] and identify putative cancer-associated genes [23],
for instance. We illustrate biological discovery with
FUGA through an example (see below).

Visualization through Cytoscape
FUGA provides direct access to the Cytoscape graph
visualization software. Networks and node attributes,
including clusters and topologies, can also be exported
to a text file for subsequent exploration with other,
user-defined network visualization software.

Extensibility
MATLAB’s interactive environment allows flexible and
simple addition of new functionalities to FUGA by
expanding the existing framework. For example, addi-
tional network statistics or clustering algorithms can be

implemented using MATLAB matrix operations and the
existing FUGA network object architecture.

Comparison with other toolboxes
Similar toolboxes have been developed in MATLAB for
systems biology related analysis. These include
MATLABBGL [24] and the Brain Connectivity Toolbox
(BCT) [25], as well as the bioinformatics toolbox devel-
oped by Mathworks. MATLABBGL uses the Boost
Graph library to efficiently analyze large sparse graph
structures. The BCT package is designed to quantify
centrality and structure of brain networks. The bioinfor-
matics toolbox from Mathworks has several functions
for graph analysis (e.g. connected components, shortest
paths), but its functionality is limited, as it may not
scale up well for larger genome-wide networks. A num-
ber of non-MATLAB tools are available for network
visualization and analysis, including NATbox [26] and
NeAT [27]. Each tool has a distinct set of features
which are highlighted in Table 1. The FUGA toolbox
provides a broader range of graph theory functions and
integrates expression analysis, functional annotation,
and network visualization. The current FUGA release
2.9.4 contains 137 functions. As such, it provides an
important contribution to network biology applications
and related biomedical data analyses.

Example
We illustrate the functionality of FUGA by interrogating
time-course transcriptional profiles of failing mouse
hearts (ArrayExpress: E-MEXP-105 [28]). First, PCCs for
all possible gene pairs across all phenotypes were com-
puted and gene pairs with absolute PCC≥0.90 were
retained and visualized as an un-weighted, undirected
network. The network contained 1018 genes and 2324
links. Average node degree was 4.6, network diameter
was 21, and graph architecture was determined to be
scale free (Figure 2A). Topological features of the net-
work (assortativity, betweenness, clustering coefficients)
were non-random (Figure 2B-D). Then, the greedy

Table 1 Comparison of network analysis tools.

Tool FUGA BIT BGL BCT NATbox igraph NeAT NWB IN GG

Interface MATLAB MATLAB MATLAB MATLAB R C/R/Python Web-based Java Java Java

User-defined networks ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Curated pathway/network content: API ✓ ✓ ✓ ✓

Computational network reconstruction ✓ ✓ ✓ ✓

Statistical network analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Biological enrichment/annotation ✓ ✓ ✓ ✓ ✓

Expression analysis ✓ ✓ ✓ ✓

BIT = MATLAB Bioinformatics Toolbox, BGL = MATLABBGL, BCT = Brain Connectivity Toolbox, NWB = Network Workbench, IN = Ingenuity Pathways Analysis, GG
= GeneGo.
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method for community detection [18] was used to iden-
tify modules of co-expressed genes (Figure 2E). The net-
work and its attributes were visualized with Cytoscape
and biological enrichment was performed to identify dis-
ease-specific over-represented GO-BP terms (Figure 2F).
The above analyses were executed in under 5 minutes
in the MATLAB command line prompt on 2.53 GHz
Intel Core 2 Duo machine with 4 GB RAM.

Conclusion
FUGA is an extensible and versatile framework for net-
work analysis in a variety of systems biology applica-
tions. While currently FUGA implements the most
widely used graph theoretic approaches, future plans
include the development of novel centrality and cluster-
ing algorithms. We also aim to integrate additional bio-
logical annotation repositories to facilitate analysis of
networks derived from heterogeneous biological experi-
ments. The FUGA project is an ongoing effort that
should facilitate the dissemination of graph theoretic
approaches across the wider biomedical community.

Availability and requirements
Project name: FUGA
Project web page: http://code.google.com/p/fuga/

Operating System: Mac OS X/Linux/Windows
Programming language: MATLAB 7.8.0 or higher/C/C

++
Other requirements: None
License: GPL
Any restrictions on use by non-academics: License

needed
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