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Abstract

microarray dataset.

http://cbdm.mdc-berlin.de/tools/sampler/.

Background: High-throughput biological experiments can produce a large amount of data showing little overlap
with current knowledge. This may be a problem when evaluating alternative scoring mechanisms for such data
according to a gold standard dataset because standard statistical tests may not be appropriate.

Findings: To address this problem we have implemented the QiSampler tool that uses a repetitive sampling
strategy to evaluate several scoring schemes or experimental parameters for any type of high-throughput data
given a gold standard. We provide two example applications of the tool: selection of the best scoring scheme for
a high-throughput protein-protein interaction dataset by comparison to a dataset derived from the literature, and
evaluation of functional enrichment in a set of tumour-related differentially expressed genes from a thyroid

Conclusions: QiSampler is implemented as an open source R script and a web server, which can be accessed at

Findings

Due to their large size and complexity, the processing
and analysis of data produced by high-throughput mole-
cular technologies requires the application of computer
programs and algorithms. For example, the transcrip-
tome of a cell can be assayed with mRNA microarrays,
full genomes can be quickly sequenced using deep-
sequencing technologies, and data on thousands of pro-
tein-protein interactions (PPIs) can be generated using
high-throughput yeast two-hybrid screening or mass
spectrometry [1,2]. As these technologies produce a huge
amount of data, often from samples or conditions never
studied before, evaluation of the significance of such
results is challenging.

When evaluating the results of a new high-throughput
experiment, a biologist’s first reaction is often to compare
the experimental results to a golden set built from his
knowledge and from the literature [3,4]. This golden set
would allow the identification of known (previously
described in the literature) and novel (not described in
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the literature) results in the data set, and it would allow
the evaluation of different scoring schemes (e.g. experi-
mental parameters, confidence scores or statistical tests)
that can be used to prioritize the results. The systematic
comparison of prioritizations from different scoring
schemes may positively impact the results of a study (e.g.
by helping to select appropriate confirmatory experi-
ments) or suggest changes in experimental protocols.

However, it is often the case that high-throughput
datasets overlap minimally with available golden sets.
For example, in the case of PPI data, a golden set com-
posed of tens of thousands of curated human PPIs can
be built from public databases. While this at first sounds
like a large golden set, the total interaction space con-
tains hundreds of millions of potentially interacting pro-
tein pairs [2,5]. In cases such as this, standard statistical
tests may not be appropriate for evaluating a dataset.
Therefore, alternative scoring schemes including com-
parisons of biological attributes such as gene expression
or Gene Ontology terms have been used instead [3,6,7].
Yet, the application of these methods to a new dataset
requires programming skills and specific statistical
knowledge.
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We have implemented the QiSampler tool to systema-
tically evaluate several scoring schemes for high-
throughput experiments versus given golden sets using a
sampling strategy. To demonstrate QiSampler’s useful-
ness, we applied the algorithm to a public PPI dataset to
select the experimental score that best prioritizes the
data, and to a public microarray dataset to evaluate a
functional enrichment in a set of differentially expressed
genes.

Background

Algorithm

The main input to the QiSampler algorithm is a table
with at least three pieces of information for each experi-
mental result, or “item": a label describing the item (e.g.
gene name, PPI description, etc.), an indication of
whether the item is in the golden set ("known”) or not
"novel”) encoded as ‘1’ and ‘0’ respectively, and one or
more scores for the item that was calculated using a
scoring scheme that you wish to evaluate. The scores
can be integers or decimal numbers, and are expected
to correlate positively with the significance of the item.
In addition to this table, the user must also provide the
number of repetitions N (a positive integer value), and
the sampling rate SR € ]0, 1] used to define a sample
size S = | number of known items * SR |.

The QiSampler algorithm works by assessing, for each
column of alternative scores, whether high values are
assigned preferentially to known cases. This is done by
comparing the values given to known items to randomly
chosen novel items. The algorithm can be described as
follows (see also Figure 1):

1. select a random sample of size S from the known
items in the dataset

2. select a random sample of the same size S from
the novel items in the dataset

3. compute the classification performance on the
random sample for a given scoring scheme

4. repeat steps 1 to 3 N times

5. compute the average classification performance
over the N random samples

6. update output plots with averaged performance
curves over the N repetitions

7. repeat steps 1 to 6 for each scoring scheme

Performances are summarized using four graphical
plots: precision-recall, precision-cutoff, recall-cutoff, and
receiver operating characteristic (ROC) curves (See
Figure 2). Classification statistics are defined as follows:
given a score cutoff for item selection, true positive
items (TP) are defined as known items that are selected,
false positive items (FP) as novel items that are selected,
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true negative items (TN) as novel items that are not
selected, and false negative items (FN) as known items
that are not selected. Then, the following classification
performance measures are used: recall = TP/(TP + FN),
true positive rate = recall, false positive rate = FP/(FP +
TN), and precision = TP/(TP + FP) [8,9]. Examination
of the graphs permits comparison of the scoring sys-
tems, and could suggest optimal cutoff values for speci-
fic applications.

When running QiSampler, the user can test the effect
of changing the SR parameter, which defines the sample
size S. This is useful to detect whether the results of the
algorithm could be biased by the high scores of a few
true positives. The observation of a drastic decrease in
performance when changing SR from high to low (e.g.
from 90% to 10%) would tell that just a few true positive
items have higher scores than the random selection. On
the contrary, stable performance when varying SR would
tell that most of the true positive items have comparable
scores. Another parameter that is defined by the user is
the number N of repetitions of the test. The procedure
should be repeated a minimal number of times to pro-
duce a good estimate of the performance (we would
suggest at least 100 times). Lower values may have to be
used if the computational requirements are too high.

Example of application to a PPI dataset

We have downloaded data from a proteomics study
where interaction partners of 75 deubiquitinating
enzymes were defined using protein purification, immu-
noprecipitation and tandem mass spectrometry [10].
The full dataset consisted of 26,803 protein pairs evalu-
ated for potential interaction using two different scores:
the z-score and the DN confidence score, the latter
introduced by the authors to score interactions using
information from parallel nonreciprocal datasets. The
superiority of the DN score was shown only for a few
examples [10].

Here, we have used QiSampler to perform a systema-
tic statistical evaluation of the two scoring systems in
this dataset (Figure 2). The dataset included 105 known
pairs that have been previously described in the litera-
ture (as defined in [10]). We selected N = 1000 repeti-
tions and SR = 25% (equivalent to 26 pairs). The
running time was approximately 40 minutes, but it can
vary drastically from a few seconds to a few hours when
different parameters are used (Table 1).

For comparison, the DN score was log transformed
(logarithm base 10) and both scores (z-score and DN
score) were then scaled to [0,1]. The scaled version Sq.aieq
of a score S was defined as Sscajeq = (S - Smin)/( Smax -
Siin), Where S, . and S, ;, are the maximal and minimal
value of S respectively. The DN score (blue curves)
showed higher precision but lower recall than the z-score
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Figure 1 Flow chart of the QiSampler algorithm. The data to be processed (all known and novel items and corresponding scoring schemes),
and the values of S and N are set from the inputs (see algorithm section for details).

(red curves). Nevertheless, the balance between precision
and recall (precision-recall curve), or true positive rate
and false positive rate (ROC curve) was better for the DN
score, showing its superiority. Both scores were better
than random controls in the four plots. Results were
stable when varying the sampling rate from 10% to 100%
(data not shown).

Example of application to a microarray dataset

We downloaded from the Gene Expression Omnibus
database [11] a microarray dataset (identifier: GSE6339)
containing normalized gene expression values of human
thyroid samples, and extracted data from 30 oncocytic
thyroid adenoma (OTA) and 24 wild type (WT) samples
[12]. OTA cells are characterized by an accumulation of
mitochondria [13]. We used QiSampler to see if genes
disregulated in OTA samples were significantly related
to oxidoreductase activity, which is related to mitochon-
drial function [14].

Z-scores comparing expression values between OTA
and WT samples were computed for 3,821 gene probes
with associated Gene Ontology (GO) annotations and a
number of missing values less than or equal to 27

(representing 50% of the samples). There were 137
(3.6%) gene probes associated to “oxidoreductase activ-
ity” annotation (GO:0016491). We selected N = 1000
repetitions and SR = 25% (equivalent to 34 gene probes)
to produce classification performance plots by QiSam-
pler (Figure 3).

The separation of the precision-recall curve from the
random curve shows that genes related to oxidoreduc-
tase activity tend to be upregulated demonstrating the
initial hypothesis. The shape of the ROC curve is prob-
ably due to the fact that not all the genes related to oxi-
doreductase activity are involved in OTA and that the
set of upregulated genes is expected to include genes
related to other cellular and molecular processes such as
apoptosis or mitochondrial homoeostasis [13,15].

Implementation

The R script is designed for R 2.9.0 [16] and plots are
generated by the ROCR package [9]. The script is used
in command-line mode. To facilitate access to the algo-
rithm we also implemented the algorithm as a public
web tool, programmed using JavaScript, HTML 4 and
Perl 5.8.8, but it operates with some query-size limits
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Figure 2 Scores comparison. These graphs produced by QiSampler show the average performance of two scores (scaled to [0,1]), used to
select PPIs from the same experimental dataset [10]. Performance was averaged over 1000 repetitions with a sampling rate of 25%. Dashed lines
represent randomized data. Based on the Precision-recall and ROC graphs, the normalized DN score performs better than the z-score and a cut-
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Table 1 Average running times on the full dataset

Sampling rate 0.25 0.75 1
Running time for 10 repetitions 00:00:04  00:00.07 00:00:11
Running time for 100 repetitions 00:00:54  00:03:30 00:04:46
Running time for 1000 repetitions 00:40:15 03:09:14  05:09:52

The full dataset contained 26,803 protein pairs including 105 known in the
literature. Times were averaged over two runs and were recorded on an AMD
Opteron (64 bits, 2.3 GHz) processor-based computer.

due to restricted computing power. Web pages were
tested on Linux or Windows using Firefox 3.6.8, Google
Chrome 5.0, and Internet Explorer 8.0.

Discussion

QiSampler can systematically evaluate the classification
performance of experimental scores in comparison to gold
standards and to random controls. A given scoring scheme
can be identified as relevant if it produces better
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Figure 3 Functional enrichment in differentially expressed genes. These graphs produced by QiSampler show the average performance of
the z-score comparing gene expression values between 30 OTA and 24 WT samples to select gene probes related to oxidoreductase activity in
a thyroid microarray gene expression dataset [12]. The performance was averaged over 1000 repetitions with a sampling rate of 25%
representing 34/137 known items and 34/3684 novel items. Dashed lines represent randomized data. The precision increases with the z-score
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classification performance than randomly generated scores.
If the user provides multiple scoring schemes, their perfor-
mance can be easily compared, as illustrated in Figure 2.
To illustrate QiSampler’s usefulness we applied it to the
analysis of a high-throughput PPI dataset (26,803 protein
pairs) produced by mass spectrometry experiments that
has little overlap with the PPI literature (105 known inter-
acting pairs) [10]. In the original publication, a particular
score was designed for mass spectrometry data (DN

score), which accounts for protein abundance and per-
forms better than the z-score in the selection of protein
spectrometry results [10]. Accordingly, the QiSampler was
able to reproduce the superiority of the DN score over the
z-score (Figure 2). In a second application, we used
QiSampler to demonstrate the enrichment in functions
related to oxidoreductase activity in genes upregulated in
oncocytic thyroid adenomas from a microarray dataset
(Figure 3).



Fontaine et al. BMC Research Notes 2011, 4:57
http://www.biomedcentral.com/1756-0500/4/57

Although QiSampler was created to process datasets
with little overlap to the literature, it will not be able to
process a dataset with very few known cases or with too
few different score levels (e.g. a binary score) due to a
limitation in a function of the ROCR package. We
recommend running the procedure with datasets having
at least 10 known cases, the more the better, and scored
with continuously distributed values.

The algorithm may have long run times when proces-
sing large datasets (Table 1), and due to restricted com-
puting power the web server operates with some
restrictions on the size of the query. To avoid this pro-
blem, an open-source R script is provided which allows
one to use QiSampler locally as a command line pro-
gram without limited inputs.

Plans for the future include an improved web server able
to process large datasets. Automatic computation of opti-
mal score cutoffs could also be useful, though different
applications may require different cutoffs, e.g. giving prior-
ity to higher recall accepting poor precision (e.g. genetic
disease screenings) or to higher precision accepting poor
recall (e.g. identification of disease markers). Result relia-
bility when varying the sampling rate could be automati-
cally computed, though running QiSampler twice is
sufficient to see such an effect, for example comparing
sampling rates of 10% and 90%. Finally, to further simplify
the use of the QiSampler tool, which requires the user to
provide the scores and the identification of the known
items, we will implement optional pre-computed score
systems and golden standards upon request from users if
these are commonly used in the research community.

In conclusion, QiSampler can be used for the selection
of the most useful experimental scores or parameters.
Simplicity of the input format allows the use of QiSam-
pler with various dataset types, such as PPI, gene-
expression microarray, or deep sequencing datasets.

Availability and requirements
Project name: QiSampler
Project home page: http://cbdm.mdc-berlin.de/tools/
sampler/
Operating system(s): platform independent
Programming language: R, Perl, HTML, and JavaScript
Other requirements: either a modern web browser or
R 2.9.0 and the ROCR package
License: BSD license
Any restrictions to use by non-academics: none

List of abbreviations
PPI: protein-protein interaction.
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