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Abstract

from normal fetuses of 14-16 weeks gestational age.

propagation of human progenitor cells.

Serum-free

Background: Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative
disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and
CHXT0 (retinal progenitor markers) during treatment of human retinal pigment epithelium (RPE) cells with amniotic
fluid (AF), RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12
supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained

Results: Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture,
including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell
proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-
supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited
nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This
indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls.
Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1) confirmed these results and demonstrated
AF's capacity for promoting retinal progenitor cell generation.

Conclusion: Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell
generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro
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Background
With the current increasingly aging population, the inci-
dence of age related macular degeneration (AMD) is
expected to rise [1]. In recent years, AMD has been the
main cause of irreversible vision loss in elderly indivi-
duals from industrialized nations [2,3].

Although a large volume of studies have been con-
ducted to investigate palliative therapies and stop the
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progression of the disease, there is still no definite treat-
ment for AMD [4].

A number of treatments have previously been used,
some of which, in addition to not being suitable for retinal
restoration, have been found to affect the adjacent healthy
cells [5-8]. In parallel with the numerous attempts made
to produce efficient medication, investigations by cell biol-
ogists have spurred novel curative strategies for retinal re-
habilitation: "cell replacement therapy" [9-12].

The ability of stem cells to repair lost photoreceptors in
the retina has opened a promising avenue to researchers
[13-15]. In recent years, several sources of stem cells have
been under investigation as a replacement for damaged
photoreceptors. These include embryonic, marrow-derived
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and umbilical cord-derived stem cells, and immortalized
cell lines [16-19]. However, of all stem cells, retinal derived
progenitor cells may be a more efficient treatment for vis-
ual impairment [20]. More than 20 years have passed
since the first report of retinal pigment epithelium (RPE)
transplantation in animal models [21-23] and human
trials [24]. These clinical studies have offered hope to
ophthalmologists because of the competency of RPE cells
in reviving previously disappearing cells’ net connection
and visual function [18]. Despite the encouraging results,
there are still difficulties associated with this kind of treat-
ment, and more studies are required to overcome such
obstacles. Amniotic fluid (AF) is enriched with a variety
of growth factors and nutrients, and several reports have
shown that it is necessary for embryonic cell proliferation,
differentiation and dedifferentiation [25,26]. This study fo-
cused on how AF can lead to retinal progenitor cell
development.

Resuls

RPE cell culture

The enzymatic isolation of RPE cells from the globe, using
dispase I, yielded a culture with a higher degree of RPE
purity when compared with mechanical and other enzym-
atic methods of isolation. Small, pigmented RPE cells with
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differing morphologies adhered to the culture surface and
proliferated (Figure 1A, 1B). Pigmentation decreased with
increasing passage, culminating in the disappearance of all
pigmented granules from around the nucleus. The cells
also increased in size through repeated subcultures, and
elongated peripheral processes emerged (Figure 1C, 1D).
Nevertheless, some cultures exhibited spontaneously aris-
ing sizeable spheroid colonies that were detectable by eye
(Figure 2A). These colonies, when allowed to continue
their growth, evolved into unattached free colonies floating
in the supernatant (Figure 2B). Trapping and reculturing
the free-floating colonies led to the establishment of a new
RPE cell monolayer. This confirms the potential of col-
onies to initiate another series of attachment and prolifera-
tion on the plate surface (Figure 2C-2D).

Growth in AF

To further examine the cultures, trypsinized cells were
gently centrifuged (5 min at 300 x g), the supernatants dis-
carded and the residual precipitates were re-suspended in
complete medium supplemented with 10% AF, 20% AF
and 30% AF. Cells grown in AF-supplemented medium
produced more established colonies than those grown in
FBS, RPE cells cultivated in AF-coated flasks required only
15 min to adhere to the plate surface, compared to at least

of pigmentation after several passages. Magnification: 200x.

Figure 1 Microscopic images of RPE cells. A, B: Deeply pigmented RPE progeny, at the first passage, with different morphologies that had
recently attached to the plate surface. C, D: Elongated RPE cells at late passages; demonstrating the appearance of peripheral processes and loss
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Magnifications: 200 x.

Figure 2 Microscopic images of RPE cultures. A: Expansion of spheroid colony from young cultures (passage 3). B: Free colony floating in
supernatant (passage 3). C, D: Re-cultured free colonies and establishment of a new RPE monolayer (passage 5). E, F, G: Ordered arrangement of
RPE cells cultured on AF-coated surfaces (passage 9) H, 1, J: Chaotic spread of RPE cells grown on FBS-coated surfaces (passage 9).

90 min needed for FBS-coated flasks. In addition, cultures
on AF-pre-coated surfaces displayed a clearly visible track
of aligned RPE cells (Figure 2E-2G), while cells in FBS-
supplemented medium did not show any regular spreading
or specific positioning on the surface (Figure 2H-2]J). Also
the number of cells that attached to AF-coated surfaces
was always greater than that of FBS-coated dishes (data
not shown).

Immunocytochemistry

Immunocytochemical data obtained from the first pas-
sage of RPE cells, freshly isolated from eye globes, indi-
cated a high degree of purity for harvested RPE cells,
with over 90% of the cells positive for RPE65 (Figure 3A)
and cytokeratin 8/18 (Figure 3B).

Rates of RPE65 and cytokeratin expression decreased
with repeated subculturing, suggesting the appearance
of undifferentiated retinal progenitor cells (Figure 3C).
Cultures devoid of primary and/or secondary antibodies
were negative for all examined markers in each case
(Figure 3D-3G). Immunocytochemical analysis of RPE
cells co-cultured with 30% AF showed 33% immunos-
taining for CHX10 (Figure 4A, 4C) and 27% for PAX6
(Figure 4B, 4D), which suggests an approximate 3-fold
increase in expression of the aforesaid makers com-
pared to FBS-supplemented medium (13% for CHX10
and 8.6% for PAX6) (Figure 4E-4H). In control DMEM/
F12 cultures, immunocytochemical analysis showed a
decrease in the number of cells positively expressing
retinal progenitor markers (data not shown). CHX10
and PAX6 markers displayed a nuclear localization and
they had a punctate distribution. Cultures devoid of

primary and/or secondary antibodies were negative for
all examined markers in each case (Figure 3D-3G).

RPE cell proliferation and cell death ELISA assays

RPE cell proliferation rates were evaluated in the presence
of AF (10%, 20%, and 30%), FBS (10%), and DMEM/F12 as
a control. The results suggest that AF-treated cultures,
when compared with those lacking AF in the media, had a
dose-dependent increase in proliferation, most likely due
to the growth factor-rich content of AF (Figure 5 Left).
Cell death analysis showed that there was no significant
impact of AF on the apoptotic rate in RPE cultures which
is comparable to that of FBS (Figure 5 Right).

Real Time PCR

According to the RT-PCR data, PAX6 expression levels
increased when 3 dosages of AF (10%, 20%, 30%) were
used to treat cultures, when compared to FBS cultures
and that this elevation was highest when using 30% AF.
Surprisingly, PAX6 expression levels in DMEM/F12-treated
cultures (control) increased several-fold compared to those
of AF- and FBS-treated cells (Figure 6 Left).

CHXI0 expression was not detected when 10% and
20% concentrations of AF were used but was present in
30% AF-treated cells in which CHXI0 expression was
significantly increased when compared to FBS-treated
cultures (5.55 fold). Similar to PAX6 expression, control
cultures also displayed a much greater increase in CHX10
expression levels (70.85 fold) (Figure 6 Center).

Although VSX-1 expression levels increased with in-
creasing doses of AF (10% and 20%), there was a slow
decrease in expression levels in 30% AF-treated cultures.



Sanie-Jahromi et al. BMIC Research Notes 2012, 5:182
http://www.biomedcentral.com/1756-0500/5/182

Page 4 of 10

DAPI Field

Negative Control

counter-stained with DAPI. Magnification: 200x.

Fleurescent Field

Figure 3 Fluorescence microscopy of RPE cells. A, B: Fluorescence microscopy of RPE cells from the first culture, indicating an RPE cell culture
purity of nearly 100%. immunostaining procedure was carried out as described in the methods. A: Cytoplasmic and granular expression of RPE65
in cells positive for RPE65 after immunostaining with rabbit anti-human RPE65 polyclonal antibody, B: Cytoskeletal expression of cytokeratin 8/18
in RPE cells positive for cytokeratin 8/18, immunostained with mouse anti-human cytokeratin 8/18 antibody. C: Decrease in cytokeratin 8/18
expression at passage 7 of RPE cultures. D-G: Negative control for cytokeratin 8/18 (E) and RPE65 (G) expression, showing no non-specific binding
of the aforesaid markers. As detailed in the methods section, the negative controls were not stained with any primary antibodies. Nuclei were

Overall, AF-treated cultures displayed higher VSX-1 ex-
pression than FBS-treated cells. In the control cultures,
the trend in level of VSX-1 expression was similar to that
of PAX6 and CHXI10 (Figure 6 Right).

Discussion

The results presented in this study show that AF is a
robust promoter of growth for retinal progenitor cells. AF
has an approximately neutral pH (7.2), and its osmotic
pressure is in the physiological range, thus providing a
suitable and appropriate environment for cell growth and
proliferation. Previous studies have been carried out to
identify the content of the AF proteome. Cho et al iden-
tified the 15 most abundant proteins in AF at gestational
ages of 16-18 weeks which included albumin, fibronectin,
serotransferrin, complement C3, ceruloplasmin and TGEF-
B [27].

Previous works have also suggested the ability of AF to
initiate regeneration in damaged cells [25,26], thus con-
firming the data obtained in this study.

The innate capacity of adult somatic cells has many
potential applications in regenerative medicine [28].
The retinal pigment epithelium begins as a plastic tis-
sue, capable, in some species, of generating lens and

retina but differentiates early in development and nor-
mally remains nonproliferative [29].

Our results show that RPE cells cultured on AF-coated
surfaces displayed an organized alignment when compared
to the disorganized spread on FBS-coated dishes. Al-
though proteomic analysis of AF has not been the focus of
this work, it seems that fibronectin, as the 3" most abun-
dant protein in AF in the 16™ week of gestation [27], plays
a pivotal role in making this organized alignment. Fibro-
nectin is an extracellular matrix protein that has an essen-
tial role in cell attachment, polarity and migration [30].

The results also indicate that RPE cells grown in AF-
containing medium require only 15 min for their initial
attachment compared to at least 90 min required for
those cultured in FBS-supplemented medium. Consistent
with this observation, the report by Heth et al [31] demon-
strates that cells grown on fibronectin- and laminin-coated
microfilters required much less time to reach confluency
when compared to collagen I-coated microfilters. Also, cell
morphology was maintained better on fibronectin-coated
microfilters, similar to our own observations in this study
of AF-treated cells.

The increase in RPE cell proliferation and retinal progeni-
tor gene expression levels in AF-supplemented medium
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Figure 4 Fluorescence microscopy of retinal progenitor marker expression in AF-treated (Left) and FBS-treated (Right) RPE cells. A, E:
Nuclear localization of CHX10 in cells (A: AF-treated cells, E: FBS-treated cells) immunostained with goat polyclonal anti-human CHX10
antibody. B, F: Nuclear localization of PAX6 in cells (B: AF-treated cells, F: FBS-treated cells) immunostained with goat polyclonal anti-human
PAX6. C, D, G, H: The nuclei of each field were counter-stained with DAPI. Note that AF-treated RPE cultures have an approximately 3-fold
increase in retinal progenitor marker expression (33% and 27% for CHX10 and PAX6, respectively) when compared with that of FBS-treated cultures. Each
value represents the mean of 3 independent experiments in at least triplicate. Magnifications; A & C: 200x, B, D, E, F, G & H: 400x.
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Figure 5 Analysis of RPE cell proliferation (Left) and death (Right). An ELISA assay was carried out as described in the methods. Left: Comparison
of RPE cell proliferation between AF-treated cultures (10%, 20%, 30%), FBS-treated cultures (10%) and DMEM/F12 (control)-treated cultures.
Note the dose-dependent increase in AF-treated RPE cell proliferation. Right: Comparison of RPE cell death in AF-treated cultures (10%, 20%,
30%), FBS-treated cultures (10%) and DMEM/F12 (control)-treated cultures with positive control (DNA-histone complex). Note that AF does not
have any apoptotic effects on RPE cells at any of the concentrations tested. Comparative analysis of AF and FBS-treated cultures indicates that
AF may be a suitable substrate for FBS replacement in culture medium. Each value represents the mean + SEM of 4 independent experiments
in at least triplicate.
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independent experiments in at least triplicate.

CHX10 Relative Expression
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Figure 6 Relative retinal progenitor gene expression in AF-treated cultures (10%, 20%, 30%), FBS-treated cultures (10%) and DMEM/F12
(control)-treated cultures. RPE cell preparation and RNA extraction were performed as described in the methods. Relative gene expression was
determined by quantitative real time PCR and normalized against GAPDH mRNA levels. The bar graphs show the normalized expression ratio
in AF-treated RPE cells adjusted to FBS-treated cells. Left: Relative PAX6 expression. Note the dose-dependent increase of PAX6 expression in
AF-treated RPE cultures and higher PAX6 expression in AF-treated cultures compared with FBS-treated cultures. The slow up-regulation of PAX6
expression may be evidence of an increase in the number of retinal progenitor cells. PAX6 is up-regulated in AF (30%) control cultures, which
may be an indicator that these cultures contain neuro-retinal terminally differentiated cells. Center: Relative CHXT0 expression Right: Relative
VSX-1 expression. Note the low level of VSX-T expression in comparison to expression of CHX10. Each value represents the mean + SEM of 2
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were found to be dose-dependent. The cell proliferation
ELISA, immunocytochemistry and RT-PCR data showed
the ability of AF to induce retinal progenitor genes and thus
convert an RPE culture into an invaluable source of retinal
progenitor cells. It is likely that such a dose-dependent
increase in proliferation and regeneration is due to the
presence of growth factors whose concentration corre-
lates with cell proliferation and regeneration. The effect
on RPE cells of several of these growth factors, including
TGF-B, complement C3, albumin, plasminogen, cerulo-
plasmin and serotransferrin, has been examined previously.
As suggested by Saika, following the formation of a wound
in the tissue, the TGF-P factor is activated, turning on a
series of signaling pathways involved in proliferation and
regeneration [32]. There are several other reports indicat-
ing the role of TGF-f in epithelial mesenchymal transition
(EMT), cell migration to the area of damage and the estab-
lishment of regeneration [33]. Complement C3 is another
factor in AF that has been found to be responsible for the
regeneration of damaged tissue. Kimura et al suggested that
complement C3 plays a role in inducing cell proliferation
and is specifically expressed in wounded lens tissue for
tissue regeneration [34]. Reca et al also confirmed the
presence of C3 receptors on hematopoetic stem cells
directing the cells towards damaged tissue [35]. Plasmino-
gen is also a factor involved in cell proliferation and wound
healing. Ceruloplasmin, al microglobin, serotransferrin,
apolipoprotein A and albumin are other AF proteins essen-
tial for cell homeostasis and transport.

In agreement with previous reports on the effect of
separate growth factors on RPE cells, the results of this
study suggest that AF is a valuable composite with all

the aforementioned factors, and therefore represents a
powerful supplemental medium.

Here, we have shown that AF was able to promote ret-
inal progenitor gene expression levels in 30% AF control
cultures, while immunocytochemical analysis of 30% AF
control cultures indicated a decrease in the number of
cells positive for the retinal progenitor markers. Further-
more, ELISA cell proliferation data showed a decreased
rate of proliferation in 30% AF control cultures. Taken to-
gether, these results suggest that PAX6 has a governing
role and is a master regulatory gene located upstream of
CHX10 and VSX-1. Similar to the study of Hsieh et al,
the PAX6 level in proliferating progenitor cells is deter-
mined by the cell, and its level depends on the cell cycle
phase. On the basis of Hsieh et al study, a low level of
PAXG6 expression is crucial for cells to re-enter S phase of
the cell cycle and therefore complete proliferation. There-
fore, a very high level of PAX6 expression represses fur-
ther cell proliferation [36]. Our ELISA and real-time PCR
results are consistent with this hypothesis. According to
the Hsieh et al study, neural cells are able to express
PAX6 to 3 distinctive extents: low (confined to neural
progenitor cells), high (confined to pre-neurogenic pro-
genitors, differentiated neural cells, amacrine cells and
retinal ganglion cells) and negative or zero (confined to
cone photoreceptors and bipolar cells). Taking this into
consideration, and considering that for each sample the
same numbers of cells were examined, our results show
that PAX6 overexpression does not signify progenitor cell
genesis. Our immunocytochemical and RT-PCR data
derived from the 30% AF control cultures show similar
results. The analyses of PAX6 expression levels show that
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RPE cells treated with 30% AF contain the greatest num-
ber of retinal progenitor cells of the tested cultures. In
addition, CHX10 and VSX-1 expression levels in 30% AF-
treated cells indicate the presence of early and late retinal
progenitor cells, respectively. PAX6 overexpression in 30%
AF control cultures shows that these cultures contain
neural differentiated cells; CHX10 and VSX-I expression
levels in the control cultures suggest that neural cells
could represent a range of differentiated and undifferenti-
ated bipolar cells and/or Muller cells, although additional
analysis of bipolar markers should be carried out to con-
firm this. In 10% AF- and 20% AF-treated cultures as well
as 10% AF control cultures, PAX6 was expressed at a low
level, which may be an indicator of the presence of retinal
progenitor cells. VSX-1 expression in these cultures con-
firms the existence of late retinal progenitor cells; however,
the lack of CHX10 expression must be investigated further.
According to a study by Dhomen et al, the absence of
CHX10 expression at a late stage during the progenitor
cell cycle leads to the continuation of progenitor cell pro-
liferation in the adult retina [37]. Therefore, further experi-
ments are needed for these cultures.

The reason for the lack of CHXI10 expression in 10%
AF, 20% AF and 10% AF control cultures is unclear. A 5-
fold increase in CHXI0 expression in 30% AF-treated
cultures suggests a slow expression of the CHXI0 gene
in early retinal progenitor cells. Rapid up-regulation of
CHX10 expression in 30% AF control cultures suggests a
quick rise in the number of bipolar and/or Muller cells
in these cultures.

A significant finding of this study is that AF does not
modify retinal progenitor gene expression patterns. This
is very significant with regard to the treated cells that are
to be accepted for use in future experiments. For example,
VSX-1 expression in all treated cultures was at a lower
level than CHXI0 expression. This pattern has also been
reported by several other studies [36]. This indicates that
CHX10 can negatively regulate VSX-1 expression. AF-
treated (10% and 20%) cultures were negative for CHX10
expression while VSX-1 showed a dose-dependent increase
in expression levels. In the 30% AF-treated cultures, a fur-
ther increase in VSX-1 expression was expected, but sur-
prisingly, VSX-1 expression levels dropped, which may be
due to the increase in CHX10 expression in the 30% AF-
treated cases and its subsequence negative regulation of
VSX-1 expression. According to several reports, CHX10
mostly acts to repress its target genes, VSX-1 is a CHXI0
target gene. In fact, Clark et al have demonstrated that a
high expression of CHX10 is always in accordance with a
low expression of VSX-1 and vice versa [38].

We also examined cultures for their ability to differen-
tiate into other cellular components of the retinal layer;
specific retinal cell markers (PKCa and CRABPI, (un-
published data) Rod and Thyl.1 [39]) were examined in
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the presence of AF using immunocytochemistry and
real-time PCR. These experiments confirmed that retinal
progenitor cells are able to generate retinal terminally
differentiated cells such as bipolar cells, amacrine cells,
rod photoreceptors and retinal ganglion cells [39].

Conclusion

Several studies have focused on the significance of cell
replacement. Tissue engineering and cell replacement
therapy are becoming more established therapeutic inter-
ventions as more experiments are performed in this area.
Stem cells and their use in the treatment of retinal dis-
eases offer an encouraging source for transplantation.
However, the lack of sufficient access to relevant RPE
cells and the current debate on the issue of stem cell
applications have created obstacles for researchers with
regard to acquiring appropriate suitable sources of cells
for transplantation.

Retinal progenitor cells, if available, can offer the great-
est opportunity, ability and potential for transplantation.
This study shows that amniotic fluid has the potential to
induce RPE cells to form retinal progenitor cells and
therefore represent a readily available source of retinal
progenitor cells for future retinal therapies.

Methods

Cell culture

Pathogen-free post-mortem human neonatal eye globes,
with no previous ophthalmic disease, were obtained from
the Central Eye Bank of Iran, RPE cell cultures were estab-
lished under sterile conditions. Post-mortem procedures
were carried out between 24—48 h after death. Dissection
and sampling of the globe was carried out as described
below. Fat and other intruding peripheral tissues of the
eye were removed using fine scissors. The vitreous was
removed via a narrow split between the iris and sclera,
and the vitreous and the interior of the globe was flushed
with a strong stream of PBS to remove the remaining
neural tissues. Several more intensive washes of PBS were
used to eliminate blood and other adjacent tissue impur-
ities, exposing the pigmented RPE layer to the washing
buffer. The entire RPE layer was carefully detached from
the underlying tissue and dissected into 2 mm?® pieces,
which were then incubated in the presence of dispase I
(1.1 U/ml) (Gibco, Germany) for 50 min at 37°C. The
loosened tissue, along with the released RPE cells, was
consequently centrifuged (300 x g for 5 min, at 4°C). The
supernatants were discarded, and the resulting pellets
were cultured in 25 ¢cm? flasks (Nunc. Denmark) contain-
ing a mixture of DMEM and Ham's F12 at a 1:1 (v/v)
ratio (Sigma, Germany) supplemented with 20% FBS
(Gibco), 50 pg/ml of gentamycin (Darupakhsh. Co, IRAN),
120 pg/ml of penicillin (Fluka, China), 220 pg/ml of
streptomycin (Fluka, China) and 250 pg/ml of fungosine
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(Gibco). The flasks were then incubated in an incubator
at 37°C with a humidified atmosphere of 5% CO,. The
culture medium was typically exchanged with 10% FBS-
supplemented medium once a week until the cells were
80% confluent. Thereafter, subculturing was performed at
a ratio of 1 x 10° cells per 75 cm? of flask surface. Fully con-
fluent cultures from early (1-3), mid (4-7) and late (8, 9)
passages were employed in the subsequent experiments.

Amniotic fluid preparation

Amniotic fluid samples were obtained from thirty preg-
nant women who underwent amniocentesis for the as-
sessment of genetic deficiencies in the first trimester of
gestation. Amniotic fluid cells were removed for karyo-
type analysis. The remaining supernatants, in cases with
no evidence of chromosomal abnormalities, were pooled
and used in our downstream experimental procedures.
The collection of these samples was approved by the ethics
committees of the NIGEB and the Ophthalmic Research
Center. The AF samples were centrifuged at 300 x g for 5
min at 4°C, and the resulting supernatants were then steri-
lized using a 0.2 pm membrane filter (OrangeScientific,
Belgium) and stored at ~70°C until the time of analysis.

Immunocytochemistry

RPE cells from early and mid passages (data shown are
derived from passage 6), were cultured on FBS or AF
pre-coated glass cover slips in a 24-well microplate
(Nunc, Denmark) at a density of 1x10° cells per well
and incubated for 24 h. After incubation, the medium of
each well was changed to either experimental (10% FBS
and 30% AF-supplemented medium), or control (DMEM/
F12 with no AF or FBS) medium (Table 1). Seven days after
incubation, standard immunocytochemistry was performed
according to the Santa Cruz protocol. RPE cells were fixed
and permeabilized with pre-chilled methanol (-10°C)
(Merck, Germany) for 5 min at room temperature and
then blocked using 1% BSA (Merck) in PBST (1% Triton
X-100 in PBS) (Sigma) for 20 min at room temperature.
Antibodies for retinal progenitor cell markers included the
goat polyclonal anti-human PAX6 and goat polyclonal
anti-human CHX10. Rabbit anti-human polyclonal RPE65
was used as a specific RPE cell marker and mouse anti-
human monoclonal cytokeratin 8/18 as an epithelial cell

Table 1 Medium used for cases and controls
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marker (All antibodies were obtained from Santa Cruz,
USA). All primary antibodies were used at a dilution of
1:50 in 1.5% BSA in PBST and incubated for 1 h at room
temperature. Cells were washed with PBS to avoid any
non-specific background immunostaining. A negative sec-
ondary antibody-only control was also included. FITC
conjugated antibodies (donkey anti-mouse for PAX6 and
CHX10, goat anti-rabbit for RPE65 and goat anti-mouse
for cytokeratin 8/18, Santa Cruz, USA) were used at a di-
lution of 1:100 in 1.5% BSA in PBST and incubated for
45 min at room temperature in the dark. A background
control with neither primary nor secondary antibody
was used for each marker. Finally, nuclei were counter-
stained with DAPI (1 mg/ml, Santa Cruz, USA) to assess
of the total number of cells in each field. Cover slips were
then mounted onto slides using an anti-fading mounting
medium (90% glycerol, 10% PBS and 10% (w/v) phenylene-
diamine). Samples were observed under the Axiophot
Zeiss fluorescence microscope (Germany) with a 460 nm
filter for DAPI and a 520 nm filter for FITC-conjugated
antibodies, and digital pictures were taken.

RPE cell proliferation and cell death ELISA assays

To quantify the effect of AF on RPE cell proliferation
and death, RPE cells from early and mid passages (pas-
sages 2-5 for the data shown) were prepared and ana-
lyzed with the cell proliferation and cell death ELISA
kits: BrdU colorimetric Cell Proliferation ELISA and Cell
Death Detection ELISA kits, (Roche, Germany) accord-
ing to the manufacturer’s instructions. Briefly, a 96-well
microplate (Nunc.) with 1x10* cells in each well was
prepared with 200 pl samples of medium containing 10%
AF, 20% AF, 30% AF and 10% FBS. After 24 h incubation
at 37°C, the medium of each well was changed to fresh
medium, control cultures received DMEM/F12 instead
of AF or FBS-supplemented medium (Table 1). Cell pro-
liferation (BrdU incorporation immunoassay during DNA
synthesis) and cell death (sandwich-enzyme-immunoassay
quantification of histone-bound DNA fragments) was
assessed using a scanning multi-well spectrophotometer
(Titertek multiscan ELISA reader, Labsystems Multiscan,
Roden, Netherlands). The calculated proliferation and
death rates were compared to the control FBS, DMEM/F12
and positive control (a DNA-histone complex) samples.

Treatment/control cases 10% AF 10% AF 20% AF 20% AF 30% AF 30% AF 10% FBS 10% FBS
case control case control case control case control

Supplemented medium 10% AF 10% AF 20% AF 20% AF 30% AF 30% AF 10% FBS 10% FBS

for first 24 hours

Supplemented medium 10% AF DMEM/F12 20% AF DMEM/F12 30% AF DMEM/F12 10% FBS DMEM/F12

for subsequent hours without AF without AF without AF without FBS

Medium used for AF and FBS treatment and their controls is mentioned in the table above. This condition was continued for immunocytochemistry, ELISA
immunoassay and RNA extraction. Each experiment has been explained in the methods.
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RNA Extraction

RPE cells from mid passages (passage 5 for Real-Time
PCR) were trypsinized and then cultured in 75 cm® flasks
(Nunc.) at a density of 1x10° cells per flask, each of
which were previously coated with FBS or AF for at least
1 h at 37°C. Twenty-four hours after culturing, the
medium was exchanged with medium containing 10%
FBS, 10% AF, 20% AF, 30% AF or DMEM/F12 as a con-
trol and incubated for a further 24 h (Table 1). RPE cells
were then trypsinized and precipitated for 5 min at
300 x g and RNA extracted using the RNeasy® Plus Mini
Kit (Qiagen, Germany) in accordance with the manufac-
turer's instructions. Total RNA was purified using gDNA
eliminator mini spin columns and stored at -70°C.

Real-Time RT-PCR

Primers for PAX6, CHX10, VSX-1 and GAPDH. (GAPDH:
house keeping gene used as an internal control) were opti-
mized for the SYBR® green assay using Beacon Designer
software 7.0 (www.primebiosoft.com). Amplicon length
and sense and anti-sense primers are presented in Table 2.
A cDNA pool was established using superscript III reverse
transcriptase (200 U/pl) (Invitrogen, Germany) and oligo-
dT primers (Fermentas, Belgium) and was subsequently
amplified using the iQ SYBR Green supermix kit (Roche,
Germany) and the MyiQ apparatus (Bio-Rad, USA). Each
reaction (20 pl volume) contained 5 pl of cDNA, 0.3 pl of
fast start Tag. enzyme, 1 pl of forward primer and 1 pl of
reverse primer. A pre-amplification denaturation was per-
formed at 95°C for 8 min, followed by real-time PCR with
a thermal profile that included 45 cycles of denaturation
at 95°C for 30 s, annealing at 57°C and 60°C for 50 s for
PAX6 and CHX10/VSX-1, respectively, and then extension
at 72°C for 50 s. Experiments were performed in triplicate
(at least) for each sample. Appropriate serial dilutions
were made for each sample, and a standard curve was
designed estimating amplification efficiencies. Relative
gene expression was calculated using Bio-Rad software
(RelQuant UpDate- for relative quantification) according
to the 222" method based on the threshold cycle (Ct)
values [40].

Table 2 Amplicon length and sequences of sense and
anti-sense primers

Sequence Product Sense primer
definition length

Anti-sense primer

VSX-1 103 AGACTCCGTGCTCAACTC  TCCTGGCTTCCTTATCATCC
CHX10 135 TCGTGATATGCTGCTTGTG CTGTGGCTTCGTAGATGTC
PAX6 120 TTGCTGGAGGATGATGAC CTATGCTGATTGGTGATGG
GAPDH 77 ACAGTCAGCCGCATCITC CTCCGACCTTCACCTTCC

Primers for PAX6, CHX10, VSX-1 and GAPDH were optimized for the SYBR®
green assay using Beacon Designer software 7.0 (www.primebiosoft.com).
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