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Background: Genome assembly is considered to be a challenging problem in computational biology, and has
been studied extensively by many researchers. It is extremely difficult to build a general assembler that is able to
reconstruct the original sequence instead of many contigs. However, we believe that creating specific assemblers,
for solving specific cases, will be much more fruitful than creating general assemblers.

Findings: In this paper, we present Arapan-S, a whole-genome assembly program dedicated to handling small
genomes. It provides only one contig (along with the reverse complement of this contig) in many cases. Although
genomes consist of a number of segments, the implemented algorithm can detect all the segments, as we
demonstrate for Influenza Virus A. The Arapan-S program is based on the de Bruijn graph. We have implemented a
very sophisticated and fast method to reconstruct the original sequence and neglect erroneous k-mers. The
method explores the graph by using neither the shortest nor the longest path, but rather a specific and reliable
path based on the coverage level or k-mers' lengths. Arapan-S uses short reads, and it was tested on raw data

Conclusions: Our findings show that the accuracy of the assembly was very high; the result was checked against
the European Bioinformatics Institute (EBI) database using the NCBI BLAST Sequence Similarity Search. The identity
and the genome coverage was more than 99%. We also compared the efficiency of Arapan-S with other well-
known assemblers. In dealing with small genomes, the accuracy of Arapan-S is significantly higher than the
accuracy of other assemblers. The assembly process is very fast and requires only a few seconds.

Arapan-S is available for free to the public. The binary files for Arapan-S are available through http://sourceforge.

Background

Sequencing technologies have been providing us with
thousands of sets of genomic reads (sometimes called
fragments or segments), with each set being taken from
a specific genome. Bringing these reads all together in
order to reconstruct the original sequence (the genome)
is commonly known as the (whole-) genome assembly
problem. This problem has been studied extensively and
many assemblers, along with some assembly models,
have been proposed. Most models are based either on
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the overlap graph approach or the de Bruijn graph-based
approach. The overlap graph is a graph whose nodes
represent the genomic reads, while its edges correspond
to the overlaps of these reads. It was the pillar of the
first assemblers that appeared on the market, such as:
TIGR [1], CAP3 [2], PCAP [3], the string graph of Myers
[4] and MIRA [5]. The second category of assemblers is
based on the de Bruijn graph, in which the nodes repre-
sent the substrings (k-mers) of the genomic reads (which
are of the same length), while the edges correspond to
the overlaps of these substrings. The de Bruijn graph has
become the standard pillar of the so-called “de novo”
assemblers. Some of the assemblers based on this ap-
proach include: Euler assembler [6], SSAKE [7], EULER-
SR [8], Velvet [9,10], ALLPATHS [11,12], ABySS [13],
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and SOAPdenovo [14]. Although the assemblers share
the same graph structure, they use different (but some-
times similar) algorithms to walk through the graph. To
our knowledge, there is no proof that the shortest or the
longest path, or the Hamiltonian or Eulerian paths will
represent the genome in its natural form; therefore, we
developed an algorithm that selects only the reliable
nodes in the de Bruijn graph in order to reconstruct the
original sequence of small genomes or long contigs
when the graph is sparse.

Because of the diversity of genomes, creating a general
assembler that is able to solve all cases will not be as ef-
fective and fast as a specific assembler that focuses on
solving particular cases. For instance, ploidy can be a
serious problem when dealing with plant genomes in
which tetraploidy is common. Concerning very small
genomes, we believe that we can improve the accuracy
of assembly of such genomes by creating an assembler
that is devoted to solving small genomes. That is the
reason we aimed to create an assembler (named Arapan-
S) dedicated to solving small genomes. As a result, the
Arapan-S assembler was able to reconstruct one very
highly accurate supercontig in most cases. To check the
accuracy of Arapan-S, we performed a BLAST sequence
similarity search against the EBI (European Bioinformat-
ics Institute) database, which includes the complete gen-
omes of our dataset. This analysis showed that the
Arapan-S assemblies were more than 99% accurate. We
also compared Arapan-S with other well known assem-
blers in the assembly of viral genomes.

Findings

Arapan-S parameters

Arapan-S was written in C/C++ language under a pro-
gramming framework called Qt on a 64-bit Linux ma-
chine and was also compiled in Windows. The input
data must represent each k-mer (i.e. de Bruijn sequence),
along with its frequency in the same line, separated by a
whitespace character. Note that all frequency values of
generated k-mers are based on the coverage level of the
dataset. In other words, we have used such frequency
values instead of the coverage value. A tool called kmer-
Builder, which is one of several assembly pipelines
included in the Arapan software package, can generate
k-mer files for Arapan-S (i.e. the dataset must be pre-
pared independently from our assembler). The project
acronym (Arapan) represents our primary goal to pro-
duce a software system that includes a set of open-
source tools dedicated to solving and analyzing the
whole genome assembly problem.

The Arapan-S assembler is very sensitive to the length
of k of short reads, and because of its architecture our
tool always tries to find one supercontig along with its
reverse complement. Nevertheless, if the length of & is
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very short, Arapan-S will encounter some difficulties in
constructing the original sequence. Also, if k is very
long, the result of the assembly will not be significant.
There is always a trade-off between the specificity and
sensitivity of choosing the length of k. By experiment,
the most appropriate value of k is when 20 < k< 35.

Arapan-S has only one parameter, which is the mer-
ging function: the frequency function or the k-mer
length function. The graphical user interface of Arapan-
S represents this parameter by a check-box. During the
experiments, it was preferable to choose the frequency
function, since it usually leads to a more accurate result.
We have considered the frequency function to be the
only objective function in our experiments.

BLAST similarity search

We downloaded some real datasets from the NCBI
Trace Archive (ftp://ftp.ncbinih.gov/pub/TraceDB/).
The data were cleaned and prepared by a trimming tool
(http://sourceforge.net/projects/dnascissor/files/ DNA%
20Scissor/). A minimum quality value cut-off of 20 (i.e.
the accuracy of the base call was 99%) was set for most
of the genomes, and the low-quality end regions were
trimmed at the 5'-end and 3'-end of every read. The
short reads (k-mers) were generated by the same trim-
ming tool for each set of reads. The Arapan-S assem-
bler was very fast, used less memory and provided us
with one supercontig along with its reverse comple-
ment in many cases. For checking the accuracy of our
assembler, we searched for the obtained supercontigs
(the complete genome) on the EBI database using the
NCBI BLAST Similarity Search. The input data are
given in Table 1, while Table 2, Table 3, Table 4 and
Table 5 show the results.

The total length of each genome was very close to the
genome length obtained from the EBI database, and
yielded very high identities (Table 2). Moreover, to show
the robustness of Arapan-S, we compared its results to
other well-known assemblers: ABySS-1.2.7 [13], SSAKE
3.7 [7], Velvet 1.1.3 [9,10] and QSRA [15]. The Overlap-
Layout-Consensus-based assemblers that were included
for comparison were: Minimus [16] and Mira [5,17].
The selected version of each assembler was the latest re-
lease, except for the SSAKE assembler for which we
chose the release SSAKE 3.7 instead of SSAKE 3.8 be-
cause of installation problems. All assemblers have been
run with default parameters.

Comparison

Because of its architecture (de Bruijn graph), Arapan-S
is classified as a de novo assembler. However, since our
datasets are Sanger reads, we compared our assembler
with de novo assemblers and also Overlap-Layout-
Consensus assemblers. Note that the current version of
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Table 1 The input data include seven Virus Genomes
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Species Accession number Number of reads Read average length (bp)
Bovine Respiratory Coronavirus AH187 FJ938065.1 635 995
Calf-giraffe Coronavirus US/OH3/2006 EF424624.1 548 935
Waterbuck Coronavirus US/OH-WD358-TC/1994 FJ425184.1 576 984
White-tailed Deer Coronavirus US/OH-WD470/1994 FJ425187.1 503 918
Antelope coronavirus US/OH1/2003 EF424621.1 616 991
Influenza A Virus (A/Memphis/1/71(H3N2)) From CY006211.1To CY006218.1 132 570
Influenza A Virus (A/Swine/Colorado/1/77/(H3N2)) Q288Y7 (EBI) 159 596
Influenza A Virus (A/Weiss/43/(HIN1)) From CY009452.1To CY009459.1 168 519

We considered eight viruses. The genome of each Influenza A Virus consists of eight segments while the others have only one long segment. The datasets
represent Sanger reads. The raw data were downloaded from NCBI Trace Archive (ftp://ftp.ncbi.nih.gov/pub/TraceDB/.)

QSRA assembler is not able to deal with different read
lengths. To solve this problem we used our tool, kmer-
Builder, which is also in the Arapan package, to generate
reads of the same length (200 bp for QSRA) from shot-
gun data.

De novo assembler competitors
Concerning the de novo assemblers, the most competi-
tive assembler to Arapan-S was ABySS in Table 3. As
with Arapan-S, ABySS was also able to produce only one
supercontig for the Bovine Respiratory Coronavirus
AH187 genome and the Waterbuck Coronavirus US/OH
WD358 TC/1994 genome. However, in contrast to
ABySS, Arapan-S achieved the greatest genome coverage
and only one supercontig in all cases. Since Arapan-S
generated only one contig in all cases, it produced the
largest contigs compared to other assemblers. In con-
trast, the other assemblers generated more contigs and
SSAKE had the lowest genome coverage every time and
more contigs most of the time. QSRA also did not work
well with small genomes.

The Influenza A Virus genome consists of eight segments
(http://bioafrica.mrc.ac.za/rnavirusdb/virus.php?id=335341).
Table 4 shows that Arapan-S was able to detect the eight

contigs of different genomes of type Influenza A Virus.
According to our empirical results, SSAKE failed to deal
with small viral genomes. N50 values of SSAKE were not
computed because its results did not cover half of the en-
tire genome. ABySS was again the second best assembler
after Arapan-S. However, our assembler succeeded in de-
termining the eight segments of each genome, such that
its N50 values, as well as the largest contig, were always
the highest compared to other assemblers.

Overlap-layout-consensus competitors

Among the Overlap-Layout-Consensus-based assem-
blers, Arapan-S was comparable to Minimus. Minimus
failed in one case, Influenza A Virus A/Memphis/1/71
(H3N2), in which it produced nine contigs instead of
eight (Table 4). Our assembler showed good approxima-
tion compared to Minimus for the Antelope coronavirus
US/OH1/2003 genome (Table 5). They achieved almost
the same result for the Waterbuck Coronavirus US/OH-
WD358-TC/1994 and the White-tailed Deer Coronavirus
US/OH-WD470/1994 genomes. On the other hand, Mira
did not work well with small genomes, as shown in
Tables 3, 4 and 5.

Table 2 The Alignment Results By Using the EBI database (BLAST Similarity Search) on seven Virus Genomes

Species Total length(bp) Genome Alignment Identities Expect

length(EBI) score valueE()

Bovine Respiratory Coronavirus AH187 30936 30969 30875 99.803% 00
Calf-giraffe Coronavirus US/OH3/2006 30831 30979 30762 99.776% 0.0
Waterbuck Coronavirus US/OH-WD358-TC/1994 30995 30995 30934 99.803% 0.0
White-tailed Deer Coronavirus US/OH-WD470/1994 31018 31020 30957 99.803% 0.0
Influenza A virus (A/Memphis/1/71(H3N2)) 12598 13397 12503 99.246% 0.0
Influenza A Virus (A/Swine/colorado/1/77/(H3N2)) 13019 13304 12969 99.616% 0.0
Influenza A Virus (A/Weiss/43/(H1N1)) 13300 13371 13208 99.308% 0.0

The Total length is the length of the obtained result, while Genome length (EBI) is the genome’s supposed length according to the EBI database. The values of
Identities were calculated by dividing Alignment scores by the corresponding Total lengths. The Expect-value was calculated by EBI's NCBI BLAST Similarity Search

engine.
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Table 3 Comparison of Arapan-S with ABySS, SSAKE, Velvet, QSRA, Minimus and Mira assemblers on four Benchmark

Virus Genomes

Species Assembler Contigs > 800 bp Total Mean N50 Largest Genome

length size (bp) (bp) contig (bp) coverage (%)

Bovine Respiratory Arapan-S 1 30937 30937 30937 30937 99.90
Coronavirus AH187 ABySS 1 30024 3092400 30924 30924 9985
SSAKE 9 27428 3047.56 3447 9868 88.57

Velvet 3 30951 10317.00 25461 25461 99.94

QSRA 8 29617 3702125 - 11695 95.63

Minimus 1 31026 31026 31026 31026 100.18

Mira 8 28803 3600.37 3192 12305 9351

Calf-giraffe Coronavirus Arapan-S 1 30836 30836 30836 30836 99.53
US/OH3/2006 ABySS 2 30652 1532600 18956 18956 98.94
SSAKE Il 17005 154591 892 2683 54.89

Velvet 3 30951 10317.00 25461 25461 99.91

QSRA 2 2107 1053.5 - 1173 6.80

Minimus 1 30979 30979 30979 30979 100.00

Mira 5 33850 6770 20763 20763 109.28

Waterbuck Coronavirus Arapan-S 1 30995 30995.00 30995 30995 100.00
US/OH-WD358-TC/1994 ABySS 1 30044 3094400 30944 30044 9986
SSAKE 13 21780 1675.38 1063 5343 7027

Velvet 8 12505 1563.12 967 2162 4034

QSRA 5 4638 9276 - 1174 14.96

Minimus 1 30995 30995 30995 30995 100.00

Mira 6 34011 5668.5 10510 10983 109.73

White-tailed Deer Arapan-S 1 31018 31018.00 31018 31018 99.99
Coronavirus US/OH-WD470/1994 g cg 2 30943 1547150 21535 21535 99.75
SSAKE 5 13925 2785.00 956 6100 44.89

Velvet 10 17800 1780.00 1090 3430 57.38

QSRA 8 7422 927.75 - 1323 2393

Minimus 1 31019 31019 31019 31019 100.00

Mira 10 34892 3489.2 6174 9191 11248

Only contigs whose lengths > 800 were selected. When the assembler generated only one contig, the N50 value and the mean size are equal to the size of the
corresponding contig. Genome coverage was calculated by dividing the total length by the genome length (EBI).

Discussion

We have relied on only one objective function “the fre-
quency function” for the sequence assembly algorithm.
In fact, one may also consider another function, which
is, “the k-mer length function”, g(L) = XN=1a,l;, such
that L ={l,L,K,Iy} such that is the set of k-mer
lengths. This function is based on the assumption that
nodes whose k-mers have longer, relative to shorter,
lengths are more probably generated from trustworthy
consecutive nodes, that is to say, a chain that has fewer or
no sequencing errors. However, we have considered only
the frequency function in the analysis presented here.

In the case of non-uniform coverage of some areas in
the genome [18], the frequency function may suffer from
less accuracy. On the other hand, we believe that the k-
mer length function can be a good choice in the case of

coverage non-uniformity. Building an algorithm that
combines the two objective functions and switches from
one to another may lead to more accurate results. Creat-
ing such an effective algorithm is an important issue for
future research.

Another thing that can be said about the objective func-
tion is that the assembly algorithm does not look for the
optimal solution. As a matter of fact, the algorithm starts
at a determined node whose associated k-mer has the
longest length, then starts going forward and backward in
the graph selecting nodes that have the highest scores
(greatest frequency values) locally in order to construct a
contiguous path in a given connected component.

We have noticed that most genome assemblers, which
were built for tackling medium or large genomes, could
not successfully deal with tiny and small genomes.
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Table 4 Comparison of Arapan-S with all the assemblers on Three Genomes Composed of eight Segments
Species Assembler  Contigs > Total Mean N50 Largest Genome
400 bp Length  size (bp) (bp) contig (bp) coverage (%)
Influenza A VirusA/Memphis/1/71(H3N2) Arapan-S 8 12598 1574.75 1584 2311 94.03
ABySS 14 12897 921.21 1280 1801 96.27
SSAKE 1 555 555.00 - 555 414
Velvet 14 10774 769.57 789 1781 80.42
QSRA 17 12570 73941 700 1828 93.83
Minimus 9 13156 1461.78 2242 98.20
Mira 14 14399 1028.50 1396 2080 10748
Influenza A VirusA/Swine/Colorado/1/77/(H3N2) Arapan-S 8 13120 1640 2151 2310 99.13
ABySS 9 12478 1386.44 1634 2262 93.79
SSAKE 6 4287 714.50 - 1409 32.22
Velvet 12 9783 815.25 494 1867 73.53
QSRA 16 9400 587.50 468 1200 70.65
Minimus 8 13325 1665.62 2199 2309 100.16
Mira 10 14678 1467.80 1780 2371 110.33
Influenza A VirusA/Weiss/43/(H1N1) Arapan-S 8 13300 1662.50 2194 2313 99.47
ABySS " 13108 1191.64 1716 2274 98.03
SSAKE 3 1616 538.67 - 572 12.09
Velvet 9 9764 1084.89 1006 1696 73.02
QSRA 16 11755 734.69 573 1916 87.91
Minimus 8 13369 167112 2194 2313 99.98
Mira " 15139 1376.27 1583 2359 113.22

Only contigs whose lengths > 400 were selected. Each species has eight segments that constitute its genome.

Arapan-S, ABySS and Minimus were able to deal with
such cases. In future work a comparison would be
worthwhile for all genome assemblers to determine the
efficiency field of each set of assemblers.

Since our aim was creating a genome assembler for
tackling only tiny genomes, dealing with repeats was not
an essential task, since they do not regularly appear in
very small genomes and the confrontation with tandem
repeats does not generally mislead the assembly process
(according to our experience). However, in the future,
we aim to build another version of the Arapan-S assem-
bler that can handle longer genomes.

Conclusions
According to our experiments, we have found that gen-
eral assemblers are not always as effective as the

Arapan-S assembler in dealing with tiny genomes. We
have used only long reads in our experiments, because
the raw data of small genomes can be easily found in the
NCBI Trace Archive. However, our assembler can work
with any other sequencing technology, such as Illumina/
Solexa, SOLiD and 454 sequencing technologies. The
raw data are converted into a set of k-mers by kmer-
Builder (http://sourceforge.net/projects/dnascissor/files/
kmerBuilder/). The user can run Arapan-S assembler by
providing it with the k-mer file. This feature represents
another advantage of our assembler compared to other
assemblers. Arapan-S is fast and uses less memory.
However, because we are dealing with small genomes,
the time and space complexities of all assemblers were
negligible. Our assembler is not designed to be applied
to medium or large genomes.

Table 5 Comparison of Arapan-S with all QSRA, Minimus and Mira assemblers on Antelope coronavirus US/OH1/2003

genome
Species Assembler Contigs > Total Mean N50 Largest Genome
400 bp Length size (bp) (bp) contig (bp) coverage
Antelope coronavirus US/OH1/2003 Arapan-S 1 26280 26280 26280 26280 98.89
QSRA 0 0 0 0 0 0
Minimus 1 30994 30994 30994 30994 116.63
Mira 5 33793 67586 31042 31042 116.81

Only contigs whose lengths >400 were selected.
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Methods
The assembly process consists of four major phases. In
the first phase, the de Bruijn graph is straightforwardly
constructed. The second phase (called the cleaning
process) is a very important step in which the graph is
simplified as much as possible by collapsing paths, re-
moving tips and solving bubbles, as well as handling a
few other different structures in the graph. In the third
phase the graph components are detected before starting
the assembly algorithm in the fourth step.

Our algorithm differs from previous works in the fol-
lowing ways: bub = solveBubbles()}

col = collapsePaths()

1. The cleaning process simplifies the graph by a few
iterations without incorporating time-consuming
algorithms, such as the Dijkstra-like breadth-first
search in Velvet [9,10] and the Dijkstra algorithm in All are
SOAPdenovo [14].

2. An algorithm was created to solve only simple bubbles
(Figure 1), but by involving other algorithms (i.e.
paths collapsing, tips, etc.) all complex bubbles are
solved after a few iterations of the cleaning algorithm.

3. The assembly algorithm uses the frequency values
and lengths of k-mers in order to construct contigs
as will be described below.

false?

intip = removelinTips(}

Most de novo assemblers focus on solving large gen-
omes; this involves implementing time-consuming and
very complicated algorithms. As a result, the construc- outip = removeOutTips()
tion of contigs becomes stricter, though this is not the
case for small genomes, as shown in the results section.

Input data and graph construction

The entire dataset of k-mers is recorded using hash less =

tables in order to speed up further operations. The re- removelessMarkTips()
verse complements are also recorded without binding

them with their original k-mers. All we need is a linear

algorithm for constructing the de Bruijn graph. Since

the alphabet is composed of four nucleotide letters, great=

each k-mer will be connected to four k-mers at most. removeGreatMarkTips()}

All k-mers that include unknown ‘N’ nucleotides are
discarded. The pseudo-code of the algorithm is shown
below:

1. deBruijnGraphBuilder(HashTable kmerList,
integer K)

. //forward connection
. if temp+“A” kmerList then createArc( i, kmerList.
IndexOf(temp+“A”));

2. Integer N :=|kmerList|; //the size of kmerList

3. String temp;

4. for i:=1 to N do

5. begin

6. temp := kmerList[i][1.K-1]; removeSingletons()
7

8

Figure 1 Flowchart. The different phases of the cleaning algorithm.




Sahli and Shibuya BMC Research Notes 2012, 5:243
http://www.biomedcentral.com/1756-0500/5/243

9. if temp+“T” kmerList then createArc( i, kmerList.
IndexOf(temp+“T"));

10.if temp+“C” kmerList then createArc( i, kmerList.
IndexOf(temp+“C”));

11.if temp+“G” kmerList then createArc( i, kmerList.
IndexOf(temp+“G”));

12.//backward connection

13.if “A”+ temp kmerList then createArc(kmerList.
IndexOf(“A”+ temp), i );

14.if “T”+ temp kmerList then createArc(kmerList.
IndexOf(“T”+ temp), i );

15.if “C”"+ temp kmerList then createArc(kmerList.
IndexOf(“C"+ temp), i )

16.if “G”+ temp kmerList then createArc(kmerList.
IndexOf(“G”+ temp), i);

17.end

Let K be the length of the short reads. The variable
temp will contain the first prefix of a given K-mer whose
length is K-1. The algorithm computes the out-
neighbours in the forward orientation, and the in-
neighbours in the opposite direction.

Cleaning process (simplifying the graph and solving
errors)

The raw DNA data always suffer from errors, and since the
de Bruijn graph is based on the exact matching of k-mers,
error correction (or removal) becomes very important to
the use of such graphs in representing and analyzing se-
quencing data. The coverage plays a vital role in guiding
the cleaning and assembly algorithms to a more accurate
result. After constructing the graph, some erroneous k-
mers appear in the graph in different forms. The most
common forms are the so-called “Tips, Bubbles and
Chimeric connections”. However, while analyzing the
graph, we found other forms as well. We have implemen-
ted an iterative algorithm that reduces the graph to its
maximum simplification. The pseudo-code of the algo-
rithm is shown below and its flowchart is given in Figure 2.

. cleaningAlgorithm()

. Boolean col, bub, intip, outip, less, great;
Begin

do

. col := collapsePaths();

bub := solveBubbles();

. if col==false and bub==false then

. begin

. intip := removelnTips();

10.outip := removeOutTips();

11./ess := removeLessMarkTips();

12.great := removeGreatMarkTips();

13.if intip==false and outip==false and
14.less ==false and great==false then stop;

O 0N ONUT AW N
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15.end

16.while(true)
17.removeSingletons();
18.End

The collapsePaths() procedure will return false if it
does not collapse any path, otherwise, it returns true.
The other procedures behave exactly as collapsePaths()
does. We will hereafter explain each procedure invoked
by the cleaning algorithm.

Path collapsing

To simplify and shrink the graph before applying any
cleaning procedure, a path collapsing algorithm should
be run immediately after constructing the graph.

A path is a chain of nodes. Two nodes X and Y are
merged if the node X has only one outgoing arc con-
nected to the node Y that has only one incoming arc.
Their corresponding k-mers must be concatenated ac-
cordingly. Most of the resulting nodes (we call them
switch nodes) are seen in Figure 3.

Bubble solving

In genome assembly, a bubble appears where two
sequences initially align, then diverge in the middle, and
align again at the end. Bubbles are caused by repeats or
heterozygotes of diploid chromosomes [14], or created
by errors or biological variants, such as SNPs, diploids
or cloning artefacts prior to sequencing.

A path is a chain of nodes in a graph. We call a path a
simple path if each internal node (i.e., each node be-
tween the start node and the end node of the path) has
one outgoing edge and one incoming edge. A bubble is a
subgraph that consists of multiple simple paths all of
which share the same start node and the same end node.
In the original graph, the start node must not have any
outgoing edges other than those in the bubble, and the
end node must not have any incoming edges other than
those in the bubble.

In Velvet [9,10], detection of bubbles was done by an
algorithm based on a Dijkstra-like breadth-first search
called “The Tour Bus Algorithm”. Similarly, Dijkstra’s al-
gorithm is also used to detect bubbles in SOAPdenovo
[14], in which the detected bubbles are merged into a
single path if the sequences of the parallel paths are very
similar; that is, had fewer than four base pairs difference
with more than 90% identity.

In Arapan-S, all bubbles will be relaxed by combining
all the cleaning procedures and without incorporating a
time-consuming algorithm. After collapsing all paths,
bubbles will appear in the graph as shown in Figure 1.
The node with a high coverage will not be removed from
the bubble (However, the algorithm can also be
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Figure 2 Switch node. All contiguous nodes are merged in one node. This operation is named “The path collapsing".

-y

parameterized to keep only the node that has the max-
imum k-mer’s length instead of high coverage).

Tips removal

Tips generally result from errors at the end of reads. In
the graph, a tip is a node connected only on one end
(Figure 4). In Velvet, a tip is removed if it is shorter than
2k (k is chosen for the k-mer). After removing tips, new
paths will appear again in the graph. Almost all the
remaining nodes’ degrees are>2. We will hereafter call
such nodes: switch nodes. The result of the cleaning
process will be similar to what is shown in Figure 5.

Connected components detection

Once the graph is reduced and contains only switch
nodes, we start determining the connected components
of the graph. There are two cases in which we need to
determine the connected component. The first case is
the nature of the k-mers and their reverse complements.
Since each k-mer was recorded along with its reverse
complement, we will obtain a graph composed of two
subgraphs, one being the reverse of the other. The sec-
ond case is the sparseness of the graph, especially when
the initial ~-mer length is a bit longer. Our assembly al-
gorithm can run on every connected component of the
graph. Detection of these components can lead the as-
sembly algorithm to be run in parallel. The breadth-first
search or depth-first search can be applied to find the
connected components in linear time. The search begins
at an arbitrary node v from which the entire connected

N—’

Figure 3 Bubbles. This figure illustrates three simple bubbles and
two complex bubbles. Simple bubbles are A-C, B-D and E-F. The first
complex bubble starts at A and ends at D while the second one
starts at D and ends at F. (X-Y is the subgraph that starts at X and
ends at Y). Complex bubbles are solved by executing the simple
bubble-solving algorithm and path-collapsing algorithm.

component including v will be detected. A loop through
all nodes of the graph must be implemented in order to
find all the connected components. The loop runs until
no visited node can be found. The pseudo-code of the
modified algorithm is shown as follows:

1. connectedComponent(VertexSet V, EdgeSet E ,
Node a)

Set X;

. Boolean visited[|V|];

. //Step 1

X :=XU{a};

. visited |x| := false,Vx € V;

. //Step 2

. while x € X|visited x = false do

. begin

10.3x € X|visited x = false;

11.X := X U {y},¥(x,y) € Eor(y,x) € E|y¢X;
12.end

13.return X;

O 0 NON UL W N

The idea of this algorithm is to traverse the graph
from an arbitrary node 4, mark it as a visited node and
record its neighbors in the set X. The same job is done
for the recorded nodes until there are no visited nodes
in the set X. The algorithm returns the connected com-
ponent engendered from the node 4. To find all con-
nected components we apply the following algorithm:

. allComponents(VertexSet V, EdgeSet E )
. SetList C;

Set X;

. Integer i;

. //Stepl

X' =V,

i=1

. //Step 2

. while X' # O do

10.begin

11.select an arbitrary x€X;

12.C; := connectedComponent (G, x);

O 0N ONUT A WN

13.X/ X — Cl';
14i:=i+1;
15.end

16.return C;
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Figure 4 Tips. This figure shows some tips (i.e. C, D, F and |).

We only need to select an arbitrary node x and deter-
mine, due to the connectedComponent() procedure, the
connected component C; having x. The determined
component’s nodes will be removed from the X’ (Line
14). The same operation is performed until no con-
nected components can be detected.

Assembly algorithm

Once the connected components are detected, we run
the assembly algorithm for each component. The assem-
bly algorithm can be run by using one of two para-
meters: the coverage (k-mer’s frequency), and the k-mer
lengths. The latter parameter is obtained by the cleaning
process, which provides us with switch nodes whose cor-
responding k-mers have longer lengths due to the mer-
ging process.

Most of the previous work on genome assembly has
the following assumption: given a set of reads, the ob-
jective of the assembly program is to minimize the
length of the assembled genome [18]. However, according
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to our knowledge, there is no proof that the shortest path
can always faithfully represent the genome. The same can
be concluded concerning the longest path, the Hamiltonian
path and the Eulerian path.

The assembly algorithm is a greedy function. It tra-
verses the graph by selecting only the nodes whose fre-
quency values are higher. We have chosen this strategy
by assuming that k-mers, which are characterized by
high frequency values, are more likely to be free of se-
quencing errors (we call it “frequency function”). All
procedures of the assembly algorithm are given as
follows:

1. stringPath( Set C )

2. Ordered Set path;

3. SetB Visited;

4. Node u, v;

5. //Stepl: preprocessing

6. u := the index of the node which have the longest k-
mer length.

7.v:i=1u;

8. path := path U {u};

9. Visited: =@

10.//Step 2: forward direction

11.do forever

12.begin

13.P := out_neighbors(u) — Visited;
14.Visited := Visited U P;

15.if P=Q then stop;

16.u := bestNeighbor(u, P);

17.path := path U {u};

18.End

Figure 5 Graph visualization. A part of two connected components of the white tailed deer corona virus genome graph after running the
cleaning algorithm. Nodes represent k-mers and arrows represent the overlaps between k-mers. This picture was taken from the aiSee graph
visualization software (www.aisee.com).
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19.//Step 3: backward direction
20.do forever

21.begin

22.P := in_neighbors(v) — Visited;
23.Visited := Visited U P;

24.if P=0 then stop;

25.v := bestNeighbor(v, P);
26.path := {v} U path;

27.end

28.return path;

The set C represents a connected component of the
graph. The resulting path is kept in the ordered set path.
After variables initialization, the algorithm goes in a for-
ward direction selecting the best out-neighbors. In the last
step, it goes backwards selecting the best in-neighbors.
The bestNeighbor() function is the current node and the
set of its in- or out-neighbors. Since each node could be
connected to several neighbouring nodes, the best neigh-
bor is characterized by the highest frequency value. The
two loops stop when no more exploration can be done. To
find all possible paths, we apply the following algorithm,
called the stringPath() algorithm.

allPaths()

SetList C; //components list
SetList P; //paths list
Integer ;;

//Step 1

C := allComponents(G);
//Step 2

for i:=1to |C| do

. begin

10.P; := stringPath(C;);
1l.end

12.return P;

O 0NN WD

By going through all connected components (deter-
mined by the allComponents() procedure), and due to
the previous algorithm, a path P; will be constructed for
each connected component C;

Availability and requirements
Arapan-S is open access and freely available. All ques-
tions, comments and requests should be sent by email to
nihon.sahli@gmail.com.
Project name: Arapan project
Project home page: http://shibuyalab.hgc.jp/Arapan/
Operating system(s): Windows, Linux (Ubuntu)
Programming language: C/C++
Other requirements: None
License: None required
Any restrictions to use by non-academics: None required
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