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Background: The Asteraceae species Cynara cardunculus (2n=2x=34) includes the two fully cross-compatible
domesticated taxa globe artichoke (var. scolymus L) and cultivated cardoon (var. altilis DC). As both are out-
pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way

Results: A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated
into the reference C. cardunculus genetic maps, based on segregation among the F, progeny of a cross between a
globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups,
corresponding to the species’ haploid chromosome number. A consensus map based on 66 co-dominant shared
loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were
used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions
were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the

Conclusion: The newly developed consensus as well as the parental genetic maps can accelerate the process of
tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The
largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the
phenotypic variance, thus representing a good candidate for marker assisted selection.
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Background

The Asteraceae (ex Compositae) species Cynara cardun-
culus L. comprises three taxa, namely the two domesti-
cated form globe artichoke (var. scolymus) and cultivated
cardoon (var. altilis), along with their common ancestor
the wild cardoon (var. sylvestris). While the globe arti-
choke was selected for its large immature inflorescences,
the cardoon was selected for its fleshy leaves and stalks.
The three taxa remain fully cross-compatible with one an-
other, and their F; hybrids are fertile. The species complex
has a highly heterozygous diploid genome (21 =2x=34),
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maintained by its cross-pollinating habit [1]. The domesti-
cated forms produce a variety of nutraceuticals and
pharmaceutically active compounds like inulin, mono- and
di-caffeoylquinic acids [2-6] and sesquiterpene lac-
tones, which are responsible for its characteristic bit-
terness [7-9]. Globe artichoke contributes significantly to
the Mediterranean agricultural economy in the form of an
annual production of ~750Mt worth over US$500 M annu-
ally. It is also cultivated in the Americas, North Africa and
China (http://faostat.fao.org).

Most of the Mediterranean globe artichoke germplasm
is vegetatively propagated, and a number of varietal
groups have been defined on the basis of the appearance
of the inflorescence and harvesting time of the head
(capitula) Flowering can be induced between autumn
and spring in early flowering types by watering dormant
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underground shoots, whereas late flowering types flower
only during spring and early summer. A common breed-
ing target for both vegetatively and seed-propagated var-
ieties is the promotion of earliness since inflorescences
produced in the early part of the year command a higher
price than those produced in the summer. Unlike globe
artichoke, the cultivated cardoon is exclusively seed-
propagated, and is generally handled as an annual crop.
Of late it has been promoted as a source of lignocellulosic
biomass [10-12] and the evidence suggests that it
should be possible to derive types able to flower
early, to produce stems with a high lignin content
and to generate biomass with a good level of energy
efficiency [13,14]. Earliness is therefore an important
trait in both domesticated forms.

The first generation of C. cardunculus marker-based
genetic maps [15-17] have resulted in a cultivated car-
doon map composed of nearly 200 loci (17 major linkage
groups, LGs) spanning just over 10 M, and a globe arti-
choke one featuring 326 loci (20 major LGs) spanning
about 15 M. The two maps have since been integrated
on the basis of common loci with the inclusion of a
number of genes involved in the synthesis of caffeoylqui-
nic acids [18,19]. More recently crosses between globe
artichoke and its ancestor wild cardoon have generated
highly segregating F; populations exploitable as orna-
mentals [20] as well as for mapping studies [21].

The multi-allelism of many microsatellite (SSR) loci
makes them particularly well suited as bridging markers
to link independent maps. The design of SSR assays
requires DNA sequence, which in globe artichoke exists
at present largely in the form of expressed sequence tag
(EST) sequence (http://compgenomics.ucdavis.edu/).
Over 4,000 potential EST-SSR loci have been identified
from this sequence resource, and the experimental test-
ing of a sample of 300 loci showed that more than one
half were informative between the parents of our two
mapping populations [22]. In the present report, we de-
scribe the integration into the globe artichoke and
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cultivated cardoon maps of a large number of these
EST-SSR loci, and show that they can be used as bridg-
ing markers to merge the two maps. The resulting dense
maps was then used to identify a number of quantitative
trait loci (QTL) underlying early head production in C.
cardunculus.

Results and discussion

Genotyping

Six of the 178 informative Cynara Expressed Microsatel-
lite (CyEM) markers, identified by Scaglione et al. [22],
were excluded from the analysis on the basis of excessive
missing values. Of the remaining 172, 54 segregated in
both parents (46 as 1:1:1:1, eight as 1:2:1) and 118 in just
one of the parents (85 in globe artichoke ‘Romanesco
C3; 33 in cultivated cardoon ‘Altilis 41’). On the whole
228 microsatellite markers were available for map con-
struction (Table 1). Eleven of these loci suffered from
mild segregation distortion (X§=0.05 < )(2 < x§=0.01) but just
one (CyEM_58) from severe distortion ()(2 > xizom).
Since CyEM_58 was excluded from the mapping ana-
lysis, this left a total of 227 SSR loci. Co-dominant mar-
kers appear to be less affected by segregation distortion
than dominant ones [23,24], and this certainly was
the case for C. cardunculus, where ~13% of AFLP
and S-SAP loci [17], but only ~5% of SSRs and SNPs
are distorted. Segregation distortion has been associated
with statistical bias and/or with errors in genotyping, but
they can also stem from a number of biological phenom-
ena affecting meiosis, fertilization and embryogenesis [25]
as well as the presence of null alleles. Null alleles at SSR
loci are not uncommon, as they can arise where either
one (or both) of the primers fail to anneal because of se-
quence mismatch or the deletion of the whole locus, and
cause an higher apparent number of homozygotes because
they can no longer be distinguished from the heterozy-
gotes [26]. In this situation, the options are either to disre-
gard the affected loci, to score segregation in the same
way as for a dominant marker [27], to attempt to redesign

Table 1 Polymorphism and segregation patterns for the SSR loci used for map construction

SR Number Marker type Segregation type < Romanesco C3 x Altilis 41> References
prefix  of loci <ab x aa><ab x cc> <aa x ab><aa x bc> <ab x ab> <ab x ac > <ab x cd>

CDAT 1 Genic 1 - - - Acquadro et al. [63]
CLIB 3 Inter-genic 2 - - 1 Acquadro et al. [63]
CMAL 5 Inter-genic 4 1 - - Acquadro et al. [64]
CMAFLP 2 Inter-genic 1 - - 1 Acquadro et al. [65]
CsPal 1 Genic 1 - - - Sonnante et al. [66]
CsLib 1 Inter-genic 1 - - - Sonnante et al. [66]
CELMS 43 Genic and imer—gemic1 19 4 1 19 Acquadro et al. [16]
CyEM 172  Genic 85 33 8 46 Scaglione et al. [22]
Total 228 114 38 9 67

' 27 out of the 61 CELMS microsatellites are reported to be genic SSR as they contain at least one ORF.
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the primers [28,29], or to adjust allele frequencies on the
basis of a global estimate of the frequency of null alleles.
As recently described by Lanteri et al. [20] the null alleles
segregating in a Mendelian fashion were identified, thus
limiting the segregation distortion in our populations. As
noted previously [15,17], although the inclusion of loci
distorted at the 1% level and above increases the fre-
quency of type I errors, it does help to maintain marker
density throughout the map.

The updated ‘Romanesco C3’ map was built from 574
loci (359 AFLPs, 19 S-SAPs, 189 SSRs and seven SNPs),
and the ‘Altilis 41’ one from 373 loci (246 AFLPs,
8 S-SAPs, 114 SSRs and five SNPs); of these, 78 (76
SSRs and two SNPs) were in common between the
two parental genotypes. The CyEM SSRs were less in-
formative in the cultivated cardoon than in the globe
artichoke. Of the 228 assayed SSR loci 189 (83%) seg-
regated in ‘Romanesco C3, but only 114 (50%) in
‘Altilis 41’ (Table 1). The difference in level of hetero-
zygosity between these parents has been remarked on
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before [17] and is thought to be a consequence of the
sustained vegetative propagation used in globe arti-
choke, in contrast to the seed propagation applied to
the cultivated cardoon, which led to a certain degree
of purifying selection aimed at stabilizing production.

Globe artichoke map

The globe artichoke ‘Romanesco C3’ map (LOD 6.0)
consisted of 473 loci falling into 20 LGs, each containing
at least eight loci (Figure 1). The number of mapped
SSRs has now risen from 46 to 185. The largest LG con-
tained 73 loci, and the range in genetic length of the in-
dividual LGs was 34.5-140.9 cM. CyEM loci (139
markers) were mapped to all the major LGs, and their
inclusion allowed the integration of six AFLP loci which
previously had remained unlinked [17]. Two LGs (C3_13
and C3_18) which were previously separated have now
been merged, while LG C3_4 has been split into C3_4a
and C3_4b as a consequence of more stringent LOD ap-
plied (Figure 1). LG C3_17 has increased in genetic
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length by 36 ¢cM (86%), while that of LG C3_3 and C3_8
has increased by ~30% and ~20%, respectively. The map
spanned 1543.8 cM, with a mean inter-marker distance
of 3.40 cM, corresponding to a 3.8% increase in length
over the earlier map [17], but in a ~28% decrease in the
mean inter-marker distance. The proportion of intervals
shorter than 7 ¢M is now 88% (previously 77%), and
only six gaps of >15 c¢cM remain. The SSRs appeared to
be rather quite uniformly dispersed, although some clus-
tering is present in the distal regions of C3_8, C3_2 and
C3_17, and around the putative centromeric region, of
C3_3, C3_15 and C3_20. These chromosomal regions
are typically enriched for SSRs [30-35]. The relatively
low marker saturation present in the distal regions of
C3_3 and C3_14 presumably reflects a localized reduced
level of polymorphism between the mapping parents.

Some segregation distortion was present at five of the
CyEM loci (CyEM_19, _47, _70, _73 and _231; three at
a=0.05 and two at a=0.01, Figure 1) which affected a
cluster of loci on both C3_17 and C3_9. In both cases
the distortion was due to an excess of the band detected in
the female parent, thus it is likely to have a biological basis,
rather than being due to either scoring error or chance
[36]. Biological mechanisms causing segregation distortions
have been extensively studied in Drosophila [37], and are
known to occur in many plant species [38—42]. On the
other hand, the other 18 distorted loci were scattered across
the genome, a common feature in the genetic maps of both
plant and animal species [43].

By lowering the LOD threshold from 6.0 to 5.0, three
pairs of LGs were merged: C3_10 with C3_5, C3_14 with
C3_8 and C3_4a with C3_4b, resulting in the formation
of 17 LGs (corresponding to the haploid chromosome
number, Figure 1). It also allowed the inclusion of two
unlinked pairs of loci (one into C3_2 and the other into
C3_12) and the singlet AFLP locus e35/m46-156 (into
C3_7). This generated an increase in the genetic length
of the map of ~60 cM; one doublet still remains
unlinked (Figure 1).

Both the goodness-of-fit of marker placement (mean
X contribution) and nearest neighbour fit (cM) were
evaluated. Compared to the earlier ‘Romanesco C3’ map
[17], the average mean x* contribution of markers across
the LGs has been significantly reduced from 5.38 to 4.42
(¢ test at a=0.005), highlighting the improvement in ro-
bustness. The variation in this parameter for each LG is
illustrated in Figure 2, which confirms that LGs C3_1,
C3 2, C3 5, C3.8, C3.10, C3_17 and C3_20 have all
shown an improved goodness-of-fit. C3_12 remained
largely composed of AFLP loci (only two CyEM loci
were integrated) and thus its robustness was hardly
improved. The mean nearest neighbour fit of the CyEM
loci (24.3+3.7 cM) was markedly lower (¢ test at
«=0.005) than that of the AFLP loci (51.0+4.6 cM),

Page 4 of 15

confirming the desirability of including co-dominant
markers to obtain reliable marker placement.

Cultivated cardoon map

The genetic map of the cultivated cardoon ‘Altilis 41’
parent (LOD 6.0) was constructed from 373 segregating
loci (82 CyEM loci), of which 273 were ordered into 21
major LGs, whose length ranged from 27.1 to 125.2 cM,
with the largest LG consisting of 29 loci. The result of
integrating the CyEM loci was an increase in the num-
ber of major LGs from 17 to 21. This involved the rec-
ognition of four new LGs (Alt_18 to _21), the splitting
of Alt_1 into two (Alt_la and Alt_1b) and the merging
of Alt_16 and Alt_1b (Figure 3). The updated ‘Altilis 41’
map included 107 SSR loci distributed across all but one
(Alt_13) of the major LGs, with a total genetic length of
14857 c¢cM and a mean inter-marker distance of
5.44 cM. This represents a marked increase in both
length (+42%) and number of loci (+50%), together with
a minor decrease in the mean inter-marker distance
(-5%). The proportion of intervals smaller than 10 ¢cM
(about 80%) was not significantly reduced. Some of the
LGs recorded large increases in their genetic length —
for example, that of Alt_17 by 64.7 cM, Alt_14 by
589 c¢M and Alt_18 by 57.8 ¢cM. The only LG which
recorded a reduction in length was Alt_5. There was
some clustering of CyEM loci in the distal region of
Alt_2 and around the putative centromeric region of
Alt_1b and Alt_15. Three CyEM loci (CyEM_73, _3 and
_231; Figure 3) showed a degree of segregation distor-
tion (two at a=0.05 and one at a=0.01), but none of
these were linked to other distorted loci, similar to the
other nine markers showing segregation distortion. The
addition of the new SSR markers decreased the mean in-
ter-marker distance on Alt_11 by ~60%, and some gaps
in the previous map have been filled; but ten gaps of
>15 ¢M remained, perhaps reflecting regions of genetic
fixation which have arisen during cultivated cardoon
domestication.

Lowering the LOD threshold to 5.0 led to the merging
of four pairs of LG: Alt_la with Alt_1b, Alt_11 with
Alt 2, Alt 7 with Alt 10, and Alt 19 with Alt 13. At
this level of stringency the number of LGs corresponded
to the haploid chromosome (Figure 3). The lowered
stringency also allowed the incorporation of two groups
of three linked loci into LGs Alt 20, and Alt_5, and of
one doublet into LG Alt_6. As a result, the overall length
of the map was increased by 133.5 cM; one triplet and
four doublets still remain unlinked (Figure 3).

The C. Cardunculus consensus map

The number of informative shared co-dominant markers
was raised from 19 to 66 (64 SSRs, two SNPs), repre-
senting from one to 15 bridging markers per LG. As a
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Figure 2 Variation in the mean goodness-of-fit of markers for each ‘Romanesco C3’ LG. Variation detected by comparing the current
‘Romanesco C3" map with that published by Portis et al. [17]. LGs C3_13 and C3_18 have been merged.
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result, 19 of the ‘Romanesco C3’ LGs were alignable with  shared markers with both Alt 11 and Alt_2 (Table 2).
20 of the ‘Altilis 41’ ones (Table 2). There was a one to  C3_4b remained non-aligned, but did harbour a number
one correspondence between 18 LG pairs, but C3_1 of SSR loci which were informative for the second step
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Table 2 Characteristics and alignment of the consensus C. cardunculus linkage map

Linkage group name Shared Size Total Marker Alignment with globe artichoke x wild cardoon map 1
Consensus Romanesco Altilis markers (cM) markers  density Aligned LGs Shared markers
LG c3 41

LG_I C3_1 Alt_2+_11 15 143.6 92 16 LG_I 21
LG_II 3.2 Alt_4 10 144.5 72 20 LG_II 10
LG_III .3 Alt_3 4 140 50 29 LG_III 7
LG_IV C3_4a+_4b  Alt_20 1 1078 27 4.1 LG_VI 4
LGV C3.5+_10 Alt_la+_1b 4 1325 81 1.7 LG_Vand LG_X 14
LG_VI C3_6 Alt_18 1 105 19 58 Mola-18 3
LG_VII a7 Alt_5 2 106.1 28 39 LG_VII+LG_XVII 5
LG_VIlI C3.8+_14 Alt_10+_7 6 1178 68 1.8 LG_VIII+ LG_XV +tripl. 11
LG_IX 3.9 Alt_17 7 83.5 27 32 LG_IX 5
LG_X C3_11 Alt_12 2 613 19 34 LG_XI 6
LG_XI C3_12 Alt_6 1 976 49 20 LG_XII 4
LG_XII C3_(134+18)  Alt_14 9 1232 54 2.3 LG_IV 13
LG_XINI C3_15 Alt_8 6 66.5 26 2.7 LG_XIV 6
LG_XIV C3_16 Alt_19 1 54.6 23 2.5 LG_XII 2
LG_XV C3_17 Alt_9 3 924 36 26 LG_XVI 9
LG_XVI C3_19 Alt_21 1 66.7 12 6.1 LG_XIV 2
LG_XVII C3_20 Alt_15 3 44.5 Il 45 LG_XI 3
Total 76 1687.6 694 125
Average 4.05 99.3 40.8 2.5 74

! Alignment with the map published by Sonnante et al. [21] and based on a cross between a globe artichoke (“Mola”) with a wild cardoon (“Tolfa”) genotypes.

of the analysis; this was not the case for Alt_13 (Table 2).
The alignment was followed by the construction of a
consensus map based on a LOD threshold of above 5.0
(Figure 4), which succeeded in capturing 694 loci, 227
(217 SSRs, ten SNPs) of which involved co-dominant
markers. The map generated 17 LGs with a total genetic
length of 1687.6 cM and a mean inter-marker spacing of
2.5 ¢cM; consensus LG numbers (from LG I to LG XVII)
have been assigned (Table 2, Figure 4). The length of
each individual LG varied from 44.5 to 144.5 cM (mean
99.3 cM), with the largest containing 92 loci. Only three
of the CyEM loci (the intercross locus CyEM_134 and
the two ‘Altilis 41" testcross loci CyEM_167 and _79)
remained unlinked.

The consensus map, obtained from the domesticated
C. cardunculus forms, was compared with the Sonnante
et al. [21] map constructed from a cross between the
var. scolymus cultivar ‘Mola’ and the var. sylvestris (wild
cardoon) accession ‘“Tolfa;, by considering 125 (117 SSRs,
eight SNPs) common markers. The common markers
identified each of the 17 LGs on the consensus map,
with between two and 21 present on each LG (Table 2).
Ten of the LGs aligned readily; LGs V and VII aligned
with two ‘Mola’/‘Tolfa’ LGs, and LG VIII with two major
groups and a triplet of markers. LGs X/XVII, and XIII/
XVI each aligned with only a single ‘Mola’/*Tolfa’ LG. In
general, marker order and genetic separation were

comparable, with some exceptions. It has been estab-
lished that wild cardoon is more divergent from the two
cultivated forms (globe artichoke and cultivated car-
doon) than are the two cultivated forms with respect to
one another [44,45]. Somewhat surprisingly, therefore,
over 100 SSR loci featured in the consensus map but ap-
parently were either non-informative or remained as
singlet loci in the ‘Mola’/*Tolfa’ population.

EST-SSRs as functional markers
Putative functions can be deduced for markers derived
from ESTs using homology searches with public protein
databases. Annotation of mapped loci was performed via
BlastX search as well as InterPro scan and GO categor-
isation made it possible to tag some biological functions.
A set of 17 CyEM markers were annotated with GO
terms involved in the ‘response to stimulus’ (Table 3),
five of which were derived from transcripts related to
‘response to cold stress’ and eight to ‘response to salt
stress’ terms. In particular, the marker CyEM-42, devel-
oped from the contig CL4773Contigl (1281 bp, 267
aminoacids) [22] and mapped on LG_12 of “Romanesco
C3” map, showed high amino acid similarity (81%) with
the Arabidopsis protein kinase PBS1 (NP_196820.1, uni-
gene At.23518). To consider reliable orthology, a recip-
rocal tblastx analysis against the whole EST collection,
currently available for C. cardunculus, was performed
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Figure 4 (See legend on next page.)
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(See figure on previous page.)

Figure 4 Consensus genetic map of C. cardunculus. Marker names appear to the right of each LG, with map distances in cM to the left; 'r-'
and 'a-' indicate markers segregating only in, respectively, ‘Romanesco C3' (C3) and ‘Altilis 41" (Alt41). Arrows indicate the positions of earliness
QTL, named as follows: trait abbreviation (MH: main inflorescence; FOH: first order inflorescence; SOH: second order inflorescence) and harvest

season (08: “2008", 09: “2009").

and no better alignment than that of contig CL4773 was
detected. PBS1 was found to work as R gene against the
bacterial pathogen Pseudomonas syringae, where its
cleavage, operated by the pathogens’ effector AvrPphB,
triggers the signalling cascade, generating the host re-
sponse (HR) [46]. Pseudomonas spp. together with other
endophytic bacteria may affect globe artichoke plants
both in field and during micropropagation [47] and the
CyEM-42 may be likely considered a reliable marker for
tagging a bacterial resistance trait in the species.

Our EST-SSR markers may be defined as functional
markers with the potential to target polymorphisms in
gene responsible for traits of interest and they can be
also particularly useful for constructing comparative
framework maps with other Asteraceae, giving the possi-
bility to amplify ortholog genes and provide anchor loci.

The genetic basis of earliness

An evaluation of the variance for the three earliness-
related traits established significant genotypic differences
(P<0.05) between ‘Romanesco C3’ and “Altilis 41’
(Table 4). Thus, eMH in the former was 162 days in
“2009” and 178 days in “2008”, while in the latter the re-
spective times were 218 and 223 days. All three traits
varied continuously among the F1 progeny (the distribu-
tion for eMH is shown in Figure 5); no progeny was as
early flowering as ‘Romanesco C3; but a few were later
flowering than ‘Altilis 41, due to transgressive segregation.

The mean eMH, eFOH and eSOH lay substantially above
the mid-parent value, suggesting semi-dominance for late-
ness. The low global level of heterozygosity characteristic
of the cultivated cardoon makes it possible that one or
more of the earliness QTL are in the homozygous state in
‘Altilis 41; so that the presence of dominant alleles for late-
ness may contribute to later flowering across the whole
mapping population. The inter-trait correlations were
similar in both seasons, with the strongest correlation
linking eMH and eFOH (r > 0.80, P < 0.0001). The corre-
lations between the two seasons were also strong, ranging
from 0.64 (P < 0.0001) for eMH to 0.49 (p< 0.001) for
eSOH (Table 5). Flowering and head harvesting time was
a little earlier in “2009” than in “2008” (7-8 days on
average), while performance was somewhat more
variable in “2009” (Table 4), probably reflecting the
difference between re-awakened and newly sown ma-
terial. The broad sense heritability for eMH of 0.76
(Table 4) indicated the trait to be predominantly
under genetic control, but the rather lower heritabilities
shown by the traits eFOH and eSOH suggested that
the environment is quite influential in their
determination.

The KW test and SIM procedure identified, at first, six
QTL regions stable across years in the developed con-
sensus map (Figure 4). Those on LGs I, XI and XVII
involved all three traits, those on LGs I and IX only
eMH and eFOH, and the one on LG VII solely eMH.

Table 3 CyEM markers with Gene Ontology annotation for stimuli response-related terms

GO ID Term Level N° of loci Locus Name
GO:0050896  response to stimulus 2 17 CyEM-008, CyEM-030, CyEM-42, CyEM-054, CyEM-057, CyEM-070,
CyEM-072, CyEM-093, CyEM-120, CyEM-135, CyEM-145, CyEM-150,
CyEM-152, CyEM-218, CyEM-229, CyEM-259, CyEM-266
GO:0009628  response to abiotic stimulus 3 13 CyEM-008, CyEM-030, CyEM-054, CyEM-070, CyEM-093, CyEM-120,

CyEM-135, CyEM-145, CyEM-150, CyEM-152, CyEM-218, CyEM-229, CyEM-259

GO:0042221  response to chemical stimulus 3 4 CyEM-093, CyEM-218, CyEM-229, CyEM-266

GO:0006950  response to stress 3 15 CyEM-008, CyEM-030, CyEM-054, CyEM-057, CyEM-070, CyEM-072,
CyEM-093, CyEM-120, CyEM-135, CyEM-145, CyEM-150, CyEM-152,
CyEM-229, CyEM-259, CyEM-266

GO:0009266  response to temperature stimulus 4 5 CyEM-008, CyEM-054, CyEM-093, CyEM-145, CyEM-150

GO:0006970  response to osmotic stress 4 8 CyEM-030, CyEM-070, CyEM-093, CyEM-120, CyEM-135, CyEM-152,
CyEM-229, CyEM-259

GO:0010033  response to organic substance 4 3 CyEM-093, CyEM-229, CyEM-266

GO:0009409  response to cold 4 5 CyEM-008, CyEM-054, CyEM-093, CyEM-145, CyEM-150

GO:0009651  response to salt stress 5 8 CyEM-030, CyEM-070, CyEM-093, CyEM-120, CyEM-135, CyEM-152,

CyEM-229, CyEM-259

Redundancy occurs since each available GO-level of annotation was considered.
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Table 4 Earliness of the parental lines (‘C3": ‘Romanesco C3’, ‘Alt 41": “Altilis 41’) and their F1 progeny in “2008” and

“2009”
Precocity trait Year Parents ' F, population 2
a A41 Mean Range s.e. h2

Main head (eMH) 2008 178 a 223 b 2129 202-238 0518 0.76
2009 162 a 218 b 206.1 190-235 0.694

First order heads (eFOH) 2008 185 a 229 b 2213 209-248 0456 061
2009 180 a 224 b 2140 198-239 0.828

Second order heads (eSOH) 2008 198 a 239 b 2326 214-267 0.695 0.54
2009 192 a 237 b 2257 207-246 0.897

! Means followed by different letters within the same row are significantly different at P < 0.05.
2s.e.: standard errors; hg: broad sense heritability based on two years’ data.

The seventh QTL cluster on LG II involved all three ‘Romanesco C3’ and ‘Altilis 41° maps were used separ-
traits, but was only expressed in “2009” (Figure 4). On  ately for QTL validation, the percentage of phenotypic
the whole, seven chromosomal regions scattered over six  variance explained by some of the QTL differed from
LGs of the consensus map were identified. When the that predicted by the analysis based on the consensus
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‘Romanesco C3', A41: ‘Altilis 41') indicated by arrows.
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Table 5 Correlations between the three earliness traits
measured in the ‘Romanesco C3’ x ‘Altilis 41’ F1
population in “2008” and “2009”

Precocity trait Year eMH eFOH eSOH

eMH 2008 0.64*** 0.84*** 0.69***
2009 0.86*** 0.76***

eFOH 2008 0.54%%* 0.66"**
2009 0.72%%*

eSOH 2008 0.49%*
2009

**P < 0.001; ***P < 0.0001.

map (data not shown), perhaps reflecting the structure
and size of the segregating progeny and the existence of
different allelic interactions [48]. However, all seven
QTL regions were detectable by applying the SIM
method to the parental maps, and further analysed with
the MQM procedure. QTL identified in each map and
season are shown in Table 6 and graphically reported in
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Figure 6. Only three of the seven QTL regions were de-
tectable in both parental maps, presumably these regions
were heterozygous in both parental lines. The other four
were only detectable in one of the two maps, suggesting
that one parent was homozygous in the critical region
(Figure 6). Across all three traits, a total of 25 QTL was
detected, of which 19 were stable across both growing
seasons, with the other six expressed only in “2009”.
With respect to eMH, two of the QTL were heterozy-
gous in both parents, three only in ‘Romanesco C3” and
two just in ‘Altilis 41°. The largest effect stable eMH
QTL in ‘Romanesco C3’ mapped to LG C3_1 in the
neighbourhood of the SSR locus CELMS_40, named
eMH.C3_1. This QTL was responsible for 38-48% of the
phenotypic variation and was associated with an additive
effect of 10-12 days. The other four QTL in ‘Romanesco
C3’ mapped to LGs C3_9, _8, _12 and _2, and accounted
individually for between 6-10% of the phenotypic vari-
ance; eMH.C3_2 was only detected in “2009”. The lar-
gest stable QTL detected in ‘Altilis 41’ (eMH.Alt_2),

Table 6 Characteristics of the earliness QTL detected using the ‘Romanesco C3’ (C3) and the ‘Altilis 41’ (A41) maps

Precocity trait Map LG QTL 2008 2009
GW Locus cM LOD % var Add GW Locus cM LOD % var Add
Main head (eMH) 3 @1 eMHC3_1 36 rCELMS40 1051 147 479 -105 33  rCELMS-40 1051 962 381 -116
3.9 eMHC3.9 CyEM_10 298 48 105 -45 CyEM_10 298 34 76 40
C3.8 eMH.(C3_8 CyEM_173 810 4.1 89 43 CyEM_2 818 36 68 =35
C3_12 eMH.C3_12 e39/m50-690 412 36 66 36 e35/m50-302 472 33 61 =31
3.2 eMH.(C3_2 - - - - - €32/t81-380 58 39 13 6.4
A4l Alt2 eMHAIt_2 33 e38/m47-158 643 62 414 -89 32 e38/m47-158 643 79 329 -109
Alt_2 eMHAIt_2b p12/m62-150 293 36 107 =53 p12/m62-150 293 33 89 57
Alt_15 eMH.AIt_15 CyEM_248 209 33 89 42 CyEM_144 203 32 7.1 5.1
Alt_4 eMHAIt_4 - - - - - e32/t82-90 354 34 98 52
First order head (eFOH) a C3_1 eFOHC3_1 34 e33/t89430 1040 89 310 -71 31 rCyEM_223  106.1 76 299 -105
3.9 eFOHC3_9 CyEM_10 298 38 81 41 CyEM_10 298 35 66 51
C3_12 eFOH.C3_12 e39/m50-690 412 34 56 3.1 e35/m50-302 472 31 55 48
C3_2 eFOH.(C3_2 - - - - - e42/m50-176 550 32 51 43
A4l Alt_2 eFOHAIt 2 30 e38/m47-158 643 72 256 —67 30 e38/m47-158 643 63 267 -102
Alt_2 eFOH.AIt_2b aCyEM_12 205 36 110 38 p12/m62-164 321 34 83 54
Alt_15 eFOH.AIt_15 CyEM_248 209 32 91 33 CyEM_144 203 36 78 53
Alt_6 eFOHAIt_6 cyre5/m47-160 1.5 30 83 3.1 cyre5/m47-160 1.5 30 57 34
Alt_4 eFOHAIt_4 - - - - - e33/t89-490 360 30 63 4.2
Second order head (eSOH) C3 C3_1 eSOHC3_1 34 e38/t80-630 997 71 322 -97 32 e32/t81-98 980 56 224 -98
(C3_12 eSOH.C3_12 e35/m50-302 472 34 151 =71 e35/m50-302 472 34 180 -92
C3_2 eSOH(C3_2 - - - - - e38/m50-108 592 32 78 52
A4l Alt_2 eSOHAIt_2 31 e38/m47-158 643 49 190 -76 32 e38/m47-158 643 63 214 -82
Alt_15 eSOH.AIt_15 CyEM_248 209 3.1 59 3.1 CyEM_144 203 35 91 6.4
Alt_6 eSOHAIt_6 cyre5/m47-160 1.5 3.1 74 39 cyre5/m47-160 1.5 32 6.1 4.1
Alt_4 eSOHAIt_4 - - - - - e33/t89-490 360 32 59 41

Each QTL name is formed by the abbreviated form of the trait followed by the relevant LG. The table indicates genome-wide LOD thresholds (GW) as determined
by a permutation test at P<0.05, the closest linked markers (Locus) and their map location (cM), the estimated LODs at the QTL peak (LOD), the proportions of

the total variance explained (% var), and the additive effects (Add).
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homologous to the ones detected in the same region of the
‘C3’ map, explained from 33-41% of the phenotypic vari-
ance and was associated with an additive effect of 9-11 days.
A second QTL, eMH.Alt_4, was detectable only in “2009”,
but its location suggested it to be identical with eMH.C3_2
(Figure 6). Further two minor QTL present on LGs Alt_2
and _15 accounted for, respectively, 8% and-11% of the
variance. Globally, the QTL identified in the ‘Romanesco
C3’ and ‘Altilis 41" maps accounted for, respectively, 74%
and 62% of the phenotypic variance for main head harvest-
ing time in “2008”.

Six eFOH QTL were detected, three of which were
represented in both parental maps, one on just the
‘Romanesco C3’ map, and the other two on just the ‘Alti-
lis 41" map. Five of the six QTL mapped to a region
where a eMH QTL was also located, with overlapping
LOD confidence intervals but with an overall lower
phenotypic effect. The exception was eFOH.Alt 6
(Table 6, Figure 6). As for eMH, the largest effect QTL
mapped to LGs C3_1 and Alt_2 in the neighbourhood of
CyEM_223. Based on the “2009” data, the set of eFOH
QTL accounted for 47% (‘Romanesco C3’) and 54%
(‘Altilis 41°) of the variation.

Only four eSOH QTL were uncovered, due to the
reduced heritability of this trait (hj=0.54, Table 4). All
four co-localized with eFOH QTLs, with an overall

lower phenotypic effect (Table 6, Figure 6), with the lar-
gest effect QTL mapping to the cluster on C3_1 and
Alt_2. Based on the “2009” data, the set of eSOH QTL
accounted for 48% (‘Romanesco C3’) and 43% (‘Altilis
41’) of the variation.

Conclusions
We have reported here an extension of the C. carduncu-
lus genetic map by introducing SSR loci sited within
genic sequence. The integration of 139 of these loci has
significantly improved the resolution and accuracy of the
maps. Given that the genome size of the species is
~1.08Gbp [49], the mean equivalence between the phys-
ical and genetic length in this species is of the order of
1 cM to 670 kbp. Thus the mean physical separation of
the mapped markers is around 2.2Mbp. On this basis,
most gene sequences should lie within about 1Mbp of
the nearest marker, although this value makes the non-
valid assumption that recombination sites are randomly
distributed along the length of the chromosomes.
Shortening the life cycle is seen as an important breed-
ing goal in terms of both globe artichoke’s economic
value, and the ease of exploiting cultivated cardoon as
an energy crop [13,14]. The newly developed consensus as
well as the parental genetic maps can accelerate the process
of tagging and eventually isolating the genes underlying
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earliness in both the domesticated C. cardunculus forms.
We have shown that a cluster of large effect QTL
resides on the homologous LGs C3_1 and Alt_2, and
this clearly represents a reasonable candidate for mar-
ker assisted breeding. The critical genetic interval
contains two SSR loci (CELMS_40 and CyEM_223),
either of which is well-placed to serve as an indirect
selection criterion for earliness. Before such a geno-
typic selection programme can be implemented, how-
ever, a validation of the presence and importance of
the QTL needs to be conducted using different gen-
etic backgrounds and in other relevant environments
[50,51]. To date, this study represents the first attempt to
identify QTL in C. cardunculus, which is the necessary
preliminary step for implementing marker-assisted se-
lection for quantitative traits. Beyond tagging, map-
ping also prepares the ground for positional cloning,
which will enable the molecular basis of trait vari-
ation to be identified.

Methods

Plant material and SSR analysis

The 178 informative CyEM markers identified by Sca-
glione et al. [22] were used to genotype a set of 94 F; hy-
brid (randomly selected from 154 true hybrids as
described by Portis et al. [17] from the cross’Romanesco
C3’(globe artichoke; female parent) x ‘Altilis 41" (culti-
vated cardoon; male parent). A 7 ng aliquot of genomic
DNA from each mapping population individual was
amplified in a 10 pl reaction containing 1x PCR buffer,
1 mM MgCl,, 0.5U Taq DNA polymerase (Qiagen Inc.,
Venlo, Netherlands), 40nM 5’-labelled (FAM, HEX or
TAMRA) forward primer, 40 nM unlabelled reverse pri-
mer and 0.2 mM dNTP. A touchdown cycling regime
was applied, consisting of an initial denaturation of 94°C/
2.5 min, followed by nine cycles of 94°C/30s, 63°C/30s
(decreasing by 0.7°C per cycle), 72°C/60s, and 30 further
cycles of 94°C/30s, 57°C/30s, 72°C/60s. Where only weak
amplification was achieved, the MgCl, concentration was
raised to 1.5 mM and the final annealing temperature was
lowered to 55°C. The amplicons were separated on an
ABI3730 capillary DNA sequencer (Applied Biosystem
Inc,, Foster City, CA, USA). Internal ROX-labelled GS500
size standards were included in each capillary. The
output was analysed by GeneMapper v3.5 software
(Applied Biosystems).

Linkage analysis and parental maps construction

The CyEM genotypes of the 94 mapping population
individuals were combined with previous genotypic data
based on 605 AFLP, 27 S-SAP and 56 other SSRs [17],
along with ten SNP from genes underlying caffeoylquinic
acid synthesis (reported by Comino et al. [18] and
Menin et al. [19]). JoinMap v4.0 [52] was used to
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generate two separate linkage maps (one for each par-
ent) using the double pseudo-testcross mapping strategy
[53]. The markers fell into three classes: maternal test-
cross markers segregating only in ‘Romanesco C3’
(expected segregation ratio 1:1); paternal testcross mar-
kers segregating only in ‘Altilis 41’ (1:1); and intercross
markers segregating within both parents (either 1:2:1 or
1:1:1:1). Differences between observed and expected seg-
regation ratios were tested by y?, and only markers devi-
ating if at all only slightly from expectation
(X2—01 <X < Xa—o01) Were used for map construction and
the estimation of genetic distances, when their presence
did not alter surrounding marker order in the LG. Heav-
ily distorted loci (XZ >X§=0.01): along with those asso-
ciated with 30 or more missing values, were excluded.
LGs were established on the basis of an initial LOD
threshold of 6.0. Locus order and distances between loci
were established using the following parameter set: Rec =
0.40, LOD=1.0, Jump=5. Map distances were con-
verted to cM using the Kosambi mapping function [54].
Where a locus order discrepancy arose between a pair of
parental LGs, the marker order of the ‘1:1:1:1” segregat-
ing SSR and the marker order of SNP markers were
taken as the ‘fixed order’. Once the framework maps had
been established, additional loci were subsequently
added and some LGs merged by lowering the LOD
threshold to 5.0. On the resulting maps, loci suffering
from slight segregation distortion have been identified
with either one (X2_o.1 <X*<Xa0.05) OF twWo (Xaio.0s <
fSX§=0_01) asterisks. The ‘Romanesco C3’ LGs are la-
belled LG_C3, and the ‘Altilis 41" ones LG_Alt, using the
numbering system suggested by Portis et al. [17].

Consensus map construction

A genotypic data set based on all the available markers
was then used to construct a consensus map. Here, the
loci belonging to two segregation classes ‘1:2:1" (the
same pair of alleles segregating in each parent), and
‘1:1:1:1’ (different alleles segregating in each parent) were
used as ‘bridge markers’. The most likely locus order
was established from a comparison of the ‘C3; ‘Alt’ and
consensus LGs, and where these differed substantially
from one another, the most likely order was assumed to
be one associated with the lowest x> value (estimating
goodness-of-fit) and the lowest mean x* contribution for
all loci. LGs were established on the basis of an initial
LOD threshold of 5.0 and numbered according to C3
maps LGs order.

Sequence annotation

Annotation of mapped sequences was carried out using
the Blast2Go software [55]. The best twenty BlastX
results were retrieved by querying the nr protein data-
base at NCBIL Gene Ontology terms were retrieved
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accordingly to software capabilities and transferred to
our sequences, adopting an annotation threshold of 55.
Additional GO terms were obtained performing InterPro
scan for conserved motif, using all available databases.
ANNEX function was used to obtain further GO terms
which are implicit on the base of electronically anno-
tated ones.

Earliness evaluation and QTL analysis

The mapping population (154 F; progeny of the cross
‘Romanesco C3’ (var. scolymus) x ‘Altilis 41° (var. altilis)),
along with six clones of each parental line, was culti-
vated at the University of Catania's experimental station
(37°25'N; 15°30’E; 10 m a.s.l) and evaluated over the two
growing seasons 2007-2008 (hereafter referred to as
“2008”) and 2008-2009 (“2009”). In “2008”, seedlings at
the three true leaf stages (about 40 days after germin-
ation) were transferred to the field in mid September,
while in “2009”, the growing season was initiated by ap-
plying drip irrigation to field capacity in mid August.
Earliness was scored either as the number of days be-
tween transplanting (“2008”) or awakening (“2009”) and
harvesting of both the main (eMH trait) and first and
second order heads (obtained from the ramification of
the main stem: eFOH and eSOH traits). Population
means, standard deviations, distribution histograms and
trait correlations were calculated using R software [56].
Analyses of variance were based on treating each grow-
ing season as an independent replicate. The broad sense
heritability was given by the expression h = 0;/ (oé +o2ly),
where 0'; represented the genetic variance and o2 the error
variance. Correlations between traits were estimated using
Pearson’s coefficient.

In the initial step of the QTL analysis, the consensus
map was used to assign putative locations by performing
a Kruskal-Wallis (KW) non-parametric test in conjunc-
tion with a simple interval mapping procedure (SIM)
[57], applying the cross-pollination algorithm implemen-
ted within MapQTL v4.0 software [58]. Next, the two
separate parental maps were employed for a re-analysis
based on the BC1 algorithm, using both SIM and mul-
tiple QTL mapping (MQM) [59]. Markers lying within a
putative QTL region and associated with the highest
LOD score were used as co-factors. For the MQM, a
backward elimination procedure was applied to select
the appropriate co-factors (significantly associated with
each trait at P < 0.02). The LOD thresholds for QTL sig-
nificance were confirmed by a permutation test consist-
ing of 1,000 replications, which implies a genome-wide
significance level of 0.05 [60]. Only those QTL asso-
ciated with a LOD greater than either the genome-wide
threshold or the LG threshold were considered. 1-LOD
support intervals were determined for each LOD peak
[61]. The additive effect and the proportion of the

Page 13 of 15

overall phenotypic variance associated with each QTL
and all QTL together were estimated from the MQM
model. Linkage maps and QTL position were drawn
using MapChart [62].
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