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Abstract

Background: The genetic background of type 2 diabetes is complex involving contribution by both nuclear and
mitochondrial genes. There is an excess of maternal inheritance in patients with type 2 diabetes and, furthermore,
diabetes is a common symptom in patients with mutations in mitochondrial DNA (mtDNA). Polymorphisms in
mtDNA have been reported to act as risk factors in several complex diseases.

Findings: We examined the nucleotide variation in complete mtDNA sequences of 64 Finnish patients with
matrilineal diabetes. We used conformation sensitive gel electrophoresis and sequencing to detect sequence
variation. We analysed the pathogenic potential of nonsynonymous variants detected in the sequences and
examined the role of the m.16189 T>C variant. Controls consisted of non-diabetic subjects ascertained in the same
population. The frequency of mtDNA haplogroup V was 3-fold higher in patients with diabetes. Patients harboured
many nonsynonymous mtDNA substitutions that were predicted to be possibly or probably damaging.
Furthermore, a novel m.13762 T>G in MTND5 leading to p.Ser476Ala and several rare mtDNA variants were found.
Haplogroup H1b harbouring m.16189 T>C and m.3010 G>A was found to be more frequent in patients with
diabetes than in controls.

Conclusions: Mildly deleterious nonsynonymous mtDNA variants and rare population-specific haplotypes
constitute genetic risk factors for maternally inherited diabetes.
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Background
Mitochondria play a key role in metabolism, heat pro-
duction and apoptosis and contribute to aging and for-
mation of reactive oxygen species (ROS) [1,2]. Above
all, mitochondrial oxidative phosphorylation (OXPHOS)
produces adenosine triphosphate (ATP) that is the en-
ergy form driving cellular processes. Both nuclear gen-
ome and mitochondrial DNA (mtDNA) code for the
subunits of the respiratory chain complexes that catalyse
the reactions of OXPHOS. Maternally inherited mtDNA
consists of 16 569 base pairs and codes for 13 pro-
teins of the respiratory chain, while the remaining more
than 70 subunits are encoded by the nuclear genome.
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Furthermore, mtDNA encodes 2 ribosomal RNAs and 22
tRNAs required for mitochondrial protein synthesis.
MtDNA is more prone to mutations than nuclear

DNA leading to variation that can be used as a tool in
population genetics. Certain polymorphisms mark branch
points in the phylogenetic tree of human mtDNA and
define population-specific haplogroups. Europeans be-
long to mtDNA haplogroups H, V, U, K, T, J, I, W, X and
Z [3]. Certain mtDNA haplogroups have been associated
with susceptibility to various diseases but also with bene-
ficial traits like longevity [4]. It has been postulated that
certain mtDNA polymorphisms either decrease or in-
crease the patency of the mitochondrial respiratory chain
and the production of harmful ROS. Furthermore, some
mildly harmful polymorphism can bring forth subtle
changes in translation, replication or production of regu-
latory elements of mtDNA [4]. Supramolecular assembly
of mitochondrial respiratory chain complexes have been
suggested to create a dynamic supercomplex. Amino acid
d. This is an Open Access article distributed under the terms of the Creative
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variation in subunits of complexes can have minor ef-
fects on the stability and assembly of the supercom-
plexes and may lead to impaired function of OXPHOS
or increased ROS production [5,6].
Non-neutral patterns have been found in human

mtDNA indicating that slightly deleterious mutations
may be present in the population [7]. According to the
neutral theory of molecular evolution, variation at the
molecular level is due to the interaction between genetic
drift and mutation, rather than being actively maintained
by selection. Selection against mildly deleterious mtDNA
mutations suggests that increased sequence variation
could be a risk factor for complex diseases such as type
2 diabetes [8,9]. It has been proposed that recent bottle-
neck events can lead to the over-representation of minor
mtDNA alleles in population and to the emergence of
population-specific risk factors for diabetes [10].
Insulin-dependent type 1 and non-insulin dependent

type 2 are the two main types of diabetes. Type 2 dia-
betes has an excess of maternal transmission and can be
inherited through multiple maternal generations [11].
Mitochondrial diabetes constitutes the third type of dia-
betes. It accounts for 1 % of all diabetes cases and is
often accompanied by hearing impairment and other
multi-organ symptoms typical for mitochondrial dis-
eases. Mitochondrial diabetes is most often caused by
the m.3243A>G mutation in MTTL [11-13].
Them.16189T>Cpolymorphismnear the termination-

associated segment in the non-coding region of mtDNA
creates an uninterrupted cytosine tract. The tract varies
in length between five and 13 consecutive cytosines, the
wild type genome containing nine cytosines with an
intervening thymine in position m.16189 after the fifth
cytosine. The m.16189 T>C polymorphism diminishes
the rate of mtDNA replication and causes a lower
mtDNA copy number and a disadvantage in metabolic
efficiency [14]. It has been speculated that m.16189 T
acts as a brake for replication slippage or facilitates the
whole process of replication. The m.16189 T>C poly-
morphism has been linked with maternally inherited
thinness [15], thinness at birth [16] and increased body
mass index [17], and increased frequency of type 2 dia-
betes in the UK [18] and in Asia [19,20].
In this study we have attempted to identify mtDNA

polymorphisms or their combinations that could in-
crease the risk of maternally inherited diabetes. For this
purpose, we determined complete mtDNA sequences in
64 Finnish patients with maternally inherited diabetes
and compared them to complete mtDNA sequences in
192 population controls.
Subjects and Samples
Patients were identified from the records of 40 out of

42 local-authority health care units in Northern Finland.
The discharge diagnoses and the diabetes register of two
hospitals were reviewed. The selected patients had
started insulin treatment for diabetes between the ages
of 20 and 45 years and had maternal first- or second-
degree relatives with diabetes, hearing loss or epilepsy. A
total of 175 patients were identified, 111 of them
reported at least one first-degree maternal relative with
diabetes. We received 82 blood samples.
We calculated a crude proportion of affected maternal

relatives for each patient using Naffected/Ntotal [21] after
exclusion of the probands. We then selected 64 patients
with the highest calculated crude proportion of maternal
relatives. The mean crude proportion for the selected
patients was 0.30 (standard deviation 0.19; median 0.25;
range 0.077 - 1). Restriction fragment analysis was used
to verify the absence of m.3243A>G and m.8344A>G
in the selected samples.
Population controls consisted of 480 healthy Finnish

Red Cross blood donors from Northern Finland. It was
required that the donor and his or her mother were born
in the same region, did not have diabetes, sensorineural
hearing impairment or any neurological ailments.
MtDNA haplogroups have been determined in all the
480 controls [3], the hypervariable segment I in the D-
loop has been sequenced in 403 controls [22] and the
entire mtDNA sequence has been determined in 192
controls [3]. The ethics committee of the University of
Oulu and the Finnish Red Cross have approved the
study protocol. All participants signed a written in-
formed consent for participation in the study, all partici-
pants were adults.

Methods
Conformation sensitive gel electrophoresis (CSGE)
Total DNA was extracted from blood using the QIAmp
Blood Kit (Qiagen, Hilden, Germany). MtDNA haplo-
groups were determined by restriction fragment analysis
and Conformation sensitive gel electrophoresis (CSGE)
was performed as described previously [23-25]. MtDNA
coding region spanning the nucleotides m.577-m.16090
was amplified in 63 partially overlapping fragments. PCR
fragments were amplified in a total volume of 30 ?l in 30
cycles through denaturation at 94 °C for 1 min, anneal-
ing at a primer-specific temperature and extension at
72 °C for 1 min and a final extension for 10 min. A
touchdown-PCR protocol was used in parallel yielding
similar results. The mean size of the amplified frag-
ments was 354 bp. Small volume (3–10 ?l) of the PCR
product was used for heteroduplex formation. Each
amplified fragment was mixed with a reference sample
and denatured at 95 °C for 5 min and annealed at 68 °C
for 30 min for heteroduplex formation. Samples were
electrophoresed using 15 % polyacrylamide gel over-
night at a constant voltage of 400 V in room tem-
perature. After electrophoresis the gel was stained in



Table 1 Frequencies of mtDNA haplogroups among 64
patients with maternally inherited diabetes and 480
controls

DM Controls1

Haplogroup (N) (%) (N) (%) p-value

H 23 35.9 188 39.1 NS

U 15 23.4 134 27.9 NS

V 10 15.6 27 5.6 0.0066*

T 5 7.8 12 2.5 NS

I 3 4.6 15 3.1 NS

K 3 4.6 12 2.5 NS

W 2 3.1 46 9.5 NS

J 2 3.1 26 5.4 NS

Z 0 0 10 2.0 NS

X 0 0 7 1.4 NS

Other2 1 1.5 3 0.6 NS
1The controls are those from [3].
2One patient with diabetes belonged to haplogroup R.
*The frequency of haplogroup V differed from that of the population controls
(p= 0.0066, Fisher’s exact two-tailed test, no adjustments were made for
multiple comparisons).

Soini et al. BMC Research Notes 2012, 5:350 Page 3 of 12
http://www.biomedcentral.com/1756-0500/5/350
150?g/l of ethidium bromide for 5 min and destained in
water. Finally, the gel was transferred to ultraviolet tran-
silluminator and photographed (Grab-IT Annotating
Grabber 2.04.7; UVP).

Sequencing
PCR fragments that differed in mobility in CSGE were
sequenced (ABI PRISM ™ 377 Sequencer using DYE-
namic ET Terminator Cycle Sequencing Kit; Amersham
Pharmacia Biotech Inc., Buckinghamshire, U.K.) after
purification with exonuclease I and shrimp alkaline
phosphatase [26]. The primers for sequencing were the
same as those used for the amplification of the 63 CSGE
fragments. The D-loop spanning nucleotides m.15975 –
m.725 was sequenced directly.

Analysis of substitutions
Sequences were compared to the revised Cambridge
reference sequence [GenBank:NC_012920] [27] and to
mtDNA sequences available in the GiiB-JST mtSNP
database http://mtsnp.tmig.or.jp/mtsnp/index_e.shtml
[28], mtDB Human Mitochondrial Genome database
http://www.mtdb.igp.uu.se [29] and Mitomap http://
www.mitomap.org [30] accessed in October 2011. All
variants were also compared to our 192 population-
specific controls [3]. Novel substitutions were confirmed
by restriction fragment length polymorphism-method
(RFLP) or sequencing in both directions at least twice
from different PCR products. Previously reported patho-
genic mutations were identified according to Mitomap.
Base conservation in tRNA genes was determined using
Mamit tRNA: Compilation of Mammalian mitochondrial
tRNA genes http://mamit-tRNA.u-strasbg.fr [31] and
conservation of other mtDNA-encoded genes using the
GiiB-JST mtSAP evaluation http://mtsnp.tmig.or.jp/cgi-
bin/mtsnp/specAlign/ctrlSpecAlignE.cgi [28].
PolyPhen-2 version 2.1.0 [32] was used for prediction

of functional effects of nonsynonymous mutations on
subunit proteins http://genetics.bwh.harvard.edu/pph2/.
For each mutation PolyPhen-2 calculates a naïve Bayes
posterior probability that this mutation is damaging.
Mutations are then classified as benign if the calculated
probability is less than 50 %, possibly damaging if the
probability is greater than 50 % and probably damaging
if the probability is greater than 90 %. HumDiv-model
was used, because it is recommended for rare alleles in
complex diseases and for mildly deleterious alleles [32].
The m.7444 G>A variant in haplogroup V creates a
stop codon and, in consequence, could not be analyzed.
PredictProtein was used to predict the secondary struc-
ture of subunits harbouring the variant amino acids
identified among the patients [33]. Fisher’s exact two-
tailed test was used to compare haplogroup frequencies,
mutation frequencies and m.16189 T>C genotype
frequencies. Phylogenetic networks of mtDNA sequences
were based on the median algorithm [34].
Findings
Frequency of mtDNA haplogroups
Haplogroup V was three times more common in
patients with maternally inherited diabetes than in the
population controls (p = 0.0066 for difference, Table 1).
Subhaplogroup V8, defined by m.13350A>G and
m.14016G>A, was found at a frequency of 7.7 % among
the patients and 2.6 % among the controls (p = 0.13 for
difference), whereas the frequency of subhaplogroup
V1a was 3.1 % in patients with diabetes and 6.2 % in the
controls (p = 0.53 for difference) (Figure 1). Interest-
ingly, we discovered one patient belonging to hap-
logroup R1a, which is rare in the Finnish population.
MtDNA variation in patients with maternally inherited
diabetes mellitus
A total of 209 coding region variants (Figure 2) and 83
D-loop variants (Figure 3) were found among patients
with diabetes. Two of the variants were novel including
the synonymous m.11266C>T transition in MTND4
and the nonsynonymous m.13762T>G transversion in
MTND5 leading to p.Ser476Ala. Seven nonsynonymous
variants were predicted to be possibly or probably
damaging by PolyPhen-2 analysis (Table 2).
Three previously reported pathogenic nonsynonymous

mutations were found, including m.4659G>A in MTND2
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creating p.Ala64Thr in patient 19 [35], m.6480G>A
MTCO1 creating p.Val193Ile in patient 17 [36] and
m.6489C>A in MTCO1 creating p.Leu196Ile in pa-
tients 59, 60 and 61 [37]. The m.4659G>A mutation
has been reported to contribute to Parkinson’s disease,
m.6480G>A has been linked to prostate cancer and
m.6489C>A to epilepsia partialis continua. However,
all three variants were predicted to be benign in
PolyPhen-2 analysis.
MtDNA variants in tRNA encoding genes
We discovered 13 substitutions in genes encoding
tRNAs among the patients (Figure 2). The variants were
most abundant in MTTT encoding tRNAThr, where four
polymorphisms were found including m.15904C>T
associated with haplogroup V, m.15907A>G associated
with subhaplogroup U2, m.15924A>G that occurs in
several haplogroups [38] and m.15928G>A associated
with haplogroup T. Heteroplasmic m.593T>C was
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Figure 2 Phylogenetic network based on the coding sequence of mtDNA from 64 patients with matrilineal diabetes. Inside the nodes,
cases identified by numbers. Fast evolving sites m.303, m.311 and m.16519 were not included in the network. Outgroup, an African sequence
[GenBank:AF346980]; CRS, the revised Cambridge Reference Sequence [GenBank:NC_012920]. Superscripts indicate transversions, novel variants
and inserted or deleted nucleotides: i = insertion, D = deletion, @= back mutation, * = heteroplasmic mutation. D9bp, deletion spanning between
the positions m.8281 and m.8289. Nonsynonymous substitutions are shown in red font, the tRNA variants in blue font. Underlined
nonsynonymous variants were deemed to be possibly or probably damaging in PolyPhen-2 analysis.
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found in MTTF encoding tRNAPhe in patient 49. Two
mutations with previously reported disease associations
were discovered in MTTC encoding tRNACys. Patient 29
belonging to subhaplogroup H1b harboured m.5780G>A
that has been found in a patient with sensorineural hear-
ing impairment [39] and patient 57 belonging to sub-
haplogroup R1a harboured m.5823A>G that has been
found in a patient with motor neuron disease and tem-
poral lobe epilepsy [40]. The remaining six substitutions
in genes encoding tRNAs included m.7547T>C in
MTTD, m.10034T>C and m.10044A>G in MTTG,
m.10463T>C in MTTR, m.12308A>G in MTTL2 and
m.14687A>G in MTTE.

m.16189T>C polymorphism in matrilineal diabetes
mellitus patients
The frequency of m.16189T>C or the sequence of the
cytosine tract surrounding this nucleotide did not differ
between patients with diabetes and the controls (Table 3).
Interestingly, phylogenetic analysis of the sequences har-
bouring m.16189T>C revealed four patients but no
population controls belonging to subhaplogroup H1b
(p = 0.0038 for difference; Figure 4). We then searched
for similar sequences among the 1865 complete and
839 coding region mtDNA sequences deposited in the
mtDB database and found 30 sequences that harboured
m.16189T>C and m.3010G>A. Only three of them
[GenBank:AY195775, GenBank:AY738975, GenBank:
AY738982] belonged to subhaplogroup H1b, while the
remaining sequences belonged to subhaplogroup H1f
or to haplogroup J or D.

Discussion
Haplogroup V, more specifically subhaplogroup V8, was
more common among patients with maternally inherited
diabetes than among population controls in Northern
Finland. Interestingly, haplogroup V has recently been
reported to increase the risk of renal failure in patients
with type 2 diabetes and haplogroup cluster HV has
been associated with retinopathy in these patients [8].
Unfortunately, no data on diabetes complications was
available for our patients.
Haplogroup V is common amongst the Saami people

of Northern Scandinavia and North-Western Russia.
About 40 % of the Finnish Saami belongs to haplogroup
V [22,35,36]. Certain mtDNA haplotypes considered to
be Saami specific are found in the Finnish population
suggesting a genetic admixture, which appears to be
more pronounced in northern Finland. For example, the
frequency of haplogroup V is 3 % in northern Finland,
but only 1 % in Central Finland [22]. In the present
study, patients and controls were ascertained from the
same geographic area in order to minimise the bias
caused by patients and controls originating from differ-
ent populations.
One patient with diabetes belonged to haplogroup

R1a, which is uncommon in Finland. In Europe, it
occurs in the Kurdish population, Russia, Poland and
the Caucasus area [37]. Our patient also harboured
m.5823A>G in MTTC encoding tRNACys. The
m.5823A>G variant has previously been reported in a
haplogroup R1 sequence originating from India [37] and
as a pathogenic mutation in a Caucasian patient with
motor neuron disease and temporal lobe epilepsy. Un-
fortunately, no information about the haplogroup of this
patient is available [38]. Our patient with diabetes and
with m.5823A>G had reported first-degree relatives
with diabetes, dementia, hearing loss or tremor.
The m.5823A>G mutation is located in the amino

acid acceptor stem of tRNACys and alters a noncon-
served base. The mutation was homoplasmic both in
our patient and in the two previous cases. In the amino
acid acceptor stem of tRNACys three polymorphisms and
no pathogenic mutations have been found. In general,
mutations in the tRNA acceptor stem affect the stability
of the tRNA molecule and several of such mutations
have been reported to cause mitochondrial disease
phenotypes [39,40]. The nonconserved nature of the
mutated nucleotide and the homoplasmic state suggests
that m.5823A>G is a polymorphism associated with
haplogroup R rather than a disease-causing mutation.
We discovered the homoplasmic m.5780 G>A. A mu-

tation in MTTC in a patient with first- and second de-
gree relatives with diabetes and a first-degree relative
with dementia. The same mutation, but in a heteroplas-
mic state has previously been found in a Finnish patient
with sensorineural hearing impairment [41]. Both pa-
tients belonged to subhaplogroup H1b. The frequency of
this subhaplogroup was 3.1 % in the present patients,
but subhaplogroup H1b was absent in the 192 controls.
In MTTCC loop of the tRNA, five polymorphisms and
six mutations with disease associations have been
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Figure 3 Phylogenetic network based on the mtDNA D-loop sequences from 64 patients with matrilineal diabetes. The fast evolving site
m.16519 and the variants in the C-tract between the positions m.303-315 were not included in the network.The fast evolving site m.16519 and
the variants in the C-tract between the positions m.303-315 were not included in the network. Outgroup, an African sequence [GenBank:
AF346980]; CRS, the revised Cambridge Reference Sequence [GenBank:NC_012920]. Unless marked otherwise, the polymorphic variants are
transitions. Superscripts indicate transversions, inserted or deleted nucleotides and novel variants: i = insertion, D = deletion, @= back mutation.
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reported. Four of the mutations are associated with sen-
sorineural hearing impairment or deafness, one with
progressive dystonia and one with mitochondrial en-
cephalopathy [31]. The nucleotide in position m.5780
codes for an invariant conserved cytosine located in the
TCys molecule. The present patient with diabetes and
the previous patient with sensorineural hearing impair-
ment shared identical mtDNA coding region sequences
with the variants m.5780 G>A and m.8410 C>T sug-
gesting that m.5780 G>A is a rare polymorphism in
subhaplogroup H1b.
PolyPhen-2 analysis of the nonsynonymous mtDNA

variants suggested seven possibly or probably damaging
mutations (Table 2). The variants m.13948 C>T,
m.14198 G>A, m.12613 G>A and m.14180 T>C had
the highest probabilities predicting that these mutations
are damaging. The m.13948 C>T variant in MTND5
leading to p.Pro538Ser had a probability of 99.5 %, which
makes it most probably a deleterious missense mutation.
We discovered two novel mtDNA variants. One was

synonymous m.11266 C>T and the other was non-
synonymous m.13762 T>C in MTND5 leading to
p.Ser476Ala. PolyPhen-2 analysis predicted that
m.13762 T>C is possibly damaging, although the site is
not particularly conserved (Table 2). PredictProtein ana-
lysis predicted that this amino acid is located in a loop
structure. These analyses suggested that m.13762 T>C
is probably a benign variant.
Three mutations with previously reported disease

associations were found in our patients but not in the
controls. The three mutations included m.4659 G>A
Table 2 Possibly or probably damaging nonsynonymous mtD

Variant Gene Protein change

m.13762 T>G MTND5 p.Ser476Ala

m.9316 T>C MTCO3 p.Phe37Ser

m.9903 T>C MTATP6 p.Phe233Leu

m.14180 T>C MTND6 p.Tyr165Cys

m.12613 G>A MTND5 p.Ala93Thr

m.14198 G>A MTND6 p.Thr159Met

m.13948 C> T MTND5 p.Pro538Ser
1 Probability indicates the probability of the variant being damaging as estimated b
probabilities >90 % are classified as probably damaging.
2 Number of sequences harbouring the variant among 1865 complete mtDNA sequ
DM, diabetes mellitus; DEM, dementia; HL, hearing loss; T, tremor.
leading to p.Ala64Thr [42], m.6480 G>A leading to
p.Val193Ile [43] and m.6489 C>A leading to p.Leu196Ile
[44]. These mutations were classified as benign in
PolyPhen-2 analysis. Three sequences harbouring
m.4659 G>A were detected in the mtDB database.
These sequences belonged to haplogroups J, D and L, re-
spectively, while our patient belonged to subhaplogroup
H2 indicating that m.4659 G>A has arisen in multiple
haplogroups. PolyPhen-2 analysis and phylogenetic com-
parison suggested that m.4659 G>A is a homoplasic
polymorphism. The m.6480 G>A variant was detected
in the mtDB database in six samples belonging to hap-
logroups I, T2b, HV, L2, L3 and R31. Our patient with
m.6480 G>A belonged to haplogroup H. These findings
suggest that m.6480 G>A is a homoplasic polymorph-
ism. Three of our patients with diabetes and five se-
quences in the mtDB database harboured m.6489 C>A.
All eight sequences belonged to subhaplogroup T2 con-
firming that m.6489 C>A is a polymorphism associated
with this subhaplogroup [45].
We did not find differences in the frequency of

m.16189 T>C between patients and controls, or in the
variation of the polycytosine tract surrounding this pos-
ition (Table 4). The m.16189 T>C variant has been
linked to type 2 diabetes in Asians [19,20] and biochem-
ical studies have revealed that the increased length of
the cytosine tract is associated with a lower mtDNA
copy number [14]. Furthermore, m.16189 T>C has
been associated with reduced ponderal index at birth
and reduced birth weight, but not with diabetes status
[46,47].
NA variants predicted by PolyPhen-2

Probability (%)1 mtDB hits2 (N) Family history

50.2 - DM, DEM, HL

74.7 1 DM

75.6 1 DM, T

90.5 18 DM, HL DEM

97.2 4 DM

98.4 2 DM

99.4 2 DM, DEM, T

y PolyPhen-2. Probabilities >50 % are classified as possibly damaging and

ences and 839 coding region sequences at http://www.mtdb.igp.uu.se/

http://www.mtdb.igp.uu.se/
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Figure 4 Phylogenetic network of mtDNA harbouring m.16189 T>C. Red nodes, patients with matrilineal diabetes (N = 19); white nodes,
population controls (N = 37). Cases are numbered 24–62, controls numbered as previously published [3]. The fast evolving site m.16519 and the
variants in the C-tract between the positions m.303-315 were not included in the network. Outgroup, an African sequence [GenBank:AF346980];
CRS, the revised Cambridge Reference Sequence [GenBank:NC_012920]. Unless marked otherwise, mtDNA variants are transitions. Superscripts
indicate transversions, inserted or deleted nucleotides: i = insertion, D = deletion, @= back mutation. D9bp, deletion spanning between the
positions m.8281 and m.8289.
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Phylogenetic analysis of case and control mtDNA
sequences containing m.16189 T>C revealed four
patients but no controls belonging to subhaplogroup
H1b (Figure 4). Subhaplogroup H1 is defined by
m.3010 G>A [48]. Subhaplogroups H1b and H1f both
harbour m.3010 G>A and m.16189 T>C, but H1f har-
bours additional polymorphisms at positions m.4452,
m.7309, m.9066, and m.16093. The combination of
m.3010 G>A and m.16189 T>C is also present in the
Asian subhaplogroup D4b [28]. Interestingly, an associ-
ation between type 2 diabetes and m.16189 T>C has
been found in Asians [19,20] and subhaplogroup D4b
has been linked with a significantly increased risk for
type 2 diabetes in Korean men [49]. These findings sug-
gest that m.3010 G>A and m.16189 T>C occurring in
subhaplogroup H1b and in subhaplogroup D4b contrib-
ute to the risk of diabetes, but the same variants occur-
ring in subhaplogroup H1f do not have such an effect.
Our statistical analysis is limited by the small sample
size and, furthermore, the results must be regarded as
population-spesific. More samples are needed to better
understand the link between maternally inherited dia-
betes and the suggested mildly deleterious mtDNA var-
iants and haplogroups.

Conclusions
We determined 64 complete mtDNA sequences of
Finnish patients with matrilineal diabetes and discovered
Table 3 Number of cytosines in the m.16179–m.16195
region in matrilineal diabetes patients and controls

Cytosines DM Controls

(N) Sequence (N) (%) (N) (%)

5* CAAAACCCCCTCCCCAT 45 70.3 292 72.4

7 CAAAACCTCCCCCCCAT 0 0 4 0.9

8 CAAAACCCCCCCCTCAT 5 7.6 27 6.6

10 CAAAACCCCCCCCCCAT 11 16.9 59 14.6

10 CAAACCCCCCCCCCAT 0 0 3 0.7

11 CAAACCCCCCCCCCCAT 2 3 15 3.7

11 CAAAACCCCCCCCCCCAT 1 1.5 0 0

12 CAACCCCCCCCCCCCAT 0 0 3 0.7

* The wild-type mtDNA, revised Cambridge Reference Sequence [GenBank:
NC_012920] contains 5 consecutive cytosines followed by a thymine and 4
additional cytosines in position m.16184-16193. DM, patients with matrilineal
diabetes mellitus.
an excess of haplogroup V. Seven possibly or probably
damaging nonsynonymous mtDNA variants were found.
We also discovered four patients belonging to sub-
haplogroup H1b, which harbours m.16189 T>C and
m.3010 G>A. The same combination exists in sub-
haplogroup D4b, which has previously been associated
with type 2 diabetes in Korean men. The m.16189 T>C
and m.3010 G>A occuring together without H1f var-
iants create an infavourable combination of mtDNA
variants and could predispose to matrilineal diabetes.
We conclude that evolutionary recent nonsynonymous
mtDNA variants and rare population-specific haplotypes
constitute genetic risk factors for maternally inherited
diabetes.
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