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Abstract

algorithm is presented.

with a manually determined dataset.

of 63.3% and a negative predictive value of 94.2%

other stain combinations and tumour types.

Background: The use of digital imaging and algorithm-assisted identification of regions of interest is
revolutionizing the practice of anatomic pathology. Currently automated methods for extracting the tumour
regions in basal cell carcinomas are lacking. In this manuscript a colour-deconvolution based tumour extraction

Findings: Haematoxylin and eosin stained basal cell carcinoma histology slides were digitized and analyzed using
the open source image analysis program Imagel. The pixels belonging to tumours were identified by the
algorithm, and the performance of the algorithm was evaluated by comparing the pixels identified as malignant

The algorithm achieved superior results with the nodular tumour subtype. Pre-processing using colour
deconvolution resulted in a slight decrease in sensitivity, but a significant increase in specificity. The overall
sensitivity and specificity of the algorithm was 91.0% and 86.4% respectively, resulting in a positive predictive value

Conclusions: The proposed image analysis algorithm demonstrates the feasibility of automatically extracting
tumour regions from digitized basal cell carcinoma histology slides. The proposed algorithm may be adaptable to

Background

The interpretation of digital histology images by pathol-
ogists (so called ‘tele-pathology’) is revolutionizing the
practice of anatomic pathology [1,2]. A natural exten-
sion of this use of digital images in histology interpreta-
tion is the addition of digital analysis tools to aid in
diagnosis or the completion of time-consuming tasks. A
prime example of the success of this approach is the uti-
lization of algorithm-assisted identification of abnormal
cells in cytology preparations [3].

In terms of histology, a number of studies have
recently looked at image classification algorithms. One
recent use of automated image analysis and processing
has been as a part of algorithms used to classify breast
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cancer tissue. Using a supervised learning method, Petu-
shi et al. developed an algorithm capable of classifying
breast cancer carcinomas based on histological tissue
micro-texture and spatial position [4]. Using the com-
mercial software packages Matlab, and LNKnet, the
algorithm classified the micro-tissue types as nuclear,
extra-cellular, or adipose. The algorithm further classi-
fied the nucleus into three separate types, each repre-
senting a different nuclear morphology. Similarly, an
algorithm developed by Karacali and T6zeren was used
to classify breast tissue images based upon tissue texture
and spatial distribution [5]. This algorithm was used to
classify the tissue images based on the quantity of chro-
matin and collagen, in addition to a measure of the tis-
sue’s spatial heterogeneity. Another breast cancer image
analysis algorithm was developed by Hall et al. [6]. This
algorithm was developed to assess human epidermal
growth factor receptor 2 (HER2) expression in breast
cancer tissue. The team used the open source image
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processing software Image] to separate the diaminoben-
zidine and haematoxylin stains from each other. This
was followed by the extraction of the membrane regions
from the digitized breast cancer slides. The HER2 score
generated using this method was based upon the
extracted membrane pixels. Other automated image
analyses include oral epithelial dysplasia and squamous
cell carcinoma [7], and melanoma [8-11]. However, the
application of these pattern recognition algorithms
involves complex programming and may serve to assist
only in narrow scopes of diagnostic practice.

The aim of our study is to define the operational char-
acteristics (sensitivity and specificity) of a simple colour-
based segmentation algorithm for quantifying basal cell
carcinoma from photomicrographs. The basis of this
algorithm is the observation from anatomic pathology
practice that cells with dense chromatin (including
many cancer cells) have a different colour spectrum
than surrounding normal tissues. Our hypothesis was
that the operational characteristics would differ among
common basal cell carcinoma subtypes (superficial, nod-
ular and infiltrative) with the subtypes exhibiting more
compact chromatin (superficial and nodular) demon-
strating better operational characteristics than the infil-
trative subtypes.

Basal cell carcinoma was chosen to examine this ques-
tion as this cancer presents with a well-defined range of
histological subtypes and occurs in association with
non-neoplastic chromatin-rich cells present in the epi-
dermis and dermis. Finally, because basal cell carcino-
mas are the most common malignant neoplasm in
humans [12], access to clinical material was not a limit-
ing factor. Although basal cell carcinomas are highly
curable by surgical intervention, their sheer number
(over one million new cases per year in the United
States [13]) translates into a heavy burden for health
care systems. The only previous study that explored the
automated analysis of BCCs was performed by Gutierez
et al. [14]. By modelling the visual recognition process,
the algorithm used a supervised learning approach to
identify regions of interest (ROI). The ROIs identified
by the algorithm were found to coincide highly with
those selected manually by a pathologist.

Image analysis overview

In order to extract and analyse features of a digital
image, it is first necessary to identify and separate the
ROIs. Image segmentation involves dividing an image
into regions of similar characteristics based on features
such as brightness or morphology [15]. Ideally the fore-
ground of the resulting image contains the desired
regions. A simple technique for image segmentation
involves segmenting grayscale images based on their
pixel intensities [16]. By filtering out pixels above or
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below a certain threshold value, grayscale images may
be segmented into regions of similar brightness. The
resulting segmentation can be stored as a new image
containing only the black and white values that corre-
spond to the foreground/background regions. More
complex thresholding methods are also available. These
include the use of multiple thresholds, as well as adap-
tive thresholding, where the local threshold values are
determined according to their neighbouring regions
[17]. Further segmentation methods also exist, including
seed growing, and boundary based techniques [18].
Prior to feature extraction and analysis, further proces-
sing may be required once the image has been segmen-
ted. For example, disconnected regions of images may
be filled in using morphological operations. This may be
accomplished by performing a binary closing operation.
Another common operation is noise reduction, fre-
quently achieved by applying mean or median filters
[19].

The slides evaluated with this algorithm were stained
with haematoxylin and eosin (H&E). Although H&E
stains are easily distinguished visually by colour, digitally
separating regions containing stain co-localisation is dif-
ficult. Separation via colour deconvolution provides a
means of separating stains with overlapping regions.
The basis of this method is to separate the component
stains by performing an ortho-normal transformation of
the image’s RGB information [20]. Several recent studies
have used stain separation by colour deconvolution
prior to analyzing cancerous tissue [21-23].

Methods

The algorithm used to extract the BCC tumours con-
sisted of four steps: pre-processing, segmentation, mor-
phological operations, and feature extraction (see Figure
1). A copy of the algorithm used is available as a macro
in Additional file 1. The macro also provides the specific
parameters used in the algorithm. During pre-proces-
sing, colour deconvolution was used to separate the hae-
matoxylin stain from each of the images. The resulting
image was then segmented based upon pixel intensities.
Subsequently, morphological operations were performed
to connect the discontinuous regions that resulted from
the segmentation process. Finally, area-based particle
analysis was used to extract and quantify the ROIs from
the image. This analysis allowed the performance of the
algorithm to be evaluated.

Case selection/image acquisition

Cases were selected from a convenience sample of basal
cell carcinomas reported by the senior author as part of
his clinical sign-out practice. Digital images of 30 H&E
stained BCC histology slides were obtained using a com-
mercial Aperio CS-O slide scanner at 80 x magnification.
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Figure 1 Overview of the tumour extraction algorithm.

Sections containing BCC were stored using the JPEG for-
mat (1072 x 902 pixels).

Software

The open source image processing and analysis program
Image] was used in this study. First released in 1997 by
software developer Wayne Rastban, Image]J is an open
source program based on the National Institutes of
Health’s NIH Image. Current features consist of numer-
ous image processing and analysis operations, including
image segmentation and extraction, noise reduction,
image transformations, and particle analysis. These fea-
tures are further expanded upon by an active user base.
There are currently hundreds of downloadable user plu-
gins and macros [24]. Additional benefits of this soft-
ware include the support of numerous file formats, and
platform independence [25]. As a result of being plat-
form independent, Image]J is capable of running on mul-
tiple operating systems, including MS Windows, Apple
OS, and Linux. The algorithm described below was used
in conjunction with version 1.44 of Image]. With the
exception of the colour deconvolution plugin, all of the
processes performed are available using the default Ima-
ge] commands.

Digital image processing and analysis

Colour deconvolution

The colour deconvolution plugin by Gabriel Landini
[26] was used to separate the BCC images into separate
images containing the haematoxylin and eosin stain
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components using the built-in H&E vector. The plugin
creates an additional image corresponding to the com-
plement of the haematoxylin and eosin stains. Because
the chromatin-rich basophilic (nuclear) regions were of
interest, only the 8-bit Haematoxylin images were
retained. The colour deconvolution process was fol-
lowed by contrast enhancement in order to facilitate the
segmentation process.

Segmentation

Thresholding was then used to segment the pixels dar-
ker than the threshold value. The Image] isodata algo-
rithm [27] was used along with the automatic
thresholding option. This algorithm This process
resulted in a binary file containing only black and white
pixels, where the black pixels corresponded to the
regions above the threshold value.

Morphological operations

Due to the lack of intense haematoxylin staining in the
non-basaloid cell regions, the binary images produced
during the segmentation process frequently contained
holes and disconnected regions in the tumour nests. As
a result, morphological operations were performed on
the segmented images. Hole filling was achieved using a
combination of median filtering and binary closing
operations. Initially a median filter was applied to the
bright outliers using the Image] Remove Outliers com-
mand. This was followed by a binary closing operation,
and median filtering of the dark outliers.

Feature extraction

As other baseloid and chromatin-rich features (e.g. sin-
gle lymphocytes, hematoxylin stain precipitates, micro-
calcifications, etc.) could produce false positive results,
we attempted to remove these features through a filter-
ing step using the Image] particle analyzer feature. A
minimum particle size of 750 pixels was used in order
to exclude non-tumour nest particles. The extracted
tumour was then obtained by removing all particles out-
side of the ROIs.

Analysis

The evaluation of a given algorithm is inherently subjec-
tive and biased towards the author’s preferences, as
standard methods for evaluating the algorithm do not
exist [28]. For the purpose of this analysis a manual eva-
luation of tumor nests was used as the ground truth
dataset.

To accomplish this, one of us (CN) manually evalu-
ated printed photomicrographs of the 30 basal cell carci-
noma images: 10 each of nodular, infiltrative and
superficial subtypes. For each of these images, all
tumour nests present were manually delineated with a
black marker, scanned and analyzed with a manual
approach. The main challenges in evaluating an extrac-
tion algorithm are determining the true dataset (ground
truth), and the appropriate performance metrics [29,30].



Lesack and Naugler BMC Research Notes 2012, 5:35
http://www.biomedcentral.com/1756-0500/5/35

A further challenge is the lack of standardized image
extraction algorithms, seeing that most existing algo-
rithms are optimized for a specific task. This causes a
further problem for evaluating the algorithm, and the
colour deconvolution approach in particular. In order to
assess the effect of using colour deconvolution, the same
set of histology slides were analyzed using grayscale
based thresholding in place of the colour deconvolution
step. In the comparison algorithm, the image was first
converted to an 8-bit grayscale image, and the colour
deconvolution step was omitted. The remaining steps
were carried out as described by the proposed
algorithm.

The binary images of the algorithmically extracted
tumour nests were subtracted from the binary images
obtained by manual evaluation. The resulting image,
containing the areas of the image not extracted by the
algorithm, was considered to contain only false negative
(EN) pixels. Similarly, the binary images of the manually
extracted tumours were subtracted from the algorithmi-
cally extracted ones. The resulting image quantified the
pixels considered to be false positives (FP). In addition,
the number of true pixels (TP) was calculated by sub-
tracting the total number of pixels identified by the
algorithm from those deemed to be false positives.
Finally, the number of true negative (TN) pixels was cal-
culated by subtracting the total number of pixels in the
image by the number of pixels identified by the algo-
rithm, and by the number of false negatives.

Four different metrics were calculated to assess the
performance of the algorithm. The sensitivity of the test
evaluates the capability of the algorithm to identify pix-
els belonging to the tumour nests. The sensitivity was
calculated as follows:

- 100%

Sensitivity(SE) = TP + N
+

The specificity of the test evaluates the capability of
the algorithm to correctly identify the pixels not belong-
ing to the tumour nests. The specificity was calculated
as follows:

. TN
Sensitivity (SP) = IN+EP | 100%

The proportion of the histology slide occupied by the
BCC may vary significantly between different slides. In
general, superficial tumours occupy a smaller fraction of
the slide compared to the nodular and infiltrative sub-
types. For this reason the positive and negative predic-
tive values were calculated. The positive predictive value
(PPV) of the test indicates the probability that a posi-
tively identified pixel belongs to an actual tumour. As a
result, images containing a lower tumour to non-tumour
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ratio result in lower PPVs. Conversely, the negative pre-
dictive value (NPV) is an indication of the probability of
a negatively identified pixel actually belonging to non-
tumour tissue. The PPV and NPV were calculated as
follows:

Positive Predictive Value (PPV) = - 100%

TP + FP

Negative Predictive Value (NPV) = - 100%

TN + EN

Results
The metrics shown in Table 1 quantify the performance
of the algorithm. Overall, the mean sensitivity and speci-
ficity of the 30 test images was 91.0% and 86.4% respec-
tively. Furthermore, the mean PPV and NPV of the test
images was 63.3% and 94.2%. The algorithm perfor-
mance depended significantly on the tumour subtype.
We hypothesized that the algorithm would perform best
on the superficial and nodular basal cell carcinoma sub-
types, as these appear to be subjectively more “baseloid”
than the infiltrative subtype. This was only partly sup-
ported by the data. The superficial subtype had the
highest sensitivity (98.1%), but also the lowest specificity
(82.5%). The lower specificity value resulted primarily
from the extraction of the normal epidermal basal cell
layer, in addition to the tumour nests. Consequently,
this also resulted in a lower mean PPV (34.3%) for the
superficial subtype. The infiltrative subtype had the low-
est sensitivity (78.9%). On the other hand, the algorithm
was more specific for the infiltrative subtype (87.2%).
The algorithm performed the best with the Nodular
subtype. The corresponding sensitivities and specificities
were 95.8% and 89.3%, resulting in mean PPV and NPV
values of 84.5% and 95.0%. A sample extraction of each
subtype is shown in Figure 2.

Surprisingly, when compared to grayscale based seg-
mentation (Table 2), the use of colour deconvolution
resulted in a slightly lower mean sensitivity (91.0% with

Table 1 Evaluation of the tumour extraction algorithm in
BCC histology slides

Tumours n  Sensitivity (%) Specificity (%) PPV (%) NPV (%)
Infiltrative 10 7895 87.25 71.15 87.88
Superficial 10 98.13 82.50 3434 99.74
Nodular 10 95.82 89.31 84.53 94.96
All 30 9097 86.35 63.34 94.19

PPV: Positive Predictive Value = [True Positive Pixels/(True Positive Pixels +
False Positive Pixels)] - 100%; NPV: Negative Predictive Value = [True Negative
Pixels/(True Negative Pixels + False Negative Pixels)] - 100%; Sensitivity = [True
Positive Pixels/(True Positive Pixels + False Negative Pixels)] - 100%; Specificity
= [True Negative Pixels/(True negative Pixels + False Positive Pixels)] - 100%
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Figure 2 Application of the tumour extraction algorithm to different basal cell carcinoma subtypes. The algorithm was applied basal cell
carcinoma images of the infiltrative (A), nodular (D), and superficial (G) subtypes. The white pixels correspond to the regions identified by the
algorithm as tumour nests (B, E, H). The performance of the algorithm was evaluated by identifying pixels containing true positive pixels (white),
false negative pixels (blue), and false positive pixels (red) in each image (C, F, ).

colour deconvolution; 91.6% with grayscale based seg-
mentation), but increased the mean specificity (86.4%
with colour deconvolution; 74.6% with grayscale based
segmentation). The use of colour deconvolution prior to

segmentation resulted in an improved PPV (63.3% with
colour deconvolution; 52.6% with grayscale based seg-
mentation) and NPV (94.2% with colour deconvolution;
93.9% with grayscale based segmentation). Sample

Table 2 Evaluation of the tumour extraction algorithm without colour deconvolution in BCC histology slides

Tumours Sensitivity (%) Specificity (%) PPV (%) NPV (%)
Infiltrative 81.25 68.72 5357 87.87
Superficial 98.46 74.20 2734 99.78
Nodular 95.11 80.92 76.90 93.92
All 9161 7461 52.60 93.86

PPV: Positive Predictive Value = [True Positive Pixels/(True Positive Pixels + False Positive Pixels)] - 100%; NPV: Negative Predictive Value = [True Negative Pixels/
(True Negative Pixels + False Negative Pixels)] - 100%; Sensitivity = [True Positive Pixels/(True Positive Pixels + False Negative Pixels)] - 100%; Specificity = [True

Negative Pixels/(True negative Pixels + False Positive Pixels)] - 100%
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extractions with and without colour deconvolution are
shown in Figure 3.

Discussion

This study evaluated a method for digitally extracting
the tumour regions from basal cell carcinoma histo-
pathology slides. A combination of colour deconvolution
and intensity based thresholding was used with the goal
of extracting the tumour nests from the image. The
algorithm was evaluated with 3 separate subtypes of
basal cell carcinomas: infiltrative, nodular, and superfi-
cial. For comparison, the algorithm was repeated using
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only grayscale based segmentation in place of the colour
deconvolution step.

The performance of the algorithm varied significantly
between the subtypes. The best results were achieved
with the nodular subtype, while inferior performance
was achieved with the superficial and infiltrative sub-
types. One problem encountered with the superficial
and infiltrative subtypes was the identification of false
positives. This occurred in large part due to the pre-
sence of the normal epidermal basal layer in some of
the slides which showed similar spectral characteristics
to areas of BCC. Because the algorithm uses intensity

Figure 3 Application of the tumour extraction algorithm with and without colour deconvolution. The algorithm was applied basal cell
carcinoma images of the infiltrative (A), nodular (D), and superficial (G) subtypes. The performance of the algorithm was evaluated by identifying
pixels containing true positive pixels (white), false negative pixels (blue), and false positive pixels (red) in the images pre-processed using colour
deconvolution (B, E, H), and the images without colour deconvolution (C, F, I).
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based segmentation following the colour deconvolution
step, regions with similar intensities to the tumour cells
were also extracted. Lowering the threshold value would
decrease the number of false positives, but would also
come at the expense of lower sensitivity. Additional
false positives occurred due to the presence of other
basaloid elements such as skin adnexae, inflammation,
and eccrine glands. A further source of false positives
occurred due to blue dye used to mark the deep surgical
resection margin of some specimens. Example false posi-
tives are displayed in Figure 4.

Another challenge for digital feature extraction algo-
rithms is false negatives. In this study, false negatives
resulted mainly from two causes: poor contrast between
the tumour nest and its surrounding tissue, as well as
inadequate hole filling. Although contrast enhancement
was performed, some of the images still contained poor
contrast between the tumour and its adjacent tissue.
This may have been due in part to variation in the
intensities of H&E staining of the original sections. One
possible approach to this would be to explore the deli-
neation of the tumour based on morphological features,
rather than pixel intensities. One possibility would be to
use the active contours method in order to evolve a
curve representing the boundaries from the ROI [31].
Recently, this method has been explored in order to seg-
ment histology images [32-34]. One potential drawback
when using active contours is that some implementa-
tions require the user to manually specify an initial
boundary. Another possible approach would be to use
region growing based segmentation [35]. This method
works by adding pixels that surround, and are similar to
a given seed pixel. The process is then repeated for each
added pixel [18]. Similar to the active contours method,
many region growing algorithms are not fully auto-
mated, as the given implementation may require the
user’s input to specify the seed for the algorithm.
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However, as we stated in the introduction, our intent
was to examine the performance of a simple chromatin-
rich segmentation algorithm and so these more complex
approaches were not evaluated in the current study.

Similar to the false positives, the rate of false negatives
could be decreased by changing the threshold value.
Conversely, lower false negative rates could be achieved
at the expense of specificity. Example false negatives are
shown in Figure 5.

Superior results were achieved by using a colour decon-
volution prior to segmentation. Although using colour
deconvolution resulted in a slightly lower mean sensitivity,
a significant improvement in specificity was gained. This
resulted in superior PPV and NPV values. In general, the
colour deconvolution decreased the incidence of false
positives. This was likely a result of the stain separation
achieved using the colour deconvolution plugin.

Overall, however, the sensitivities of the colour-based
approach were not better than a grayscale-based thresh-
olding approach.

Conclusions

This study reports the operational characteristics of a
simple colour-based segmentation algorithm using the
open-source image analysis program Image]J. As pre-
dicted, the algorithm generally performed best with
examples of the nodular basal cell carcinoma subtype.
The specificity was unexpectedly low for the superficial
basal cell carcinoma examples due to false positive clas-
sification of pixels associated with skin adnexae and the
normal basal cell carcinoma of the epidermis. However,
overall, the finding that the sensitivity of this colour-
based approach was not better than a grayscale thresh-
olding approach to the same images suggests that simple
colour-based algorithms without the inclusion of more
sophisticated texture feature segmentation may have
limited utility.

Figure 4 False positive regions identified by the tumour extraction algorithm. The basal cell layer, skin adnexa, and inflammation present
in the original image (A) were identified as cancerous in the binary file (B), and the resulting extraction (C).

Inflammation
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pixels identified by the algorithm (C).

Figure 5 False negative regions identified by the tumour extraction algorithm. The ground truth dataset was determined manually (A).
The white pixels correspond to the regions identified by the algorithm as tumour nests (B). The blue regions correspond to the false negative

Availability of supporting data
The Image] algorithm we used is available as an Addi-
tional file to this manuscript.

Additional material

[ Additional file 1: ImageJ Algorithm. ]
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