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Abstract

based on BLASTX against the NR database.

Background: Classification is difficult for shotgun metagenomics data from environments such as soils, where the
diversity of sequences is high and where reference sequences from close relatives may not exist. Approaches based
on sequence-similarity scores must deal with the confounding effects that inheritance and functional pressures
exert on the relation between scores and phylogenetic distance, while approaches based on sequence alignment
and tree-building are typically limited to a small fraction of gene families. We describe an approach based on
finding one or more exact matches between a read and a precomputed set of peptide 10-mers.

Results: At even the largest phylogenetic distances, thousands of 10-mer peptide exact matches can be found
between pairs of bacterial genomes. Genes that share one or more peptide 10-mers typically have high reciprocal
BLAST scores. Among a set of 403 representative bacterial genomes, some 20 million 10-mer peptides were found
to be shared. We assign each of these peptides as a signature of a particular node in a phylogenetic reference tree
based on the RNA polymerase genes. We classify the phylogeny of a genomic fragment (e.g., read) at the most
specific node on the reference tree that is consistent with the phylogeny of observed signature peptides it
contains. Using both synthetic data from four newly-sequenced soil-bacterium genomes and ten real soil
metagenomics data sets, we demonstrate a sensitivity and specificity comparable to that of the MEGAN
metagenomics analysis package using BLASTX against the NR database. Phylogenetic and functional similarity
metrics applied to real metagenomics data indicates a signal-to-noise ratio of approximately 400 for distinguishing
among environments. Our method assigns ~6.6 Gbp/hr on a single CPU, compared with 25 kbp/hr for methods

Conclusions: Classification by exact matching against a precomputed list of signature peptides provides
comparable results to existing techniques for reads longer than about 300 bp and does not degrade severely with
shorter reads. Orders of magnitude faster than existing methods, the approach is suitable now for inclusion in
analysis pipelines and appears to be extensible in several different directions.

Background

As of this writing, DNA sequencers routinely produce
more than 2 Gbp of data per hour, with the high-quality
region of reads as short as 75 bp. Analytical methods
that can keep up with this flow rate are urgently needed.
Analysis is especially difficult for shotgun metagenomics
data from environments such as soil where the diversity
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of sequences is high [1,2] and where sequences from
close relatives are not to be found in reference databases
(e.g. [3]). Insight into microbial communities and their
dynamics would be desirable for a number of import-
ant applications in medicine, agriculture, ecology, and
industry [4].

The first step in most sequence analyses is finding a
suitable answer to the question, “How close is this se-
quence to something seen before?”. The notion of close-
ness implied in the question is a phylogenetic distance,
which is most properly answered by a phylogenetic
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algorithm. Unfortunately the computational expense of
such algorithms, coupled with the intractability of mak-
ing the relevant alignments and trees for genes that may
have large numbers of paralogs, make this approach in-
feasible at present except for a small fraction of gene
families. The most common alternative is to find a proxy
for phylogenetic distance in a more-readily-computed
sequence similarity score as produced by the program
BLAST [5] and its relatives. Yet the relationship between
sequence similarity and phylogenetic distance is skewed
by rates of acceptance of mutations that can range over
many orders of magnitude over a length scale of tens of
bases due to differences in functional constraints experi-
enced by different parts of the gene [6]. Proteins from
families of broadly-conserved genes and those parts of
enzymes near an active site have significantly higher se-
quence identity than average [7]. The nature of current
shotgun metagenomics data, with short reads from
randomly-selected regions of genes, tends to accentuate
the problem of transforming similarity scores to some-
thing resembling phylogenetic distances through
injecting a noise term that can be difficult to remove by
post-processing (e.g., [8-10]). This problem exists even
for close matches, but is exacerbated as similarity
declines since the underlying sequence alignment may
also be called into question.

A variety of methods to classify shotgun metagenomic
reads have been proposed, primarily based on protein
families or gene clusters. These include partial assembly
and hidden-Markov-model searches [11] of protein fam-
ilies [12,13]; finding the closest neighbors in either nu-
cleotide or protein space using a variety of similarity
scores [8,14]; and finding shared sub-strings of variable
length via suffix trees [15]. Other alternatives to similar-
ity scores include short-seed [16] and sub-HMM [17]
methods. Phylogenetic analysis is typically the next step
after classification, using Least Common Ancestor [8],
nearest-neighbor [14,15], or hierarchical scoring [9] to
assign phylogeny to the sequences identified in the clas-
sification step. Because of the numerous pitfalls in
designing a computer algorithm to define functionally
meaningful protein families [18], many classification
pipelines require continual curation of protein families,
which involves multiple-sequence alignment and the
computation of a phylogenetic tree for each family, in
the hope of identifying orthologous genes [12,19]. Such
efforts are labor-intensive and limited by the paucity of
biochemical validation of gene function. Another solu-
tion is to restrict analysis to a small number of well-
behaved ‘housekeeping’ genes [20-22]. However, using
this approach results in discarding the vast majority of
sequence reads.

Exact amino acid k-mer matches with k in the range
3-6 have been employed to speed identification of
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homologous regions of genes for the purposes of con-
structing a multiple sequence alignment [23,24]. In this
work, we are considering higher values of k, in order to
identify homologous genes by comparing entire bacterial
genomes. We begin by comparing the genomes of two
divergent bacteria and observing that random matches
dominate for k < 8, while for k = 10, an average of only
about one random match is expected between the gen-
omes. Such 10-mer matches are evidently long enough
to specifically discriminate a portion of a conserved gene
from other genes or organisms, while sufficiently short
as to be present in both reference genomes and soil
metagenomics data sets.

Results

We begin by justifying our choice of k = 10 as the match
length long enough to be specific, yet short enough to
be prevalent in environmental samples. Building on this
observation, we identify all 20 million strings of amino
acids of length 10 which are shared by at least two refer-
ence genomes from distinct genera of bacteria. We de-
note these as orthogenomic signature peptides, and they
serve as the foundation for the rest of our analysis. We
then develop one algorithm to establish the correct
phylogenetic placement of these signature peptides, an-
other to classify metagenomic reads matched by signa-
ture peptides, and a final algorithm to functionally
profile reads through use of an externally defined data-
base. The use of fixed-length strings allows us to exploit
standard index-based information retrieval techniques
developed for web search engines.

Choice of k = 10
Figure 1 shows the run-length distribution of shared
amino acid k-mers between Escherichia coli and various
sets of bacterial genomes, for k in the range of 3 to 500.
It is dominated by random matches for k < 8, and domi-
nated by gene matches for k > 8. The solid red line is an
exponential fit to the run-length distribution of amino
acid matches between E. coli and Bacillus subtilis,
reflecting a 16-fold reduction in the number of matches
for each increase by one in the run-length, k. The num-
ber of random matches quickly drops with increasing k,
reaching 1.8 per pair of bacterial genomes for k = 10,
with a ratio of observed matches of length 10 to the
expected number of random matches of 250. Since the
rest of our analysis will treat matches longer than 10 as
multiple overlapping 10-mers, and the histogram in
Figure 1 counts matches only once, at the full extent of
their match length, the appropriate ratio of non-random
to random matches is not 250, but 1000.

In addition to the small-k behavior of random
matches, Figure 1 shows the large-k behavior for E. coli
scanned against three sets of bacteria. As the
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Figure 1 Run-length distributions. Symbols show the number of
matches between £. coli and several sets of genomes as a function
of the length of the exact amino-acid match. Each match is counted
only once, at the value of its maximal extension. For E. coli
compared to B. subtilis (red crosses), the distribution is extended
down to k = 3, and an exponential fit is shown as a solid red line.
For k > 9, run-length distributions are shown for £. coli compared to
a set of 22 other representative bacteria (green x), a set of

35 gamma proteobacteria (blue asterisks), and 17 representative
enteric bacteria (cyan boxes).

phylogenetic distances decrease, both the number and
length of amino acid matches increase greatly. The
frequency distribution of peptide match lengths is a
power-law distribution, indicative of the broad diversity
of functional pressures on proteins rather than the
20-fold falloff one naively expects from random matches
when the match-length is increased by one amino acid.
Interestingly, our choice of 10 residues is only slightly
longer than the average length of epitopes recognized by
the mammalian immune system.

Signature occurrence

Figure 2 shows the k-mer matches of length 10 or
greater along the first 50 kilobases of the E. coli genome
to 45 other genomes at varying phylogenetic distance
from E. coli. The comparison of E. coli to other enteric
bacteria, at the bottom of Figure 2, shows that each of
the first 47 genes contains a match to at least one other
genome, and most genes contain matches throughout.
From the comparison to representative genomes across
the bacterial kingdom, at the top of Figure 2, most of
the matches are shown to occur to such recognizable
genes as heat shock protein 70, carbamyl phosphate
synthetase, and a tRNA synthetase. Inspection of the
multiple sequence alignments made of matched genes
(data not shown), and annotation of the genes matched
by the 10-mers shows that the identified sequence hom-
ologies extend beyond the match. The agreement in
annotated function is generally evident, although often
somewhat vague.
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A vertical slice through Figure 2, then, will approxi-
mate the presence / absence phylogenetic profile of each
gene across enteric bacteria (bottom portion) and repre-
sentatives of the bacterial kingdom (top portion). Three
types of matches can be distinguished by the 10-mer-
based phylogenetic profile. Highly conserved proteins,
such as HSP-70 or the tRNA synthetase, have 10-mer
matches between E. coli and each of the other genomes
presented in Figure 2. In this case, multiple sequence
alignments can be made across the bacterial kingdom,
and the 10-mers, when examined across all of the pair-
wise bacterial genomic comparisons, serve as an enu-
meration of all of the different ways each conserved
region can be assembled. Quite frequently in this case,
some 10-mer signatures are indicative of function across
the entire bacterial kingdom and will be useful in identi-
fying divergent organisms in metagenomic samples,
while other 10-mer signatures identify the gene in only a
particular phylogenetic subset of bacteria, and will be
useful in creating a phylogenetic profile of a metage-
nomic sample.

Other genes, such as the crotonobetaine operon [25]
and predicted redox and antiporter genes in Figure 2,
are present in only a few of the representative genomes,
but have matches throughout the operon. These genes
are likely to have a related function because they are
colocalized on the genome and are only present in a spe-
cific subset of genomes; the particular nature of the
phylogenetic profile could be used to associate genes
with one another or with metabolic strategies, such as
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Figure 2 Distribution of matches of length 10 or longer across
the first 50 kilobases of the E. coli genome. Starts of individual
genes are indicated by the blue crosses along the bottom, and
matches to a particular genome are indicated in a line above the
crosses in a particular color. The first line above the crosses indicates
the coding direction of the proteins: either forward (red) or reverse
(green). Names of several genes and operons are indicated at the
bottom. Black squares in the bottom portion and cyan triangles in
the top portion indicate matches to other portions of the E. coli
genome (paralogs) are shown for completeness, but not discussed
further in this work. The matching signature peptides and
annotations of matched genes are enumerated for B. subtilis (black
squares in the top panel) in Additional file 1, and discussed below.
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ammonia oxidizing or pathogenicity, of the bacteria in
which they are found.

Finally, matches are observed in Figure 2 where only a
portion of a gene is conserved, but that portion is con-
served across much of the bacterial kingdom. One of the
most common instances of this case is the ATP binding
domain of transporter proteins, where this energy trans-
duction domain is highly conserved, while the region de-
termining substrate specificity is highly variable. Such
domains frequently involve matches to numerous par-
alogous genes.

Signature specificity

The specificity of 10-mer matches is assessed in Figure 3,
which shows the distribution of protein BLAST scores
(~log(E-value)) for various sets of E. coli genes scored
against genes from the B. subtilis genome matched in
various ways. For BLAST E-values more significant than
~10-', all algorithms return a similar set of 210 highly-
conserved genes, including the RNA polymerase, several
tRNA synthases, nitrate reductase, and DNA gyrase. For
matches with less significant E-values, not only do the
reciprocal BLAST best-hits return far more matches
with lower BLAST scores than do the signature-matched
genes, but the signatures also return multiple matches
for each E. coli gene. Examination of the annotation of
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Figure 3 Distribution of Protein BLAST scores (—log(E-value))
for various sets of E. coli genes scored against genes in the

B. subtilis genome. At the top, in cyan, is the distribution of the
best-match BLAST scores for each of the 4145 genes in the E. coli
genome. 1461 of these are also reciprocal best hits of the B. subtilis
genome against £ coli; the distribution of these scores is shown in
dark blue. 746 distinct pairs of E. coli —B. subtilis genes are connected
by one or more 10-mer matches; the distribution of BLAST scores for
these matches is shown in red. In magenta is shown the distribution
of BLAST scores for the 388 genes that are both reciprocal BLAST
best hits and connected by one or more 10-mers. At the bottom of
the plot, in green, is the distribution for genes with matching
10-mers and the word ‘transporter’ in either gene’s annotation. The
peak at the right of the plot indicates the 37 pairs of genes given an
E-value of '0.0" by BLAST.
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these matches reveals that paralogs such as transporters
and transcription factors comprise the bulk of the low-
specificity matches. These are the genes most likely to
differ in inventory across genomes, and thus complicate
both functional and phylogenetic assignments [26].

To understand the least-significant matches better, we
examined the ten pairs of genes with a 10-mer match
between E. coli and B. subtilis having a BLAST E-value
less significant than 10-'°. Examination of the respective
annotation reveals only two pairs of genes with incon-
sistent annotation. One of these pairs also matches at
four of the six amino acid positions immediately before
the signature match, and is labeled ‘hypothetical protein,
perhaps implying the decay of a duplicated gene. Five of
the matches are to ATP-ase domains of transporter pro-
teins. Together, these five genes match 618 genes in B.
subtilis with a BLAST E-value better than 0.001, while
only 28 genes in B. subtilis are matched by these five
genes with an amino acid 10-mer. In only one case were
we unable to discern why the match occurred.

Typical bacterial proteomes contain about 10° amino
acids, so the likelihood of finding a 10-mer match by
searching one genome against another, purely by chance
is ~ 20-'° x (10°)2, or approximately 10%. The non-
uniform occurrence of amino acids increases this esti-
mate somewhat; i.e. using the frequency of each amino
acid in E. coli, the most likely 10-mer is AAAAAA-
AAAA, which would occur randomly at one part in
6x10'", while the 10-mer at the core of the RNA poly-
merase, GGQRFGEMEV would occur randomly at twice
the rate estimated from a uniform distribution of amino
acid usage, i.e. two parts in 10", Empirically, from the
exponential fit in Figure 1, a fall-off of 16-fold in the
number of matches for each increase by one occurs, as k
increases from 3 to 7, is observed, producing a
randomly-occurring rate of 10-'%. As a further test of
the specificity of 10-mer matches, we identified only
four 10-mer matches between the five incorrect read-
ing frames of each E. coli gene and the complete
proteome of B. subtilis, with one 10-mer, STSSSSSSSS,
occurring twice.

Four independent calculations (the estimate above, the
estimate from Figure 1, examination of gene pairs with
the worst BLAST scores, and searching incorrect reading
frames against a proteome) all suggest that random
matches account for approximately one match out of
the one thousand ‘correct’ matches when comparing two
divergent bacterial proteomes such as E. coli to B. subti-
lis. We chose two well-annotated and reasonably diver-
gent genomes to assess the specificity of a single 10-mer
amino acid match between genomes, but we expect the
likelihood of random matches to depend on the quantity
of protein sequence compared, not the source. When
analyzing metagenomic reads with signature peptides,
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this specificity will be unaffected by fragment length, all
the way down to the 30 nucleotides necessary to encode
10 contiguous amino acids. BLAST specificity, however,
will suffer greatly at short read lengths, due to the global
nature of the similarity score, as well as the absence of
accurately called start sites within short metagenomic
reads, as characterized in [27].

In supporting online Additional file 1, we enumerate
all 1,030 matches of 10 or more contiguous amino acids
shared between E. coli and B. subtilis. We invite the
reader to use 10-mer, or even 6-mer, match strings from
this dataset to search the database of complete genomes,
comparing annotations and aligning the sequences of
the genes returned. Sequence homologies of the genes
extend well beyond the single 10-mer matches, and the
agreement of annotations between matching genes is
readily apparent. In many cases, such as the RNA poly-
merase or pyruvate kinase, the annotated function is
identical in the two organisms. In the case of ABC trans-
porters or response regulators, however, some signatures
are generally indicative of the protein family, while
others distinguish particular types of ABC transporters
or response regulators.

The high prevalence of ATP-ase domains of trans-
porter proteins in the set of gene pairs with matching
strings is striking when scanning Additional file 1, and
we confirm their importance by including in Figure 3
the BLAST scores for 10-mer matches between E. coli
and B. subtilis with the word ‘transporter’ in the annota-
tion of either gene. 87 transporter genes in E. coli share
one or more 10-mers with B. subtilis genes, producing a
total of 252 distinct pairs of matched genes, or one third
of the total number of matched pairs. Together with
other paralogous genes, they make up the half of the
matches shown in Figure 3 with an E-value less signifi-
cant that 10-'%,

The list of signature peptides generated by identifying
all 10-mers matching across genera in our dataset of 403
reference genomes numbers 20 million, reflecting 5% of
the total number of 10-mers in those genomes. This list
hits an average of 77% of the genes in our one-per-genus
reference set, with considerable variability in coverage
among genomes. Figure 4 shows the profile of the frac-
tion of genes containing a signature peptide as a func-
tion of the phylogenetic placement of each organism.
Divergent organisms, such as Gemmatimonas auran-
tiaca or Elusimicrobium minutum, contain signatures to
most of their genes (74% and 62%, respectively), while
many of the proteobacteria contain signatures in more
than 90% of their genes. The firmicutes and planctomy-
cetes are relatively under-representated in this respect.
While the ATP-ase domains of transporters dominate
the peptide signatures at large phylogenetic distances,
most genes and gene families are eventually identified in
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Figure 4 Fraction of genes containing at least one signature
peptide in genomes across the 403 bacterial reference
genomes. As described in the text, signature peptides are exact
matches of length 10 between genomes of different bacterial
genera. The genomes are ordered along the x-axis according to
their position in our bacterial phylogeny provided as Additional file
2 and Additional file 3; the ordering corresponds to that in Figure 5,
starting at the 9:00 position and proceeding counter-clockwise
around the radial tree.

genomic comparisons as the phylogenetic distance
decreases, consistent with the behavior shown in
Figure 2.

Phylogenetic placement of signature peptides
In order to provide an accurate reference phylogeny for
the signature-placement and read-placement algorithms,
we chose to compute a tree from the concatenated
sequences of the beta and beta prime subunits of the
RNA polymerase of each reference bacterium. Use of
this gene for phylogenetic inference is considered super-
ior than other markers because of its high information
content and its central location in the regulatory path-
ways involving the bacterial transcription apparatus [28].
Considerable effort was expended to align the sequences
accurately, to mask regions that would be inappropriate
to include in the tree-building model, and to use a
maximum-likelihood tree building method in conjunc-
tion with an evolutionary model based on functional
pressure. Details are provided in the Methods section. A
simplified version of the tree is presented in Figure 5
with a more detailed version provided in pdf and phy-
loxml formats in Additional file 2 and Additional file 3.
Although more detailed than the NCBI taxonomy, gen-
eral agreement was observed between their classification
and ours. The behavior of a number of deeply branching
roots, visible in Figure 5, shows differences when com-
pared to other treatments, but we expect these differ-
ences to have minimal impact on the results presented.
In our analysis, we treat a match of length 50 as 41
overlapping 10-mer signature peptides. Consequently,
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Figure 5 Bacterial phylogeny, and the distribution of 20 million
orthogenomic signatures across this phylogeny. (a) Our
computed RNA polymerase based phylogeny, showing the deep
branches between bacterial phyla, and (b) The distribution of
signature peptides across the nodes of this phylogeny, with
branch-length information removed. The symbol area at each node
represents the fraction of total number of signatures assigned to the
node. The root node, with 11% of the signatures, is shown in red.
Most phyla are labeled and can be used together with the complete
tree (Additional file 2, Additional file 3) to identify which taxa are
covered by each node.
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we need to create algorithms to analyze the frequent
case of multiple signature matches being present in a
single metagenomic read. We chose to first assign signa-
ture peptides individually to nodes on the phylogenetic
tree. The goal of the signature-placement algorithm is to
provide the appropriate degree of phylogenetic specifi-
city for each signature. We use the conservative least
common ancestor [11] algorithm for this purpose. Each
signature is placed on the tree at the most specific node
covering all leaves at which the signature was observed.
Details and a diagram of this process are shown in the
Methods section. Figure 5b shows the distribution of the
20 million signature peptides across the nodes of
the bacterial phylogeny. The most populated node is at
the root, with 11% of the signatures. However, an ample
supply of signatures is found throughout the tree. In
addition, more highly populated nodes are often found
in well-delineated clusters, typically corresponding to
well-known phylogenetic divisions (e.g., cyanobacteria or
enteric bacteria).

Phylogenetic assignment can be confounded by the
ubiquitous processes of gene duplication [29], domain
swapping [30], and horizontal gene transfer [31,32], as
well as the differing gene inventories among bacteria
[26,33]. By choosing a signature-by-signature placement
on the phylogenetic tree, we are eliminating the ortholog
identification steps from the phylogenetic profiling
process. In essence, our approach replaces the question
of gene sequence similarity with "Where have the signa-
ture peptides been seen before?'. Since some signatures
appear in dozens of reference genomes, our decision to
place the signature peptide far enough towards the root
of the tree to cover every observed instance of the signa-
ture can be seen as a conservative choice. A specific
phylogenetic assignment will only be made if no conflict-
ing evidence is available, so observed phylogenetic sig-
nals reflect the self-consistency of our assumptions.

Another consequence of our signature placement algo-
rithm is that both functionally constrained signature
peptides from divergent bacteria and 10-mers derived
from horizontally transferred genes are placed near the
root of the tree. It seems likely to us that further analysis
of the phylogenetic density of signatures could algorith-
mically distinguish between these two cases, but we do
not attempt that here.

Phylogenetic classification of metagenomic reads

We classify the phylogeny of metagenomic reads with a
second algorithm, called the greatest common descend-
ent algorithm, which is described in detail in the Meth-
ods section, below. For reads with one or more
signatures assigned to a particular node, the read is
assigned to that node. For reads matching signatures
from nodes in a path from the root towards a particular
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leaf, the read is assigned to the most specific node (clos-
est to the leaf) along that path. If that path branches, the
read is assigned to the branch-point. For the case of
overlapping signatures, this algorithm is typically equiva-
lent to using the full-length match as a signature pep-
tide. Like the signature-placement algorithm, it is
designed to be conservative, in the sense that phylogen-
etic assignments will be as specific as possible, provided
that no conflicting evidence is present.

Although we have shown that individual signatures are
both specific and plentiful, the sensitivity and specificity
of the overall read-placement process is difficult to esti-
mate analytically. We first verified that two organisms in
our reference database, Elusimicrobium minutum and E.
coli, are correctly classified (the first at the root, the sec-
ond along a path from the root to the most specific node
covering E. coli) by treating raw sequencing data as a
metagenomics data set (data not shown). It is a neces-
sary consequence of our signature-placement and read-
placement algorithms that every assigned read will be
placed along the path from that organism to the root of
the tree.

To assess the maximal likely extent of database repre-
sentation bias on sensitivity for novel organisms, we
generated synthetic metagenomic reads from the fin-
ished sequence of two bacterial genomes from genera
not in our database, representing two extreme cases.
Shigella flexneri is phylogenetically close to both E. coli
and Salmonella enterica, while the other genome, Deha-
logenimonas lykanthroporepellens, is from a deeply-
branched genus in the phylum chloroflexi, with no close
neighbors among our set of reference genomes. In both
cases, overall phylogenetic assignment of the synthetic
reads was appropriate, with S. flexneri reads assigned
overwhelmingly (85%) to the most specific node cover-
ing E. coli and S. enterica, while D. lykanthroporepellens
reads were for the most part assigned to the root node;
only a small, but significant, portion was assigned to the
chloroflexi phylum. For D. lykanthroporepellens, the sen-
sitivity was proportional to read length, as expected for a
local signature-based method far from saturation. For S.
flexneri, the sensitivity approaches the limit given by the
fraction of the genome coding for proteins. The ratio of
sensitivities, a measure of the database bias, was a factor
of five for 75-bp reads and decreased to less than a fac-
tor of two for 600-bp reads. It should be possible to de-
crease this database bias by utilizing a subset of the
signatures and incorporating more reference genomes.

In order to make as direct of a comparison as possible
with other methods on novel bacterial genomes of rele-
vance to soil microbiology, we created synthetic data of
fixed read lengths 75, 150, 300, and 600 base pairs and
no synthetic errors added, from each of four draft gen-
omes (99% complete) cultured from a desert soil
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consortium. These data were analyzed with our signa-
ture peptides, with MEGAN analysis of against both the
NR and NT databases downloaded on 14 February,
2012, and a protein BLASTX against a database of the
same 403 bacterial genomes used to generate our 20
million signature peptides. These comparisons are meant
to be a representative sample of the types of analysis
presently in common use. A tar file with all sixteen syn-
thetic data sets is provided as Additional file 4.

Signature-peptide-based profiles of the four genomes
are shown in different colors in Figures 6a for 300 base
pair reads and Figure 6b for 75 base pair reads, with the
same layout as in Figures 5 and 7. The correct place-
ment of each genome, according to placement in an
RNA polymerase beta—beta prime based tree, is indi-
cated in each panel, with both Herbaspirillum seropedi-
cae and Bacillus mojavensis representing novel species
of genera already represented in our reference database,
Microbacterium  trichotecenolyticum  representing a
genus in Genbank, but not our reference database, and
Bosea thiooxidans representing genus novel to both NR
and the signature peptides. For the two organisms with
nearer neighbors in our reference database, most of the
population is assigned to only one or two specific nodes,
with almost nothing either on a wrong branch or overly-
specific. For the two more-novel organisms, Bosia and
Microbacterium, the populated nodes are more spread
out, although still predominantly between the root and
the correct placement on the tree. Only minor differ-
ences are found when 75-base-pair reads are searched,
compared to 300-base-pair reads.

The sensitivity of the signature peptides and four
BLAST-based methods are compared in Figures 6c¢, with
the phylum of assignment indicated on the respective
bar graphs. All methods correctly classified the phylum
of all of the reads, but a significant fraction of the reads
did sometimes get assigned to the root. That the signa-
ture peptides would have a slightly lower sensitivity than
the two BLASTX methods might be anticipated from
the fact that only approximately 80% of the genes con-
tain signature peptides, while BLASTX utilizes all genes.
It should be noted that the two attributes that cause a
gene to not contain a signature peptide, low conserva-
tion of sequence or frequent absence from neighboring
genomes, both make the gene less suitable as a phylo-
genetic marker. The signature peptides also show a min-
imal database bias (all four genomes show the same
amplitude) and read-length bias (a linear increase in sen-
sitivity with read-length, reflecting the greater chance of
observing a signature peptide). Relatively little difference
in overall sensitivity was observed when comparing pro-
tein BLAST against the 403 reference genomes and NR.
The nucleotide BLAST showed both the greatest data-
base bias and lowest sensitivity for three of the genomes.
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Figure 6 Sensitivity and specificity of simulated reads from draft soil genomes. Simulated reads were constructed using MetaSim [63] from
genomes of four soil bacteria. Herbaspirillum seropedicae and Bacillus mojavensis are species from genera represented in the BLAST databases NR
and NT as well as our signature peptide database (SP). Microbacterium trichotecenolytcum represents a genus found in NR and NT but not in SP.
Bosea thiooxidans is from a genus not found in any of the three. (a) Specificity of placement of simulated reads on the reference tree using our
method, for 300-bp reads. (b) Placement of 75-bp reads using our method. (c) Comparison of sensitivity of our method (top right panel) and
MEGAN [8] using three different BLAST databases: BLASTX and NR (top left) BLASTN and NT (bottom left), and BLASTX against the same genomes
used in SP (bottom right). Simulated read lengths of 75, 150, 300, and 600 bp were used for each of the four genomes in each of the four panels.
Colors indicate specificity of placement, with gold indicating non-specific placement near the root node in each case. (d) Details of specificity of
placement of simulated 150-bp Herbaspirillium seropediacae for the 4 methods: our method (black), MEGAN4 with BLASTX against NR (red),
MEGAN4 with BLASTN against NT (green), and MEGAN4 with BLASTX against the same genomes used in SP (cyan).

Both protein-BLAST based methods were unable to
place any 75-base-pair reads. BLAST was run with an E-
value cutoff of 10-'° and MEGAN employed a default
cutoff of 35 for the bitscore and a requirement of 10%
similarity to the top hit for consideration of alternative
matches.

We investigated the specificity of read assignment in
some detail in Figure 6d, which shows read-placements
on an RNA polymerase-based tree for Herbaspirillum
seropedicae synthetic data, totaled across the four read-
lengths. The biggest difference was the expected propen-
sity of BLAST and MEGAN to place over-specifically, as
has been noted before [9,10]. Somewhat more breadth in
phylogenetic placement results from using a BLAST
database of only the 403 representative bacterial gen-
omes, instead of NR.

Throughput

Both absolute and relative run-times of sequence ana-
lysis methods will depend, sometimes substantially, on
the type of data being analyzed and the hardware and
operating system being used for analysis. Nevertheless,
we feel it is important to benchmark the various meth-
ods on a particular data set, made available as Additional
file 4, on a single CPU of a desktop machine (Intel i7
processor, 6 GB RAM, under $1000). For the BLAST-
based method, timings were based on the first 100 reads
of each file in Additional file 4, and resulted in an aver-
age throughput of 25 kbp/hr for BLASTX against NR,
402 kbp/hr for BLASTX against 403 genomes, and 1.1
Mbp/hr for BLASTN against NT. The observed rates
were roughly linear in the total number of base pairs
analyzed when the length of the synthetic reads was var-
ied, and varied somewhat across the different organisms.
Even on the full 1000 reads of the files in Additional file
4, the signature peptide method was fast enough to be
difficult to time, so we simply re-ran all of the FACE site
metagenomics data (1.7 Gbp) in under 15 minutes of
clock time on a single processor. Specifically, analysis
required 30 seconds to read the signature peptide data
file and subsequently processed the reads at a rate of 6.6
Gbp/hr. Roughly 60% of the analysis time was spent

translating the reads and 40% in matching to the signa-
ture peptides.

Effect of changing k

It is illustrative to examine what happens when we re-
peat our overall process for the case of k-mers of length
k = 8, where from Figure 1, we estimate the number of
random matches has increased by a factor of 256, while
the number of matches indicating homologous genes
has risen by only a factor of five. For k-mers of length
k = 8, matches were found throughout the bacterial phyl-
ogeny, indicating both specific and root-level signatures.
When challenged with metagenomic data, however,
more than 90% of the reads were assigned to the root of
the tree, because of conflicting specific assignments
(data not shown). Evidently, the signatures assigned near
the leaves of the tree either lacked the generality neces-
sary to be found in metagenomic sequences not in the
reference database, or were placed there because of in-
sufficient sampling of the reference. In either case, it
serves as an important check on our process, that in
cases of ambiguity, metagenomic reads will be placed at
or near the root of the tree. For similar reasons, mistakes
or ambiguities in the assumed phylogeny of bacterial
organisms will also result in a greater fraction of metage-
nomic reads being assigned to the root of the tree, and
not in a false precision in read assignment.

The case of larger k will decrease the number of sig-
natures, as evident from the run-length distributions
shown in Figure 1. While the specificity of individual
signatures will be higher, this specificity is largely cap-
tured with the read-placement algorithm and overlap-
ping 10-mers. An estimate of the decreased sensitivity
that would occur by increasing k to 11 can be made by
observing that only 17% of the soil metagenomic reads
contained only one signature and by assuming that the
majority of multi-signature reads occur from overlap-
ping signatures. This relatively small decrease in sensi-
tivity is in keeping with the relatively small decrease in
the run-length near distributions near k = 11 in Figure 1,
compared to the 16-fold decrease in the number of ran-
dom matches.



Berendzen et al. BVIC Research Notes 2012, 5:460
http://www.biomedcentral.com/1756-0500/5/460

a

100% - 185k
90% - -
80% - E
70% - -
60% - -
50% -

40%

20% - -
10% -

0%

163k 108k 128k

147k

258k

156k 293k 156k 132k

= Unclassified bacteria  — B

Multi-phyla

Cyanobacteria

relative
frequency

A e ™!
A ge?

le

significance
® >e?

[ ] <e®

5

+ Actinomycetales

Figure 7 Phylogenetic breakdown of metagenomic soil
samples. (a) shows the high level classification of the
metagenomics reads across 10 samples (two field replicates from
each of 5 different sites), with the number of reads identified as
bacterial at the top of each column, in thousands. (b) shows the
differences between samples from the MDE and NCD sites across all
402 interior nodes of the phylogenetic tree. Symbol size indicates
number of recruited reads, while color indicates the statistical
significance of the change (p-values: blue ~0.05, red ~0.000001).
Triangles which point up indicates a higher prevalence in MDE;
triangles with point down indicates a higher prevalence in NCD.
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Phylogenetic profiles of soil metagenomes

In order to characterize how our method performs on
real data, we examined shotgun metagenomic reads
from ten soil samples collected at five different eco-
logical sites from the Free-Air Carbon Enrichment
(FACE) project [34]. The two samples from each site
function as field replicates in our analysis. The sites in-
clude an estuary in Maryland (MDE), a deciduous forest
in North Carolina (NCD), a bacterial-mat crust (CRUST)
in the Nevada desert, together with a nearby patch soil
partially shaded by creosote bush (Larrea tridentata)
(CREQO), and a tree plantation in Tennessee (ORNL).
Details of the sample collection, preparation, and se-
quencing are provided in the Methods section. We ana-
lyzed a total of 4.4 million metagenomic reads with an
average length of 383 base pairs. On average, 39% of the
reads across the ten samples could be identified as bac-
terial and placed on the tree by our method.

Figure 7a provides the rolled-up phylum-level view of
the composition the ten samples, with the number
of reads identified in each sample indicated at the top of
each bar (in thousands). As expected, differences be-
tween field replicates at the same location are much
smaller than differences among different locations. It is
also noticeable that the two desert sites (CRUST, CREO)
and the two forest sites (NCD, ORNL) appear to have
distinctive phylogenetic profiles. Approximately half of
the reads containing a signature peptide are not classi-
fied to a single phylum. Part of this is due to highly-
divergent bacteria.

Figure 7b compares the phylogenetic profile of the
MDE sample to the NCD sample across all 403 internal
nodes of our reference tree, using the same layout and
branch colors as Figure 5b. Several well-known families
of soil bacteria are observed, and these are indicated by
labels in Figure 7b. A common pattern in Figure 7b is to
find reads assigned along a line from the root to one
particular genus-level node at the tip of a branch. This
type of pattern could arise either from the presence of a
broad range of species of varying phylogenetic distance
to a reference genome (and thus a varying mix of highly
conserved and more specific signature peptides) or be-
cause of an intrinsic blurriness to our analysis method.
The plausibility of the data shown in Figure 7 is sup-
ported by the significant and repeatable information
content, and the existence of similar phylogenetic pro-
files for comparable ecosystems. In addition, the syn-
thetic data, representing single genomes, in Figure 6
shows a relatively sharp placement on the tree, while
close inspection of Figure 7 shows numerous instances
of nearby nodes changing in opposite directions.

83% of the matching reads contained more than one
signature, allowing for another self-consistency check.
Of the reads with multiple signatures, 19% contained
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signatures assigned to a single node of the tree while
55% had signatures assigned to multiple nodes from a
single hierarchy (monophyletic). The remaining 26% of
the multiple-signature reads were associated with mul-
tiple nodes from multiple hierarchies (polyphyletic), in-
dicating conflicting phylogenetic assignments. As
described earlier, such reads were assigned to the most
specific node covering all conflicting assignments, often
near the root of the tree.

We provide a table of the number of reads recruited
to each of the nodes of the phylogenetic tree for each of
the ten samples, Additional file 5. Node numbers pro-
vided in this table correspond to those on the nodes of
the tree provided as Additional file 2 and Additional
file 3. Many additional experimental techniques were
applied to these FACE sites, with results to be published
elsewhere.

Accuracy of phylogenetic read assignments
Although our results in Figure 7 are plausible and pass
several self-consistency checks, we attempt here to as-
sess the accuracy of phylogenetic read assignments.
Table 1 compares selected statistics from our method
for the CREO site versus three established analysis
methods for shotgun metagenomic reads, together with
the results of a 16S rRNA survey performed on similar
samples via saturation PCR followed by Sanger sequen-
cing. While the numerical differences in populations
identified by the different methods varies by a factor of
two or more, in all three phyla shown, the five methods
were typically repeatable in field replicates to within a
few percent, with all methods agreeing upon the sign of
the change in every case. The differences among phylo-
genetic profiles from the four shotgun metagenomic
data analysis methods are as large as the differences
between the various shotgun analyses and the rRNA
survey.

The numerous sources of bias in obtaining phylogen-
etic profiles have been discussed at length [35,36]. While
shotgun metagenomics eliminates biases due to
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particular PCR primers, much work remains to be done
in understanding biases introduced by sample prepar-
ation protocols, the reference database, and the nature
of the reads recruited to the root node before linearity in
phylogenetic profiles can be claimed. Since the shotgun
metagenomics reads in our method were compared indi-
vidually to a reference database for classification pur-
poses, there is no need to correct for depth-of-sampling,
as is typical for richness analysis (see e.g. [35]).

It seems likely to us that differences in the profiles
from the different analysis methods arise from the way
that each method treats ambiguous assignments, such as
the transporter genes discussed in conjunction with
Figure 1. The appropriateness of our choice to recruit to
nodes, rather than to the leaves of the bacterial phyl-
ogeny, is supported by Figure 8, which shows the tree of
reference genomes of a portion of the alpha proteobac-
teria, interspersed with the taxa from a 16S rRNA survey
performed on samples from the CREO and CRUST sites.
The preponderance of reads assigned to the deeply-
branching nodes of this region of the tree, rather than
nodes near the leaves, is well-supported by the 16S data,
because genus-level matches to organisms in our refer-
ence database are not present. The resolution of phylo-
genetic placement is limited by the particular choice of
organisms sequenced and not the phylogenetic reso-
lution of the database of reference genomes, and our
method correctly conveys this fact.

The soil bacterium Rubellimicrobium mesophilum,
which was first isolated in Korean soil [37] appears in
both the CREO and CRUST soil samples, yet is not in
our reference database of completed genomes. We ex-
pect greater precision in phylogenetic classification as
the reference database of completed genomes is
expanded to include more examples of soil bacteria.
Even though one of the environmental microbes identi-
fied in Figure 8 is likely present in some abundance in
both CREO and CRUST, it is quite possible that another
sample, taken only a few centimeters away, would show
a different set of organisms [38].

Table 1 Comparison of methods applied to two metagenomic data sets

This work MG-RAST MEGAN AMPHORA 16S rRNA

Average % reads ID'd as bacteria 46 49 63 03

Average % bacterial ID'd as actinobacteria 36.9 492 426 45.1 284
Difference (CREO2 -1) -26 -36 -35 -2.2 -5
Average % bacterial ID'd as a-proteobacteria 104 20.8 15.1 35.1 294
Difference (CREO2 -1) +0.5 +0.9 +0.7 +1.1 +40
Average % ID'd as cyanobacteria 09 26 16 0.5 40
Difference (CREO2 - 1) —-06 -0.8 -0.9 -0.8 -2

Selected populations and their changes with field replicates from the desert creosote site (CREO1 and CREO2) are shown. An average of 448k unique reads with
an average read length of 375 base pairs was analyzed per sample. Default BLAST E-value cutoffs of 10> for MEGAN, and 10-° for AMPHORA were used. For
MG-RAST (v2) we used a E-value cutoff of 10-'°, tighter than the default, because it resulted in a similar fraction of reads being assigned. Normalization and

definitions of unique reads differ somewhat among methods.
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Figure 8 Phylogeny of rhizobiales CREO and CRUST samples
compared to reference database, using 16S sequences.
Maximum likelihood tree of full-length (black labels, reference
genomes) and half-length 16S ribosomal sequences from Sanger
sequence preparations of samples similar to the CREO (green labels)
and CRUST (red labels) samples. The nine red dots at the nodes of
the tree indicate the nine most populated nodes for the signature
peptide analysis of the four samples represented in the CREO and
CRUST samples, with an area proportional to the number of reads
recruited. Labels to the right of the tree refer to assignments from

the Baysian classifier at the ribosomal database project [53].

Another encouraging aspect of the analysis of the soil
metagenomics data is that our signatures matched
roughly the same proportion of 375 base-pair soil meta-
genomics reads as MG-RAST with an E-value cutoff of
10-'%, and they did so in a manner consistent with the
signature’s appearance in the database of reference gen-
omes. This is in contrast to the behavior of our method
when using k = 8, described above, which indicates that
signature peptides observed across a family of reference
genomes are also valid signatures for identifying family
members residing in the soils and not present in
databases.

Functional profiling

By selecting signature peptides that occur in at least two
genera in our reference database, we have already
selected a sub-set of signatures likely to have relevance
to organisms not in the reference dataset. We therefore
start with our list of 20 million signature peptides and
assign a function to each signature peptide by searching
a database of functionally-annotated genes from across
the bacterial phylogeny. We chose the SEED database
[39-41] as our source of functionally-annotated genes.
Approximately two-thirds of the 20 million orthoge-
nomic signature peptides were thus assigned a functional
category (in this case a SEED subsystem) in addition to
their phylogenetic classification. Some proteins, and
therefore the signature peptides associated with those
proteins, appear in more than one SEED subsystem.
When this occurs, each SEED subsystem is assigned a
fraction of a count such that each read is ascribed equal
weight in assigning functional percentages, as described
in Methods section, below.

In the version of SEED we use, there are 1088 subsys-
tems, which roll up hierarchically into two higher levels.
Functional assignments for six of the 28 highest level
SEED functional classifications are presented in Figure 9.
The most striking aspect of this plot is the cross-sample
consistency of the results among the different locations.
The categories ‘amino acids and derivatives’ and ‘carbo-
hydrates’” are functional processes that must be carried
out by all bacteria, and contain numerous highly con-
served genes; it is reasonable that the relative changes
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Figure 9 Functional profile of metagenomic samples. The
functional assignments across the ten samples are broken down
according to the highest level SEED categories, shown for six of
28 categories.

across the samples average only a few percent. Four of
the categories shown, ‘nitrogen metabolism, ‘photosyn-
thesis; ‘virulence, and ‘respiration; involve specialization
and are carried out in different ways (and sometimes not
at all) across the bacterial kingdom, so the larger differ-
ences seen between locations for these categories are
also reasonable. Nitrogen metabolism is elevated in the

MDE

NCD CREO CRUST ORNL

0954 0.948 0588 0.63 064 0631 0965 0.973

0.947 0.582 0.624 0.634 0.626 0.959 0.968

N C D 0.974 0.597 0.637 0.641 0.629
0.978 0. 0.99¢ 0.635 0.638 0.626 0.987 0.987
c R EO 0967 0.966 0.962 0.984 0.971 0.667 0.648
0974 0.974 0.97 0. 1 0.972 0.704 0.686
L 0.97 0.96! i .895 0.997 [R=lsy) 0.707 4
CRUST 0971 97 0.968 0.69

0.977 H . 0.99 0.995

ORN

g 0.971 0.979 0.975 0.979 kLl

Figure 10 Phylogenetic and functional similarity. The normalized
dot product (correlation) of phylogeny (upper right) and functional
(lower left) profiles across the ten sites, defined by the number of
reads assigned to each of the 402 nodes on the phylogenetic tree,
or the 1088 SEED subsystems. For the phylogeny vectors, the root
node was eliminated before computing the normalized dot product.
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estuary samples and suppressed in the desert crust.
Photosynthesis is elevated 3-fold in the crust and sup-
pressed in the ORNL samples. Virulence and respiration
are both under-represented in the desert. Complete
counts for all SEED categories are provided in Add-
itional file 6.

Ecosystem similarity
Both the phylogenetic profiles (Figure 7) and functional
profiles (Figure 9) of the ten environmental samples are
roll-ups of much larger vectors, with 402 elements for
the phylogeny and 1088 elements for the function. Al-
though many types of similarity metrics could be con-
structed from these profiles, we display simple
normalized dot products in Figure 10, with the diagonal
showing the identity of each sample with itself, the
upper right triangle showing phylogenetic similarity
among sites, and the lower left triangle showing func-
tional similarity among sites. One striking feature evi-
dent in this figure is the repeatability between all five
pairs of field replicates, with dot products of 0.999 for
the phylogenetic profiles and 0.998 for the functional
pressures. If we take one minus the dot product as a dis-
tance metric between sites, we can compute a dynamic
range with this metric of 0.4 / 0.001, or 400, indicating
significant information content can be extracted from
each of the profiles, and that samples that are ‘represen-
tative’ of an ecosystem can be acquired and compared.
Further evidence of our signature peptide-based pro-
file’s ability to highlight similarities and differences be-
tween ecosystems are that the two desert sites and the
two forest sites are more similar to each other than des-
ert is to forest, or to either of the estuary sediments.
Also noteworthy is that the two desert sites are more
similar to each other when compared by the function-
based distance than the phylogeny-based distance.
Construction and interpretation of distance metrics is
complex, and extracting ecologically meaningful insights
from the phylogenetic and functional profiles will re-
quire both more samples and further analysis. Neverthe-
less, it is clear that the signature-peptide-based analysis
can identify both commonalities and differences in both
phylogenetic and functional attributes between ecosys-
tem types.

Functional specificity

Peptide signature analysis appears to work because the
constraints of protein folding and function have suffi-
ciently restricted the solution-space for most genes [7].
The handful of root-level signatures that we have viewed
as 3-dimensional structures are consistent with this idea,
with root-level signatures found lining ligand-binding
pockets or other functionally-constrained sites near the
active sites of enzymes where they interact with small
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Figure 11 Visualizing two root-level signature peptides in the
enzyme RuBisCO. Two root-level signature peptides (green and
blue surfaces) correspond to regions of the protein which cross each
other at an angle to form the bottom of a hydrophobic pocket
where the substrate analog inhibitor 2,2-carboxyarabinitol-1,5-
bisphosphate (spheres) binds. Residues in the signature peptides
interact with the substrate, but also with each other. The former
interactions contribute to substrate specificity, while the latter
contribute to stability. Structure coordinates from PDB entry 1WDD.

molecules (and in some cases with each other, see
Figure 11). Because a typical separation of genera near the
leaves of our tree is ~ 10% amino acid divergence, signa-
tures from nodes close to the leaves of the phylogenetic
tree appear little different from randomly-selected non-
signature fragments, but grow increasingly distinct near
the root, where functional constraints predominate. For
example, the pattern, GGXRxGEME is present in essen-
tially every eukaryotic, archaeal, and bacteria RNA poly-
merase, and nothing else. When all of the 10-mers
that overlap with this pattern are enumerated and placed
on the phylogenetic tree, it is not only possible to clas-
sify divergent organisms, but also to provide insight
into mechanistic differences in how various proteins
function.

To compare the fidelity of functional assignments
made by signature peptides and BLAST, we took the
2200 MDE fragments identified as part of the RNA poly-
merase (alpha, beta, beta-prime, gamma, omega, and
delta subunits) and ran them against NCBI's NR data-
base. Upon reading them into MEGAN for SEED ana-
lysis, approximately half the reads were not assigned to
any SEED subsystem, half to the RNA polymerase sub-
system, and only one read assigned to a different SEED
subsystem (virulence).

Discussion
We have shown how finding fragments of DNA reads
that code for proteins can be reduced to the simple and
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rapid operations of 6-frame translation followed by k-
mer matching to signature peptides. Matching is intrin-
sically simpler than construction of local alignments,
and many implementations of fast matching algorithms
such as hash maps exist. Once the set of matches is
obtained, assignment of phylogeny can be accomplished
by a graph operation (greatest common descendant) that
is fast compared with the translation and match steps.
Any classification scheme that associates sequences with
class can be subsumed by our method and the results
counted; we have demonstrated functional classification
with SEED, but other schemes such as KEGG, GO,
Pfam, or any number of specialized «classification
schemes could have been used as well. Speeds of classifi-
cation are such that a typical desktop computer running
our analysis could easily keep up with the output of a
next-gen DNA sequencer.

The perceived importance and practical difficulties of
assigning phylogeny and function to metagenomic reads
have spurred a significant amount of recent work explor-
ing methods to reduce the size of the database against
which local alignments must be performed as well as
methods to estimate the appropriate specificity with
which to assign a particular metagenomic read. We dis-
cuss here how our method relates to published work in
these areas, explain how we tested specificity and sensi-
tivity, and discuss extensibility of our method.

Speed compared to existing methods

The 250,000-fold speedup we obtain in comparison to
running BLASTX against the NR database results as the
result of three strategies: speeding up local alignment as
much as possible, reducing the size of the reference
database as much as possible, and pre-computing the
phylogenetic relationships as much as possible. The first
two of these strategies have been previously implemen-
ted by other analysis tools in one form or another.

It is possible to speed up homology searches with re-
spect to BLAST by seeding the search with exact
matches that are longer than the BLAST default of 3
residues. BLAT [42] uses 4-residue seeds and reports a
50-fold speedup with respect to BLASTX, while RAP-
Search2 [43] uses 6-residue seeds and reports as 20—90
fold speedup when searching the NR database with little
or no reduction in sensitivity or specificity. Figure 1
shows that the number of seeds that need to be consid-
ered drops by a factor of 5000 when comparing 6-mer
to trimer seeds. It also shows that, depending on phylo-
genetic distance, between 90 and 99% of the matches
identified by 6-mers are noise, in the sense of the term
described in Figure 1. One way of thinking about our
work is that we have extended the seed length from 3
residues to its practical limit of 10 residues, beyond
which sensitivity drops off markedly. At that length the
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seed is the alignment, eliminating the need for further
explicit local alignments. Even when running BLASTX
against a database with the same 403 complete bacterial
genomes we used, and assuming the upper-end 100-fold
speedup described in [43], our method still exhibits a
160-fold higher throughput.

Another strategy for reducing search-space is to differ-
entiate homologous protein matches with the synonym-
ous nucleotides, typically at the third position of codons.
As we observed with the synthetic data shown in
Figure 6, this strategy increases the rate of BLAST search
by approximately fifty, without a great cost in sensitivity.
However, using this strategy does seem to increase the
extent to which the presence of a near-neighbor in the
reference database influences the sensitivity with which
reads are assigned. Because codon usage can be dis-
cerned with relatively short genomic fragments without
searching for amino acid homology, it is possible to do
‘compositional binning’ to provide a phylogenetic clas-
sification in the absence of a gene-homology search
[44-46]. Given the desire of most researchers to exploit
the observed homology of proteins from different organ-
isms in their analysis, and the significant unpredictability
of nucleotide patterns across the phylogenetic tree, it
seems unlikely that these methods can be significant-
ly improved. It is certainly possible to identify ‘signature
oligonucleotides’ in the same manner as we have done
for signature peptides, and one can easily imagine appli-
cations, such as looking for known pathogens, where
nucleotide signatures will be valuable.

Analysis of the synthetic data shown in Figure 6 showed
that the ability of BLASTX to assign the genomic data
from soil bacteria did not degrade much when utilizing the
same database of organisms that we used to generate our
signature list, although throughput increased by approxi-
mately 60-fold. The results of the 16S comparison to com-
pleted genomes in Figure 8 provide a good indication as to
why; the database is not well representative of soil bacteria.
This observation supports our decision to place a mini-
mum phylogenetic distance across which a peptide has to
be observed in order to qualify as a signature peptide.
Similar reasoning was behind efforts to seek out phylogen-
etically divergent bacteria for sequencing, in order to pro-
duce a Genomic Encyclopedia of Bacteria and Archaea
[47]. Although this effort was just getting under way as our
work began, we incorporated the forty genera of bacteria
that were only available from this source into our reference
set of genomes, and these organisms are indicated in Add-
itional file 7.

Search-space can also be restricted by performing the
phylogenetic classification within each protein family
[48] or utilizing only a sub-set of ‘housekeeping genes’
for phylogenetic classification [20]. Neither of these two
methods is particular rapid at identifying the subset of
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genes corresponding to a particular protein family. Be-
cause the signature peptides carry a functional assign-
ment as well as a phylogenetic one, it is possible to
perform a more detailed phylogenetic analysis on, for ex-
ample, only the RNA polymerase genes; we showed that
there were 2200 such fragments in the pair of MDE
samples. Once this down-select is performed, it is pos-
sible to use complex tree-building algorithms, curated
alignments, and assess quality scores of the metage-
nomic reads to obtain a detailed understanding of how
the organisms in the metagenomic sample relate to
those in another sample or the reference database. With
the signature peptides, however, it is also possible to
utilize past performance of particular signatures to
screen for those which provide reliable phylogenetic
assignments.

Sensitivity and specificity
Our strategies of using a length of 10 residues for
matches and using a minimum phylogenetic distance
cutoff, thereby eliminating need for a local alignment
step and reducing the size of the signature list by 95%,
appear to be novel and require demonstration that they
do not adversely impact specificity and sensitivity. Test-
ing for specificity is best done with two divergent and
well-annotated genomes. We chose E. coli and B. subtilis
and the results are provided in Figure 3 and Additional
file 1. Given the practical value of even 5-mer peptides
in rapidly identifying particular genes from thousands of
complete genomes (data not shown), it is perhaps not
surprising that 10-mer exact matches exhibit a great spe-
cificity. A test of the specificity of signature peptides on
metagenomics data showed that they disagreed with
BLASTX on ~350 base pair reads in only one case out
of 2200 for the case of the RNA polymerase proteins.

The question of specificity of phylogenetic placement
is somewhat ill-posed, and arguably depends on the type
of data analyzed and the purpose of the experiment. By
comparing our methods to three other representative
methods in Figure 6, we have demonstrated they are
comparable to one another in their ability to accurately
place reads from a novel organism on an existing phyl-
ogeny. In Figure 10, we propose a different metric for
the specificity of placement of metagenomic reads: How
well can the phylogeny and function count vectors dif-
ferentiate among metagenomes (signal) in comparison
to their repeatability for replicates (noise)? Figure 10
demonstrates a signal-to-noise ratio of 400 for the phyl-
ogeny vector and 30 for the SEED function vector. We
did not perform this calculation for alternative methods,
but it appears the signature peptides will be valuable
when used in this manner.

Perhaps more surprising, and definitely more subtle, is
that the sensitivity of our method is comparable to
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BLASTX against NR, as demonstrated with synthetic
data from organisms novel to the set of reference gen-
omes in Figure 6, and metagenomics data in Table 1.
The modest decrease in sensitivity of approximately 25
percent is largely explained by the observation from
Figure 3 that 20% of the genes in a typical genome do
not contain 10-mers matching to another genome in our
reference set of genomes. That the decreased sensitivity
is due to the discarding of more variable (in the sense of
gene inventory) proteins is supported by the relatively
small variation of sensitivity observed among the four
novel organisms presented in Figure 6, especially in
comparison to BLASTN. Some understanding of why
10-mer exact matches have a high probability of match-
ing a gene from a divergent organism when a cursory
glance at a pairwise sequence alignment suggests such
matches would be rare is provided by Figure 2. Genes
that contain a signature peptide tend to have more than
one scattered throughout the gene and typically match
to multiple organisms. Once all the pairwise compari-
sons are made across hundreds of reference genomes, a
pretty thorough sampling of possibility space is obtained.
Support for the idea that possibility-space is well-
sampled is found in the observation from the FACE data
results that 83% of matching reads contained multiple
signature peptides. Figure 11 suggests an explanation for
why so many genes contain signature peptides might be
that root-level signature peptides preferentially lie near
the active sites of enzymes, where only a limited set of
amino acid sequences are sufficiently adept at interacting
with small molecules for the gene to propagate, along
the lines suggested in [7].

The impact of sequencing errors on our method is
relatively straightforward to understand. Because our
method requires an exact match to an amino acid 10-
mer, and because the number of signatures (3x107) is so
much smaller than possibility space (10'?), the dominant
effect of introducing errors is a simple decrease in sensi-
tivity given by the likelihood of the sequencing error oc-
curring within all of the signatures in the read.

Extensibility

The software package BLAST was released over twenty
years ago [5] at a time when sequence databases were
much smaller and simple identification of sequence
homology was quite valuable. Since that time, both the
implementation and interpretation of BLAST has under-
gone significant evolution, the size of reference data-
bases has increased by many orders of magnitude, and
the types of questions asked of sequencing projects has
changed significantly. Indeed, it would be possible to im-
plement a process quite similar to our own within the
space of allowed options of BLAST and a modest
amount of additional post-processing. Nevertheless, a
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shift from interpretation of similarity scores of local
alignments to phylogenetic identification of significant
matches not only significantly speeds the analysis
process, but makes feasible several new types of analyses.
We explore some of them here.

Curation and refinement of signature peptide lists,
whether with additional layers of algorithms, with man-
ual intervention, or both, is certainly possible and at-
tractive. The list of reference genomes could be
expanded in resolution (to the species level) and
extended to the other kingdoms of life. Signature pep-
tides could be identified that are likely to be indicative of
leaves on the tree, rather than nodes. Signatures derived
from mobile elements such as plasmids could be identi-
fied as such and indicated as an attribute of the respect-
ive signature peptides. The 22% of the reads with
conflicting phylogenetic signatures can be analyzed fur-
ther to reassign signatures on the tree and thereby in-
crease the specificity of classification where appropriate.
The network of genes sharing a signature peptide can be
subjected to analysis aimed at simplifying the graph
structure by associating signature peptides with domains
rather than with entire proteins.

Using the SEED functional classification scheme
allowed us to compare broad categories of protein func-
tion, but much more work is needed on functional sig-
nature classifications that efficiently capture variances in
real data while preserving connections with small mole-
cules and pathways. Additional algorithms could be
derived to extract 'niche’ signatures from multiple meta-
genomics samples or sequencing data which is derived
from a small group of organisms which cannot readily
be separated. This information could be combined with
curated databases of protein families and co-localization
of signature peptides on either reference genomes or
long-read metagenomics data. While much of the above
is being explored within the context of BLAST and hid-
den Markov models, the signature-peptide formalism
naturally lends itself to extension in areas such as these.

A recent example that exploits the ability of signature-
based analysis to distinguish inheritance from horizontally
transfer was used to shed insight on the nature of virulence
in enteric bacteria [49]. This ability of signature-based
methods to be embedded in more sophisticated algo-
rithms, plus our method’s local signatures and large phylo-
genetic radius of convergence, make the method
particularly well-suited to a wide range of currently intract-
able sequence analysis problems.

Finally, signature peptides may be useful as physical
objects in addition to being search terms. Peptide 10-mers
are suitable to use as antigens for developing immuno-
chemical assays of microbial community dynamics, though
processing may be needed to make the corresponding pro-
tein fragments accessible to antibody binding. The amino-
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acid composition and positional dependence in signature
peptides becomes significantly different from random
selections of peptides from the genomes involved as the
signature placement nears the root (not shown). The na-
ture of these differences suggests that some root-level sig-
nature peptides may play a role in formation of
hydrophobic pockets that bind small molecules. If true, sig-
nature peptides may be the minimal functional units that
form the starting point for evolution, and may also be use-
ful as fragments that are diagnostic of possible protein
interactions with a given small molecule.

Conclusions

We have demonstrated that metagenomics reads can be
accurately assigned both phylogeny and function entirely
by a matching to a sorted list of 10-mer signature pep-
tides. We also developed and utilized algorithms to iden-
tify the signature peptides, to assign individual
signatures to nodes of a phylogenetic tree and categories
of protein function, and to assign individual metage-
nomic reads both a phylogeny and function. Our soft-
ware runs on a desktop-class computer, identifying
protein fragments and classifying them for phylogeny
and function at a rate of ~6.6 Gbp per hour on a single
core, over 250,000 times the throughput of BLASTX run
against the NR database [40] and about twice the rate of
current sequencer output. We demonstrated our process
on shotgun metagenomic reads on soil samples from five
diverse ecological sites, with two field replicates from each
location. We observed a sensitivity comparable to analysis
performed at MG-RAST with an E-value cutoff of 10-', a
repeatability between field replicates of better than 99.9%,
and a signal to noise ratio for distinguishing ecosystems of
approximately 400. Having such a rapid alternative to con-
ventional homology searches for phylogenetic and func-
tional classification of short reads of DNA seems likely to
impact bioinformatic applications beyond its immediate
application to metagenome analysis.

Methods

Sample collection and sequencing

Sample collection and preparation was carried out as
previously described [34,50]. Sequencing was carried out
on a 454 Genome Sequencer Titanium system at the
LANL Joint Genome Institute. 454 sequencing is known
to suffer from spurious near-duplication of reads [51,52].
We used the program 454ReplicatesFilter [51]
v20090611 with default parameters to identify and re-
move on average 12% (ranging between 4% and 21% per
sample) of reads. 16S rRNA sequencing was done on an
Applied Biosystems 3730xl instrument and analysis was
performed at the Ribosomal Database Project website
using RDP release 10 update 24 [53].
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Reference genomes and phylogenetic tree calculation

A list of reference bacterial genomes is included as Add-
itional file 7. Bacterial genomes were downloaded from
NCBI (completed) and JGI (draft) in June of 2009. A
phylogenetic tree was calculated based on the concate-
nated amino acid sequences of the beta and beta-prime
subunits of the RNA polymerase. An initial multiple se-
quence alignment was calculated using MUSCLE [23],
followed by iterative manual curation of the alignment
with BioEdit [54] based on the known three-dimensional
structure, and tree building with a maximum likelihood
method employing a minimal model of protein func-
tional pressure (RIND [55] and WEIGHBOR [56]). We
placed the root of the tree at the long branch connecting
gram-positive and gram-negative bacteria, in accord with
current understanding of bacterial evolution [57]. the
resulting tree (Additional file 2 and Additional file 3)
compares well to those in the literature [58] and with
16S rRNA-based trees; it disagrees from the less-detailed
NCBI taxonomy (where available) in only a handful of
cases. Using this tree, the number of genomes was
manually pruned from the total available genomes at
that time to a reference set of 403 genomes that were
separated from one another by a minimum evolutionary
distance of 0.015 as calculated by RIND. This distance
corresponds approximately to the distinctions conferred
by genus names. Subsequent analysis used only the con-
nectivity, not the distances in this tree.

Signature production

Calculation of signature peptides was carried out in version
0.8 of a program suite consisting of Python 2 and Java 1.6
code we call Sequedex. Biopython [59] v1.54 and Forester
[60] v0.970 were used to manipulate phylogenetic data in
PhyloXML. Protein sequences from genomes and putative
peptide fragments from metagenomes were treated as
documents, broken into overlapping k-mer terms, and
indexed by Lucene [61] v2.4.1 with a custom k-mer tokeni-
zer that allowed k to be specified at run time.

Figure 12 shows the process of signature generation.
k-mer terms from every protein sequence in each of the
reference genomes were merged into a single index.
Terms that did not appear in more than one leaf were
discarded, leaving only orthogenomic terms. Each ortho-
genomic term was assigned to the internal node on the
phylogenetic tree that was the least common ancestor of
the leaf nodes in which the term appeared. Terms from
a single organism thus can be associated with any of the
internal nodes along the path from the leaf node con-
taining the organism to the root of the tree.

Production of putative protein fragments
Figure 13 shows the process of metagenome phylogen-
etic analysis. Six-frame translation to amino-acid space
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Figure 12 The signature production process. Approximately 400 million overlapping 10-mers from the 403 bacterial reference genomic
sequences are enumerated and collated into a genomic k-mer index. The 5% of this list that appears in multiple genera of bacterial reference
genomes are collected, together with the list of leaves (taxa) which contain the signature. Using our inferred phylogeny of reference genomes
(provided as Additional file 2, Additional file 3), we use the least common ancestor algorithm to assign the signature to the most specific node
that covers all observations of the 10-mer.

was carried out with the EMBOSS [62] utility transeq,
with default parameters. Each frame was broken into pu-
tative peptide fragments (starting with either the up-
stream read boundary or the first residue after a stop
codon, ending with either a stop codon or the down-
stream read boundary), subject to a minimum length re-
striction of 15 residues. This length restriction served to
decrease the number of putatitve peptides to be searched
without a serious decrease in sensitivity. Ambiguous
residues were treated as stop codons.

Matching and phylogenetic assignment of reads

Each putative protein fragment was broken into overlap-
ping 10-mer peptides which were then matched against
the list of signature peptides. Fragments that contained
one or more signatures were thereby identified and lists of
node assignments from the signatures were built up for
each read. In most cases, the list of node assignments was
a subset of the internal nodes along a single path from the
leaf to the root (monophyletic). In this case, the read is
assigned to the most specific node found (the node that is
farthest from the root). The possibility exists, however, of a
read arising from an organism whose protein domain in-
ventory differs from those in the reference genomes in
such a way that nodes from more than one path from leaf
to root will be found (non-monophyletic). In this case, we
assign the read to the node that is the least common ances-
tor of those nodes that are farthest from the root. Phyl-
ogeny assignment calculations are faster than the
translation and matching steps.

For all the analysis presented here, matching was done
via the index structure produced by Sequedex and
Lucene. However, since none of the analysis relied on
the additional information in the index beyond which
signature peptides matched and since indexing was the
slowest step in the process (~0.2 Gbp/hr) we wrote code
to do the search without having to make an index which
we call Sequescan. Sequescan reproduces the results of
the index-based Sequedex, but it processes data (as of
version 0.1) at a rate of approximately 6.6 Gbp/hr (from
FASTA file to classification) on a single core of a Intel
Core i7 machine with a fixed memory requirement of <6
GB. The processing rate per CPU and memory usage of
Sequescan seems to be approximately independent of
read length and is independent of number of processes
up to at least 4. We are writing a multi-threaded version
of Sequescan that we expect to be available at time of
publication for free download as listed below.

Generation of synthetic data

Synthetic data were created from complete genomes of
Shigella flexneri 2a and Dehalogenomonas lykanthropore-
pellens BL DC 9 uid48131 as well as the four draft gen-
omes used to generate Figure 6, using MetaSim v.95 [63]
with no error model, no paired ends, and fixed read length.

Functional assignment of reads

Functional assignment of metagenomic reads is done by
collating the functional assignments of the matching signa-
tures. To this end, we looked for signatures that could be
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Figure 13 The metagenomic read analysis process. Metagenomic reads are translated in the 6 possible reading frames as peptides and
indexed as 10-mers of amino acids. This index is searched for phylogenetic signatures and the node assignments of the signatures are collated
per read. Reads are assigned to nodes on the phylogenetic tree at the most specific node for which there is consistent evidence via the greatest

found in sequences from the 1088 subsystems of the SEED
database [39-41], downloaded in January of 2010. Signa-
tures were assigned to all subsystems that matched. On
average, 69% of bacterial reads in any sample were assigned
to one or more SEED subsystems. A single read is assigned
to n subsystems by computing the union over all reading
frames of the intersection of subsystems associated with
each reading frame for which orthogenomic signatures
were found. Each assigned subsystem is then allotted 1/x
counts for this read. For Figure 9, SEED subsystems were
hierarchically grouped into the 28 high-level categories
found in the SEED file 'subsystems2role'.

Availability

Free software to produce the phylogenetic and func-
tional profiles described here for arbitrary metagenomics
or synthetic data sets will be made available at http://
sequedex.lanl.gov.

Additional files

Additional file 1: List of 10-mer matches. This file contains a tab-
delimited text table of 10-mer or longer matches between E. coli and
Bacillus subtilis, with the annotation and amino acid sequence of the
genes containing the match.

Additional file 2: Phylogenetic tree with node numbers. This file
contains a pdf file of the phylogenetic tree of the 403 reference bacterial
genomes used to assign phylogeny to both signatures and
metagenomic reads. Node numbers are provide for use in

Additional file 5.

Additional file 3: Phylogenetic tree with node numbers. This file
contains a phyloxml file of the phylogenetic tree of the 403 reference
bacterial genomes used to assign phylogeny to both signatures and
metagenomic reads. Node numbers are provide for use in

Additional file 5.

Additional file 4: Synthetic data produced from draft genomes of
four soil bacteria. This file contains a zip file of the 16 synthetic data
sets used to compare sensitivity, specificity, and throughput of our
method to three types of BLAST-based methods.

Additional file 5: Phylogenetic profile of metagenomic samples.
This file contains a tab-delimited text table of the number of reads
assigned to each node on the phylogenetic tree for each sample. Node
numbers refer to the phylogenetic tree shown in Additional file 1 and
Additional file 2.

Additional file 6: Functional profile of metagenomic samples. This
file contains a tab-delimited text table of the number of reads assigned
to each of the 1088 SEED categories, for each sample.

Additional file 7: Reference genomes. This file contains a
tab-delimited text table of reference genomes used, with source for each.
J
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