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Abstract

Background: Pathways with members that have known relevance to a disease are used to support hypotheses
generated from analyses of gene expression and proteomic studies. Using cancer as an example, the pitfalls of
searching pathways databases as support for genes and proteins that could represent false discoveries are explored.

Findings: The frequency with which networks could be generated from 100 instances each of randomly selected
five and ten genes sets as input to MetaCore, a commercial pathways database, was measured. A PubMed search
enumerated cancer-related literature published for any gene in the networks. Using three, two, and one maximum
intervening step between input genes to populate the network, networks were generated with frequencies of 97%,
77%, and 7% using ten gene sets and 73%, 27%, and 1% using five gene sets. PubMed reported an average of 4225
cancer-related articles per network gene.

Discussion: This can be attributed to the richly populated pathways databases and the interest in the molecular
basis of cancer. As information sources become enriched, they are more likely to generate plausible mechanisms
for false discoveries.
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Findings
As our knowledge about pathways increases, more genes
are assigned to networks and the probability of generat-
ing a network from a randomly drawn set of genes is
constantly increasing. Coincident with this is the fact
that the number of publications relating genes to cancer
is increasing; thus the probability of finding a paper on
cancer that includes a gene listed as part of a “discov-
ered” pathway is also increasing over time. The old
adage, the more you know, the less you realize that you
know can be modified to say that the more we know,
the more likely we are to be misinformed by our know-
ledge. In conclusion,

1) Using pathways databases to support cancer related
discoveries from data analysis of high throughput
technologies can work to propagate false discoveries.

2) The more we know about pathways the more likely a
set of genes or proteins under study, even if
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reproduction in any medium, provided the or
randomly selected, will be connected in some way in
a pathways database.

3) While cancer was used for this case study, it is not
the only disease that should be affected. The more
we study the genetic and proteomic basis of a target
disease, the more likely it is that a randomly
generated network associated with a false discovery
will be related in the literature to that target disease.

Introduction
Modern research into the molecular biology of cancer
can be traced back to the introduction of Knudson’s
“two-hit” hypothesis based on his discovery of a second
somatic mutation in tumors from patients with a germ-
line retinoblastoma gene mutation [1]. Since then re-
search into the molecular biology of cancer has evolved
into an effort to integrate patterns from increasingly
complex analysis of data. Twenty years after the “two-hit
theory” was proposed, a study of colorectal cancers
demonstrated a more complex scenario with most
tumor samples demonstrating mutations in four to five
genes [2]. A more recent study discovered that there
could be up to 20 mutated gene that have a role in the
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evolution of a type of cancer [3]. The number of genes
involved in tumorigenesis or tumor behavior becomes
even larger when taking into account downstream
effects that activate or disable a number of functional
pathways, each of which may contain a network of many
genes [4,5]. Thus, there can be many pathways that can
be assigned a role for even a single type of cancer, and
an even larger number of genes and/or proteins when
the entire network or pathways is considered.
In addition to mutations affecting functional activity,

copy number aberrations, microRNA and methylation
have been identified as additional regulatory systems that,
when defective, can contribute to cancer. The National
Institute of Cancer has funded a large scale effort to
generate a library of gene sequences, copy number
aberrations, gene expression, methylation, and micro-
RNA expression data for hundreds of tumor samples
across multiple types of cancer. It has become clear
that all of this information is starting to burden those
who seek to use it to create new clinical care paradigms
[6,7]. Thus, new approaches to storage, retrieval, and in
particular analysis of this information in the context of
functional pathways are necessary to understand the
molecular basis of cancer [8].
Numerous approaches to integrating information from

pathways databases with pattern analysis of the various
types of –omics data have been demonstrated to be of
utility in identifying pathways relevant to tumorigenesis
and tumor progression, both from a pre-analysis per-
spective using, for example, gene enrichment analysis [9]
or as a post-hoc strategy for interpreting the relationship
between significant genes or proteins (e.g. [10]. Meta-
Core (distributed by GeneGO), Gene Ontology, Ingenu-
ity Pathway Analysis (distributed by Ingenuity), MSigDB,
Reactome, and the Kyoto Encyclopedia of Genes and
Genomes are just some of the databases available that
store information about relationships between genes and
their protein products in a pathways context. MetaCore
has in particular an attractive function using a graph
theory algorithm to generate networks that connects
genes and proteins submitted as input based on relations
abstracted from the literature [11].
These databases are critical to analyzing –omics data

in the context of pathway analysis. They are used to ex-
plore or substantiate pathways hypothesized from data
analysis. However, the propagation of misinformation
due to a non-zero false discovery rate in the gene sets
selected as relevant has not been explored. As these
databases become enriched with more information, the
probability that any two input genes/proteins will have
been documented as having a relationship within a net-
work increases. Going one step further, if an association
can be made between the members of the network and
the clinical phenomenon or disease of interest can be
made in the literature, then a hypothesis generated from
a false discovery can be fortified by supporting informa-
tion. This problem is potentially very meaningful in dis-
eases that are well studied, such as cancer. Since 1960
there has been an exponential increase in the number of
publications that reference the term “cancer” in
PubMed; within the last year alone, there were nearly
50,000 articles.
Using cancer then as a case in point, this report

demonstrates the potential pitfalls faced in using net-
works generated from a representative pathways data-
base. Multiple sets of random solutions sets of genes are
created and submitted to MetaCore to see if they can be
linked together into functional networks. Members of
the extended network returned from MetaCore are
searched in PubMed for cancer relevance. The results
indicate the ease with which false discoveries can be
supported by bioinformatics, resulting in hypothesized
mechanisms that are not truly supported by the data.
Results
Using three, two, and one maximum intervening step
between input genes to populate the network, at least
one network was generated with frequencies of 97%,
77%, and 7% for the ten random gene sets and 73%,
27%, and 1% for the five random gene sets. As stated in
the methods, these results were generated using 100
trials for each case, e.g. five genes with one intervening
step allowed, and are displayed here in Figure 1. The
positive relationship between the number of networks
generated and the maximum steps allowed is to be
expected, that is, the number of networks that are gener-
ated increases with an increasing number of allowed
edges between input nodes. The increase is more dra-
matic for the ten gene sets, though both converge on
100%. Figure 2 depicts a representative pathway gener-
ated from ten input nodes and allowing up to two inter-
vening edges.
As described in the methods, a query was constructed

to search for publications that related any of the genes
in the discovered network(s) for any one trial with can-
cer. This query was submitted to PubMed (see Figure 3).
There is as expected a strong, positive relationship be-
tween the number of input nodes and the number of
cancer articles. It is certain that this number includes
more than articles elucidating a direct link between the
gene(s) of interest and cancer, for example, a study that
shows no relationship.
The different symbols and colors for the different

classes of trials, where a class is defined by both the
number of random genes and the maximum number of
intervening edges allowed in the resulting network, in
Figure 3 demonstrate the increase in the number of



Figure 1 MetaCore results. Networks generated (y-axis) vs. maximum intervening edges allowed in MetaCore’s “Shortest Path” algorithm
(x-axis).
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network nodes given more input genes (red symbols for
ten random genes compared with black symbols for five
random genes) and when more intervening edge are
allowed (diamond symbols for three, triangles for two,
and circles for one intervening edge). Some of the
Figure 2 Representative pathway. This pathway was generated with ten
The input nodes that are members of the pathway are encircled in the figu
networks were associated with a very high number of
articles. These are not shown in Figure 3 and were
removed as “outliers”. These may be attributable to net-
works that contain highly studied oncogenic pathways
such as src or p53. Excluding those data as potentially
input nodes and allowed for up to two edges between input nodes.
re.



Figure 3 PubMed results. Articles retrieved from PubMed (y-axis) vs number of genes for the networks generated from MetaCore (x-axis).
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representing special cases, the slope of the curve is 2466
articles per input node.
Discussion
These results demonstrate that pathways related to can-
cer can be readily generated using sets of genes selected
randomly from a list of genes used in a standard Affy-
metrix microarray chip. Empirical testing clearly reveals
that the pathways databases can function to amplify the
misinformation resulting from false discovery by gener-
ating plausible mechanisms to support the results. In
addition to obtaining realistic pathways, the support
from literature associated with cancer enhances the po-
tential for propagation of misinformation. As knowledge
in the domain of pathways increases, more genes are
assigned to networks and the probability of generating a
network increases. Coincident with this is the fact that
the number of publications relating genes to cancer is
increasing, and the probability of finding a paper on can-
cer that includes a gene listed as part of the “discovered”
pathway is also increasing over time. The old adage, the
more you know, the less you realize that you know can
be modified to say that the more we know, the more
likely we are to be misinformed by our errors.
It has been pointed out that pathway modeling is one

of the most active areas of data analysis for high
throughput data [12]. Overfitting is a problem in statis-
tical analysis of high throughput data as there are fre-
quently fewer test subjects than measurements. In
addition to this imbalance, the complex algorithms used
in bioinformatics can adapt to random noise in data just
as they do to actual patterns [13]. Even though techni-
ques for filtering noise, determining significance, and
accounting for large amounts of data have proven useful,
even the smallest p-values used in studies can create
substantial chance error simply because the genome is
so large [14].
This means that false gene discovery combined with

the expansion of information in pathways databases and
literature search engines can lead to the propagation of
misinformation. In other words, if input information is
incorrect, there may be a relatively high chance of
obtaining results that support these false results. Al-
though we have used Metacore’s on-line tool to demon-
strate the problems that can arise with pathways
searches, we expect this problem to apply to other path-
ways databases as well, e.g. Ingenuity Path Designer
Graphical Representation uses literature sources to gen-
erate edges between members of a pathway as does
Metacore. Similarly Ariadne uses a database of relation-
ships (ResNet Explore) that is used to generate path-
ways. Basically, the probability of detecting a network or
pathway increases with the increasing size of the
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knowledge base of interactions in databases that are
used to generate a pathway. This clearly presents a dan-
ger to research, especially to the field of personalized
medicine as applied to cancer. While high throughput
technologies have opened the door to novel discoveries
for personalized medicine, they can also result in novel
discoveries with plausible mechanisms that can be easily
generated even if the genes of interest are randomly
selected. Misleading hypotheses generated from analyses
of high-throughput data are likely to be amplified by
both pathway databases and reference libraries as inves-
tigators struggle to find significant results amongst all of
this information.
Even though further text mining tools [15], and sys-

tematic use of keywords [16], might help filter unrelated
retrievals, the problem of reviewing the literature in de-
tail remains daunting considering the number of articles
retrieved with the Boolean statements submitted. Given
that cancer as a disease uses normal pathways even
though it dysregulates their activity (overactive or under-
active), then it is expected that many genes will have an
association with cancer even if they are not causative.
Therefore, a future focus is needed to minimize mislead-
ing results and to enrich for significant ones. Of course,
better methods in the initial analysis to reduce false
positive results help to reduce false pathway information,
such as randomizing classes and repeating the data ana-
lysis. In addition, hypothesized pathways can be sup-
ported with some statistical analyses. For example, if “k”
nodes of pathway “A” are in the input file to the path-
ways database, then how frequently would any combin-
ation of “k” nodes from pathway “A” be randomly
selected from the complete data set (e.g. the probe set
for the experiment). Also, percentage of a pathway’s
membership that is selected from the initial data analysis
as input is important. The higher the percentage of the
total number of nodes in a pathway that are selected as
statistically meaningful in the data analysis that gener-
ates the input nodes, then the more likely it is that the
pathway is operating in the data. For example, if two of
ten total nodes for pathway “A” are selected in the data
analysis, the likelihood that the pathway is meaningful is
less than if all ten of the nodes were selected in the ini-
tial data analysis.
Certainly, experiments are required to validate a

hypothesized pathway and all pathway information
should be treated with caution as a hypothesis until
proven otherwise. To label a gene or pathway as defini-
tively causal will require external validation in a labora-
tory setting, such as up- or down-regulation within
engineered cell lines. In short, the finding of a network
that integrates gene discovery into an acceptable hypoth-
esis and relevant disease-related literature should not be
considered strong supporting information.
Methods
Generating random lists of five and ten genes/proteins to
represent false discoveries
One hundred sets of five random Unigene identifiers
and one hundred sets of ten random Unigene identifiers
were randomly selected using computer scripts with R
library calls. The Unigene identifiers were selected using
BrainArray’s (brainarray.mbni.med.umich.edu) Custom
CDF file, Unigene Version 13.0.0, and applied to the
Affymetrix HT HGU 133A platform as a representative
list of genes used in expression microarray experiments.
The complete set of Unigene identifiers contained 12001
entries, some of which were repeated, representing repli-
cated probes in the chip. Gene sets were selected with-
out replacement using the following R v2.11.1 scripts
[17,18].
Gene names[sample(12001,5,replace = FALSE)] (select

5 out of 12001 gene names without replacement).
Gene names[sample(12001,10,replace = FALSE)] (select

10 out of 12001 gene names without replacement).

Meta core pathway analysis
MetaCore is a pathway database that includes over
200,000 frequently updated protein-protein and protein-
small molecule interactions that have been extracted
from literature resources by experts. It allows the use of
many different algorithms to analyze gene lists and han-
dles large amounts of data very well [11].
MetaCore’s on-line tool that employ’s Dijkstra’s short-

est pathway algorithm was used to measure the fre-
quency with which the five and ten randomly selected
Unigene identifiers could be mapped onto a set of genes
that could generate pathways (“shortest pathway” option
in “Build Network” menu). Notably, occasionally the
Unigene identifiers were not mapped onto correspond-
ing objects in MetaCore; other times one Unigene iden-
tifier mapped to more than one object in MetaCore. We
excluded anything except known synonyms for the gene
associated with the Unigene identifier. Thus, the results
were interpreted as obtained from 5 randomly generated
Unigene identifiers that potentially mapped to more or
less than 5 MetaCore objects.
Networks were generated using Dijkstra’s algorithm.

Both open and closed networks are allowed. These are
drawn with single-step interactions (“edges”) connecting
any two genes/proteins in the network [8]. Input options
include the maximum number of intervening edges in
the path between any two of the input objects, called
“root objects” in MetaCore. Inputs of one to three inter-
vening edges were compared for both the five and ten
gene sets as input. One hundred (100) trials were per-
formed for each of the five and ten gene sets and with
each of one, two and three intervening steps for a total
of 600 trials. The frequencies with which networks were
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generated were recorded. Canonical pathways were
allowed; information was restricted to the Homo sapiens
species.

Pubmed literature search
To get a better idea of the massive amounts of informa-
tion that could be garnered from the information pro-
vided by each network, an automated literature search
was performed on PubMed, a search engine for biomed-
ical literature that was developed by the National Center
for Biotechnology Information [15]. A Boolean search
term was constructed with an “AND” operator joining
the term “cancer” to a list of the genes returned as nodes
in the networks. The latter were joined by an “OR” oper-
ator. This was submitted in PubMed query format and
was equivalent to manually entering:
“CANCER” AND “gene1” OR “gene2” OR “gene3” . . .

“geneN” (where N represents the total number of genes
in the network for a particular trial).
This search yielded all of the articles that included the

term “cancer” and any of the genes of interest found in a
particular network. No time limits or other constraints
were placed upon the search.
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