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Abstract

and the regenerative potential of retinal ganglion cells.

regeneration paradigm.

Background: Increased expression of glial fibrillary acidic protein (GFAP) within macroglia is commonly seen as a
hallmark of glial activation after damage within the central nervous system, including the retina. The increased
expression of GFAP in glia is also considered part of the pathologically inhibitory environment for regeneration of
axons from damaged neurons. Recent studies have raised the possibility that reactive gliosis and increased GFAP
cannot automatically be assumed to be negative events for the surrounding neurons and that the context of the
reactive gliosis is critical to whether neurons benefit or suffer. We utilized transgenic mice expressing a range of
Gfap to titrate the amount of GFAP in retinal explants to investigate the relationship between GFAP concentration

Findings: Explants from Gfap” and Gfap"" mice did not have increased neurite outgrowth compared with Gfap™"*
or Gfap over-expressing mice as would be expected if GFAP was detrimental to axon regeneration. In fact, Gfap
over-expressing explants had the most neurite outgrowth when treated with a neurite stimulatory media.
Transmission electron microscopy revealed that neurites formed bundles, which were surrounded by larger cellular
processes that were GFAP positive indicating a close association between growing axons and glial cells in this

Conclusions: We postulate that glial cells with increased Gfap expression support the elongation of new neurites
from retinal ganglion cells possibly by providing a scaffold for outgrowth.
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Findings
Introduction
Within the central nervous system, glial cells provide
critical support for neurons. Due to the intertwined na-
ture of glial and neuronal interactions and functions,
when neurons are injured, as the retina ganglion cells
(RGCs) are in glaucoma, glial cells also react and
undergo morphological changes and alterations in gene
expression [1-5].

After optic nerve injury astrocytes surrounding the
optic nerve head become reactive and are intimately
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involved with formation of glial scar tissue in the optic
nerve. The glial scar strongly inhibits axon regeneration
from the RGCs and may contribute to further axon
damage leading to RGC death and irreversible blindness
[6-8]. Miiller cells respond to optic nerve injury by in-
creasing their expression of glutamine synthetase [9] and
the growth factor ciliary neurotrophic factor [10]. One
common feature of both astrocyte and Miiller cell re-
activity (and glial cell reactivity in general) is the
increased expression of glial fibrillary acidic protein
(GFAP) [9,11-17]. GFAP is a type III intermediate fila-
ment protein component of the cytoskeleton. Astrocytes
constitutively express GFAP, while mature Miiller cells
normally do not express GFAP [1,3].

Beyond GFAP’s function as a cytoskeleton component,
its role within glial cells is poorly defined, particularly
with regard to its ability to influence neuron specific
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events like axon regeneration. In animals that are able to
regenerate axons, like zebrafish, goldfish, and lizards,
GFAP positive outgrowths do not inhibit normal axon
formation in development or axon regeneration after in-
jury [6,18-21]. In co-cultures of mammalian cortical
neurons and astrocytes however, astrocytic production
of GFAP appears to suppress neurite outgrowth, since
knocking-out GFAP production in astrocytes signifi-
cantly improves neurite outgrowth [22-25]. Similarly,
studies with Gfap and Vimentin double knock-out mice
(Gfap” Vim™") indicate that reactive glia suppress inte-
gration and neurite extension of transplanted retinal
neurons in the mouse eye [26]. However, GFAP-null
mice showed no improvement in axon regeneration
compared to wild-type mice after dorsal hemisection of
the spinal cord [27].

In general, increased GFAP expression in glia is viewed
to be detrimental to axon regeneration from neurons.
This view is being challenged with work that demon-
strates that the context of GFAP expression in the acti-
vated glia may be more important than the absolute
levels of GFAP expression. In a rat axotomy model, ad-
ministration of hydrocortisone and autocarboxyilic acid
(an anti-apoptotic agent) significantly increased axon re-
generation and GFAP expression, while also increasing
expression of beneficial glial molecules like glutamine
synthetase [28]. In a rat optic nerve crush model where
zymosan was intravitreally injected, macroglia were
highly stimulated as evidenced by a strong increase in
GFAP positive cells, and there was also a significant in-
crease in the number of neurites from RGCs [29]. This
effect was partially mediated by increased expression of
apolipoprotein E by the macroglia. In a model where
Miiller glia were constitutively active and GFAP positive,
there was no evidence of negative effect on retinal neu-
rons in terms of function [16]. Recent work has shown
that activated GFAP positive retinal macroglia from
glaucomatous rat eyes enhance axon regeneration from
RGCs stimulated by both membrane-bound and soluble
factors [17]. This raises the important point that while
GFAP expression may be an excellent marker for glial
activation, the context of that activation in terms of the
suite of other molecules expressed and the cell type
being examined may be more important in determining
whether the glial cells are supportive or detrimental to
axon regeneration. This may be especially important
within the retina because of the Miiller glia population,
which supports the entire neural architecture of the ret-
ina in a way that is distinct within the central nervous
system.

We have reported that in a retinal explant model of
RGC axon regeneration, treatment with a well-defined
combination of molecules (EGF, FGF2, insulin, biotin,
transferrin, putrescine, progesterone, and hydrocortisone)
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in the absence of serum produced a significant increase
in both neurite outgrowth and Gfap mRNA abundance
[30]. In this study our goal was to utilize the retinal ex-
plant model to directly examine the effect of GFAP on
neurite outgrowth by titrating the amount of GFAP ex-
pression in the explants. Hydrocortisone increased Gfap
promoter activity and GFAP protein levels in the explant
system. The amount of GFAP expression in the system
was further manipulated by using explants from retinas
of transgenic mice expressing GFAP at levels varying
from none up to 2 times normal. Knocking-out or redu-
cing GFAP had no beneficial effects on neurite outgrowth
from explants compared to those with normal endogen-
ous GFAP levels. Over-expression of GFAP was beneficial
to neurite outgrowth, but only under conditions that were
overall stimulatory for this process. Examination of ex-
plant sections via transmission electron microscopy
revealed that axon structures appeared to be bundled to-
gether into larger fibers and that these bundles were en-
sheathed by glial cellular processes. Overall these data
indicate that in the retina GFAP is not detrimental to
axon regeneration and in fact might be associated with
support of new neurite outgrowth under certain
conditions.

Materials and methods

Animals

Animals were handled in accordance with the Associ-
ation for Research in Vision and Ophthalmology State-
ment on the use of animals for research and approved
by the University of Wisconsin Institutional Animal
Care and Use Committee. Strains of mice used included
CB6F1, FVBB6F1 (Gfap*™'™"), transgenic mGfap promoter
luciferase reporter strain (FVB/N-Tg(Gfap-luc)-Xen
(Caliper Life Sciences, Hopkinton, MA)), Gfap-null mice
(Gfap™™ ™ that are congenic in either C57BL/6] or
FVB/N backgrounds, or Gfap”~ and Gfap™” in either the
two backgrounds) [31], transgenic mGfap-wt over-
expressing mice (FVB/N-Tg(170.2), Tgl70.2). In each
case, female mice in the FVB/N background were
crossed with male C57BL/6 mice to generate Pde6b™"*
offspring for use in experiments.

Genotypes for mice were confirmed by PCR. For
mGfap-Luc mice, genotyping was performed using the
PCR protocol supplied by the manufacturer (forward
primer 5- TGGATTCTAAAACGGATTACCAGGG-3
and reverse primer 5- CCAAAACAACAACGGCGGC-
3/, Caliper Life Sciences). For Gfap™™™* mice, genotyp-
ing was performed using the PCR protocol supplied by
the Jackson Laboratory (Bar Harbor, ME) (common for-
ward primer 5- GATGGAGCGGAGACGCATCACC-3,
wild type reverse primer 5-TTGTCCCTCTCCACCTC
CAGCC-3/, or mutant reverse primer 5-GGAAGA
CAATAGCAGGCATGCTGG-3). For Tgl70.2 mice,
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genotyping was performed using forward mGfap 5
promoter primer 5- ACTGCACCCGGGGCTGACATCC
TG-3' and 5’ loxP site reverse primer 5'- GAGTTGGCTG
TGCATGCATAACTTCGTATAAT-3'.

Retinal explant protocol

Retinal explants from postnatal day 7 (PN7) mice were
harvested and embedded in collagen matrices as previ-
ously reported [30]. Eight explants were taken from each
eye for a total of 16 explants from each mouse. 150 pL
of the appropriate supplemented media was added on
top of explants with 4 explants per individual mouse
per media. Supplemented media included 10% FBS
(BioWhittaker, Walkersville, MD), EN2 (10% N2 (Invi-
trogen, Carlsbad, CA) with 1ug/mL biotin (Invitrogen),
0.36 pg/mL hydrocortisone (HC) (Sigma-Aldrich, St.
Louis, MO), 0.5 pg/mL FGF2 (Invitrogen), and 1pg/mL
EGF (Invitrogen)) or EN2 without hydrocortisone (EN2
w/o HC) all in DMEM with 1% PenStrep (BioWhittaker).
Explants were cultured for 7 days at 37°C with 5% CO,.
Media was replaced every other day. The number of
neurite outgrowths from each explant was counted every
24 hours under phase contrast optics using a Leitz DM
IL microscope (Microsystems, Inc., Buffalo Grove, IL)
and the mean (+ SEM) number of neurites was deter-
mined for each treatment group. After 7 days in culture,
explants were washed for 10 minutes in phosphate buffer
saline (PBS) at room temperature. Explants were then ei-
ther fixed for transmission electron microscopy or frozen
at -80°C for luciferase assays or ELISA.

Gfap Luciferase reporter assays

Luciferase assays were performed using the Promega
Luciferase Assay System (Promega, Madison, WI) with
some modifications for extracts from mouse retinal
explants. Explants used for luciferase assays were placed
in 150 pL of 1X reporter lysis buffer (Promega, Madison,
WI) and put through 3 freeze/thaw cycles (-80°C/22°C)
[32]. The total contents of each well were transferred to
microcentrifuge tubes and centrifuged at 13,200 x g at
room temperature for 2 minutes. 100 pL of luciferase
assay reagent was mixed with 20 pL of explant lysate in
a luminometer tube and the luminescent signal was
measured using a Turner TD-20e manual luminometer
(Turner BioSystems, Sunnyvale, CA). Lysate samples
were assayed in triplicate.

ELISA for GFAP quantification

Retinal samples from Gfap”", Gfap™, Gfap™”, and
Tg170.2 mice were prepared by dissecting out the retinas
from each mouse and pooling the two retinas together,
freezing the retinas overnight at -80°C, thawing the ret-
inal sample, and homogenizing each pooled sample in
0.2 mL lysis buffer (2% sodium dodecyl sulfate, 50 mM
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Tris—HCl, 5 mM EDTA, pH 7.4, 1 mM phenylmethyl-
sulfonyl fluoride and Complete Proteinase Inhibitor
Cocktail (Sigma)). The retinal lysates were boiled for 15
minutes then diluted 1:10 in 0.5% Triton-X 100 and 1%
BSA in PBS. Diluted retinal lysate and undiluted explant
lysate were quantified for GFAP content using a sand-
wich ELISA as previously described [33] with the SMI-
26 anti-GFAP monoclonal antibody cocktail (Covance
Research Products, Emeryville, CA) as the capture anti-
body and a polyclonal rabbit anti-cow GFAP (DAKO,
Carpinteria, CA) as the detection antibody. ELISAs were
read with a Tecan Safire* microplate reader (Tecan US,
Inc, Durham, NC). Retinal lysate samples were assayed
in triplicate then normalized to the total sample protein
concentration as determined by bicinchoninic acid pro-
tein assay (Thermo Scientific Pierce, Rockford, IL) per-
formed according to the manufacturer’s instructions.

After thawing, explants for each mouse in a given
treatment condition (four explants per mouse per treat-
ment group) were pooled in 400 pL lysis buffer and
homogenized. The lysate was boiled for 15 minutes. Un-
diluted explant lysate was quantified for GFAP content
using the sandwich ELISA described above. Explant lys-
ate samples were assayed in triplicate and the amount of
GFAP was analyzed on a per explant basis as was the
neurite outgrowth since explant size did not vary signifi-
cantly as demonstrated previously [30].

Transmission electron microscopy

Explants used for standard TEM were fixed with 200
uL/well of 2.5% glutaraldehyde, 2% paraformaldehyde in
0.1 M phosphate buffer (PB) for 48 hours at 4°C. Fixed
explants were post-fixed in 1% osmium tetroxide in PB,
dehydrated in ethanol, and embedded in Epon epoxy.
Sections (60 nm) were cut, stained with 50% ethanoic
uranyl acetate and Reynold’s lead citrate and viewed
using a Philips CM120 transmission electron microscope
(FEI Company, Hillsboro, OR). Identification of struc-
tures on the ultrastructural level was based on criteria
established by Hogan et al [34].

Some explants were immunolabeled for GFAP prior to
embedding using the Aurion ImmunoGold pre-
embedding labeling method. The explants were first
fixed in 200 pL/well of 0.1% glutaraldehyde, 2% parafor-
maldehyde in PB overnight at 4°C. Fixed explants were
incubated in 0.1% NaBH,; in PB for 10 minutes then
washed 4 times in PB for 5 minutes. Explants were per-
meabilized with 0.1% Triton-X-100 in PBS for 30 min-
utes then washed 3 times in PBS for 10 minutes. The
explants were blocked in Aurion blocking solution (Aur-
ion, Wageningen, Netherlands) for 1 hour then washed
3 times in incubation buffer (IB, 0.1% Aurion BSA-c
(Aurion) in PBS) for 10 minutes. Rabbit monoclonal
anti-cow GFAP (DAKO) was diluted to 5 pg/mL in IB
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and explants were incubated in the primary antibody
overnight at 4°C. Explants were washed 6 times in IB for
10 minutes, then incubated with ultra small gold conju-
gated goat anti-rabbit IgG (1:100 in IB, Aurion) over-
night at 4°C. The explants were washed 6 times in IB for
10 minutes, washed with PBS 6 times for 5 minutes,
post-fixed in 2% gluteraldehyde in PB for 30 minutes,
washed in PB 2 times for 5 minutes, and finally washed
with distilled water 3 times for 5 minutes. The explant
samples were incubated in silver enhancement mixture
(Aurion) for 40 minutes then washed 3 times in distilled
water for 10 minutes. Labeled explants were then pre-
pared for TEM sectioning and visualization as described
above for standard TEM.

Statistics

A minimum of 24 explants was evaluated for each treat-
ment per experiment, representing 8 retinal explants
from 6 individual mice in all treatment groups. Experi-
ments were repeated 2-3 times. Means are reported with
the standard error of the mean (SEM). Statistical signifi-
cance between treatments was determined using Prism 5
software (GraphPad, La Jolla, CA) for two-way ANOVA,
one-way ANOVA with Newman—Keuls ad-hoc post-test
for individual comparisons, or Student’s t-tests, P < 0.05.

Results

Effect of HC on GFAP in retinal explants

We have shown previously that Gfap mRNA expres-
sion was increased in PN7 retinal explants treated
with EN2 (containing HC) compared to EN2 without
HC (EN2 w/o HC) at both 4 and 7 days in culture [30].
Explants from transgenic mice expressing firefly lucifer-
ase driven by a 12.2 kb mouse Gfap promoter had sig-
nificantly more luciferase activity after 7 days in culture
when grown in EN2 compared to EN2 w/o HC
(P<0.001, Figure 1), as well as significantly more neurites
than transgenic explants in EN2 w/o HC (P=0.031,
Figure 1). These data suggest that increased accumula-
tion of Gfap mRNA was a consequence of HC-mediated
transcriptional activation of the Gfap promoter. Immu-
nostained frozen sections of explants at both 4 and 7
days in culture showed that GFAP labeling was increased
principally in Miiller glial cells in EN2-treated explants,
relative to EN2 w/o HC-treated samples (data not
shown).

Titration of GFAP in explants

To test directly whether Gfap expression was beneficial
or detrimental to neurite outgrowth, we titrated the
amount of GFAP in the explants by using transgenic
mice expressing different levels of GFAP, from Gfap
knock-out mice (Gfap”") to Gfap over-expressing mice
(Tgl70.2). Initial levels of GFAP in the PN7 mice were
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Figure 1 HC increased Gfap promoter activity and neurite
outgrowth from retinal explants. Histograph of the mean number
of neurites per explant (+ SEM, black bar) and the Gfap promoter
driven luciferase activity as measured by the mean relative
fluorescent units (RLU) per explant (+ SEM, grey bar) in transgenic
PN7 retinal explants at culture day 7 treated with either 10% EN2 or
10% EN2 without HC (EN2 w/o HC). EN2 treated explants had
significantly more Gfap promoter activation (*P<0.001) and neurites
(**P=0.031) than EN2 w/o HC treated explants. Significance was
determined by Student's t-test, p<0.05.

determined in the different lines by measuring the
amount of GFAP protein from PN7 retinas (Gfap™”,
Gfap*", Gfap™*, and Tgl702 mice) by ELISA
(Figure 2A). ELISA results confirmed that Gfap™™ mice
had no detectable GFAP in their retinas above back-
ground (P<0.001 compared to Gfap*’* mice) and that
Gfap*'~ mice had half the amount of GFAP in their ret-
inas as Gfap™'* mice (P=0.048). The Tg170.2 mice had
twice the amount of GFAP in their retinas compared to
Gfap™™* mice (P=0.041).

After 7 days in culture, the amount of GFAP
(Figure 2B) and the number of neurites (Figure 2C) was
determined for Gfap™”", Gfap*", Gfap™*, and Tgl70.2
retinal explants cultured in either 10% FBS, 10% EN2, or
10% EN2 w/o HC. The previously reported increase in
Gfap mRNA transcripts in wild-type EN2 treated retinal
explants compared to EN2 w/o HC treated explants [30]
corresponded to a significant increase in GFAP in the
EN2 treated Gfap*'* explants compared to EN2 w/o HC
treated explants (P=0.0252).

In explants cultured in poor growth promoting media
(10% EBS), there was no significant association between
neurite outgrowth and GFAP levels, while in explants
cultured in growth permissive media (10% EN2 or 10%
EN2 w/o HC), however, there was a clear association be-
tween the level of GFAP protein and neurite outgrowth
in the retinal explants (Figure 2C, two-way ANOVA row
(treatment) and column (genotype) factors both signifi-
cant, P<0.0001). GFAP levels were significantly higher in
explants grown in EN2 of all genotypes, relative to those
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Figure 2 GFAP levels are positively associated with neurite outgrowth under growth stimulatory conditions. Histographs showing from
different mouse genotypes at PN7 (A) the amount of retinal GFAP (mean+SEM), (B) GFAP levels (mean+SEM) in PN7 retinal explants cultured 7
days with either 10% FBS, 10% EN2, or 10% EN2 w/o HC, and (C) neurites per explant (mean+SEM) in PN7 retinal explants cultured for 7 days
with 10% FBS, 10% EN2, or 10% EN2-HC. (A) The amount of GFAP in different mouse genotypes shows titration of GFAP from background levels
(Gfap™", *P<0.001 versus Gfap*’* retinas), to half the amount of GFAP (Gfap™", *P=0.048 versus Gfap™’* retinas), to double the amount of GFAP
(Tg170.2, **P=0.041 versus Gfap™* retinas). (B) In retinal explants cultured for 7 days the same relationship between GFAP levels and genotype
was maintained, regardless of culture conditions (*P<0.05), although overall GFAP levels were significantly higher in explants cultured in EN2
versus EN2 w/o HC treated explants (**P<0.03). (C) None of the FBS treated explants had significant neurite outgrowth, indicating that increased
GFAP alone does not increase neurite outgrowth. EN2 and EN2 w/o HC treated explants had increased neurites in all strains compared to FBS.
In Gfap™* and Tg170.2 explants, there were significantly more neurites in EN2 treated explants than EN2 w/o HC treated explants. In Gfap”" and
Gfap*” explants, this treatment dependent effect was ablated, indicating that one important contribution of HC to increased neurite outgrowth is

the increase in GFAP. Bracketed comparisons are significantly different (P<0.05).

cultured in EN2 w/o HC (Figure 2B, one-way ANOVA,
P<0.05). Neurite outgrowth was also greater in the EN2-
treated explants (Figure 2C, P<0.05), but only in geno-
types with the capacity to express high levels of Gfap
(wild type and Tgl70.2 over-expressing mice). The
Gfap”™ and Gfap™~ explants showed no significant dif-
ference in neurite outgrowth between EN2 and EN2 w/o
HC conditions (Figure 2C, one-way ANOVA, P>0.05).
Overall, explants with the greatest levels of GFAP ex-
pression showed a concomitantly increased capacity for
neurite outgrowth.

Examination of the ultrastructure of retinal explants

In samples of wholemount explants that were immuno-
labeled for beta-III tubulin and GFAP, it appeared that
neurites were closely associating with glial processes
(data not shown). We were unable to achieve sufficient
resolution with our immunofluorescent samples, due to
the thickness of the collagen the explants were embed-
ded in, to determine whether glial processes may have
acted as scaffolds to support neurite outgrowths. We
therefore pursued TEM sectioning of explants to deter-
mine if axonal structures were associating with other

cellular processes. Cross-sections of explants revealed
axonal structures rich in microtubules (Figure 3A-C).
Axons were generally found in clusters. Groups of axons
were intimately associated with cellular processes, which
appeared to surround developing axon bundles. Longitu-
dinal sections of neurites examined at a distance from
the main body of the explants showed axonal structures
rich in microtubules (Figure 3D-E). These axonal struc-
tures were found to have separate cellular processes run-
ning parallel to them. In some places, tight junction
structures appeared where the axons and cell processes
made contact. Based on studies conducted by Hogan et
al [34], axons were contacted by processes from both
astrocytes (with light staining cytoplasm and distinct
electron dense nuclear morphology) and Miiller cell end
feet (darker staining granular cytoplasmic appearance).
The identity of the non-axonal cellular processes inter-
acting with the axons could not be determined by ultra-
structure analysis alone. Immunogold labeling of GFAP
was used to determine if the non-axonal cell processes
were emanating from glia. Gold-labeled particles were
found predominantly in cells in the RGC layer of explant
cross-sections corresponding with the astrocytes and
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Figure 3 Neurites grow in bundles and are surrounded by cellular processes. (A-E) Electron micrographs of retinal explants grown in EN2
for 4 days. (A) Low magnification image of the edge of the explant in cross-section shows the close association of retinal ganglion cell (RGC) and
putative astrocyte (AS) cell bodies as well as several neurite bundles (arrows) surrounded by cellular processes. (B-C) Higher magnification images
of areas both near (B) and distant (C) to the explant in cross-section show neurite bundles (arrows) surrounded by cellular processes, some of
which appear to be putative Mller cell processes (MP) and putative astrocyte processes (AP) (B). (D-E) Low magnification (D) and high
magnification of a distal process from the explant in longitudinal section shows a microtubule rich neurite axonal process (arrow) in contact with
astrocyte processes (AP). A junction complex can be seen between the neurite process (JC) and putative astrocyte process (AP) in (E).
Identification of putative glial processes were based on criteria established by Hogan et al [34]. Scale bars equal 2 um (A), 500 nm (B-C, E),

and 1 um (D), m=mitochondria.
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Miiller cell endfeet (Figure 4). Gold-labeled particles
were found in the same processes ensheathing the puta-
tive axonal bundles (Figure 4, note that microtubules
were not visible since Immunogold labeled samples can-
not be stained for visualization of electron dense
structures).

Discussion

Increased expression of GFAP is an important marker of
glial activation after injury to the CNS [35]; however,
what this increase means for the survival of surrounding
neurons and the potential for axon regeneration from
these neurons is unclear. While increased glial reactivity,
as marked by increased GFAP, has been largely viewed
as an negative outcome for neurons, there is evidence
that this may not be the case and that glial reactivity and
GFAP expression changes must be viewed in the context
they occur. GFAP could be positively influencing the
ability of neurons to regenerate by altering the
localization of proteins that can interact with neurons
at the glial cell membrane; for example, GFAP has
been shown to aid in membrane retention of the glutam-
ate transport GLAST in astrocytes which protected
surrounding neurons from glutamate excitoxicity [36].
There may also be a role for GFAP in controlling the ex-
pression of other secreted molecules, like the growth
factor GDNF or the extracellular matrix protein laminin,
that alter axon regeneration by neurons [22,37,38].
Lastly, GFAP positive glial processes could be acting as
scaffolds for new neurites by providing cell-cell interac-
tions that enhance RGC neurite outgrowth and path-
finding [17,39].
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We previously showed that HC, as a part of a neurite
stimulatory media, increased Gfap mRNA transcripts
and GFAP positive labeling of astrocytes and Miiller
cells in the explants. This was associated with an in-
crease in the number of neurite outgrowths from
explants. Here we show that HC leads to an increase in
Gfap expression by interacting with the Gfap promoter
and that the increase in Gfap transcripts also leads to
increased GFAP. To directly test whether GFAP was
beneficial or detrimental to neurite outgrowth in the ex-
plant culture paradigm, we titrated the expression of
Gfap using transgenic mice expressing a range of GFAP
levels. Knocking out or reducing the amount of GFAP
did not increase the amount of neurites compared to
wild-type explants, regardless of treatment, and in fact
had the opposite effect (at least when comparing
complete nulls vs. wild-type). These results contradict
findings using co-culture paradigms of dissociated astro-
cytes and cortical neurons [22-24], and may reflect more
complex cell interactions that are retained using the ex-
plant culture system. Alternatively, different populations
of neurons may interact differently to GFAP-expressing
macroglia. In the case of retinal ganglion cells, which
produce long projection axons, extended glial support
scaffolds may be a critical component for successful
neurite outgrowth.

Increasing the amount of GFAP above wild-type levels
resulted in the most neurite outgrowth, but only in a
stimulatory media, like EN2. Increased GFAP concentra-
tion alone was insufficient to stimulate increased neurite
outgrowth in a non-stimulatory media, like FBS. Treat-
ing the explants with EN2 resulted in the most neurite

Figure 4 Processes surrounding neurites are GFAP positive. (A-B) Electron micrographs of cross-sections of explants grown in EN2 after

4 days in culture that have been Immunogold labeled for GFAP. In these images GFAP positive immunolabeling is visible as the electron-rich
black dots in the electron micrographs. Axons (arrows) do not retain clear microtubule organization in samples processed for immunolabeling,
but were identified on the basis of structure and size. Likely axonal processes are surrounded by GFAP positive glial processes. Scale bar
equals 1 um, m=mitochondria.
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outgrowth regardless of genotype, consistent with previ-
ous findings. In total these data indicated that, under
some conditions, GFAP is not detrimental to new neur-
ite outgrowth and that over-expression of GFAP may ac-
tually support new neurite outgrowth.

The mechanism of neurite outgrowth enhancement
and stabilization by Gfap over-expression is unclear. The
Tgl70.2 mice by design over-express mouse Gfap, but
whether they display other features of activated astro-
cytes is not yet clear. One possible mechanism may be
more robust glial interactions with growing neurites,
which could be augmented by GFAP-cytoskeletal inter-
actions that support more or stronger glial processes.
Several reports indicate that growing axons track
along GFAP-positive glial processes during develop-
ment, although these are largely observed in inverte-
brate and anamniontic animal development [21,39,40].
We were able to detect this close association in
explants at the ultrastructural level. Neurites were
often detected in bundles that were ensheathed by
glial cellular processes.

The idea that glial cells could act as scaffolds for new
axons has been postulated as a possible solution for
axon regeneration within the spinal cord [27,41,42];
however, this has not been extensively studied within the
retina, which is surprising considering how closely astro-
cytes are associated with the formation of the glial scar
[3,6]. Recent work indicates that retinal glia expressing
GFAP [17] or GFAP and nestin [43] may provide struc-
tural support to RGCs. Our data show that increased
GFAP can play an important part in increased neurite
outgrowth, possibly by augmenting glial interactions
with regenerating axons and potentially serving as a
scaffold for new axon outgrowth. In this model, GFAP
is predicted to be part of a suite of molecules whose
expression profiles are altered after glial activation to
create a regenerative environment. We have shown pre-
viously that proteins like GLUL and CNTF appear to be
part of this suite [30]; however, many additional candi-
date proteins remain to be studied including additional
growth factors, neurotrophins, and other components of
the cytoskeleton like nestin and vimentin. Future work
with the Gfap over-expressing mice will be aimed at de-
termining if there is alteration in the normal expression
of growth factors, neurotrophins, and other components
of the cytoskeleton in the glia that may indicate. This
will determine if these cells are in a perpetually activated
phase that is beneficial to neurite outgrowth and
whether this is a phenomenon that is confined to the
unique glial cell population in the retina. In conclusion,
our work demonstrates that the context in which GFAP
is increased is important and that the nature of the
neural injury, the duration of the injury stimulus, the
time point examined after injury, and the type of
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neuroprotective strategy taken will influence whether
the glial response is beneficial or detrimental.
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