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Abstract

Background: Mice homozygous for the spontaneous wooly mutation (abbreviated wly) are recognized as early as
3–4 weeks of age by the rough or matted appearance of their coats. Previous genetic analysis has placed wly in a
5.9 Mb interval on Chromosome 11 that contains over 200 known genes. Assignment of wly to one of these genes
is needed in order to provide probes that would ultimately facilitate a complete molecular analysis of that gene’s
role in the normal and disrupted development of the mammalian integument.

Results: Here, a large intraspecific backcross family was used to genetically map wly to a smaller (0.8 Mb) span on
mouse Chromosome 11 that includes fewer than 20 genes. DNA sequencing of the coding regions in two of these
candidates known to be expressed in skin has revealed a 955 bp, wly-specific deletion. This deletion, which lies
within the coordinates of both Slc5a10 [for solute carrier family 5 (sodium/glucose cotransporter), member 10] and
Fam83g (for family with sequence similarity 83, member G), alters the splicing of mutant Fam83g transcripts only,
and is predicted to result in a severely truncated (probably non-functional) protein product.

Conclusion: We suggest that this mutation in Fam83g is the likely basis of the mouse wooly phenotype.
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Background
The spontaneous wooly (or woolly) mutation (abbreviated
wly) was initially identified at The Jackson Laboratory (Bar
Harbor, ME, USA) among a litter of inbred NOD/ShiLtJ
mice [1]. Mutants are recognized as early as 3–4 weeks of
age by the rough or matted appearance of their coats (see
Figure 1), but—in spite of this presentation—all hair types
examined (auchene, guard, zigzag and vibrissae) appear
microscopically normal [1], and histological examination of
skin has revealed no marked anomaly compared to
normal-coated (heterozygous) littermates [1]. When wly
was mapped to mouse Chromosome (Chr) 11, it was
immediately tested for genetic complementation in
crosses with the waved 2 (wa2) mutant [2], but since
no affected progeny were produced, these recessive
variants must be due to defects in distinct, albeit syn-
tenic, genes [1]. Indeed, homozygosity mapping based
on 54 affected F2 animals has placed wly between
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D11Mit313 and D11Mit261 [1], a 5.9 Mb interval that
contains over 200 known genes [3], but does not in-
clude wa2 or any other obvious gene candidates.
To associate this mutation with a causative molecular

defect, wly was fine-mapped to a genetic region where
fewer than 20 genes are located—only a few of which
are known to be expressed in skin. Direct sequence ana-
lysis of the coding regions in two of these candidates has
identified a mutant-specific defect in Fam83g (for family
with sequence similarity 83, member G) that we propose
to be the likely genetic basis of the wly mutation.

Methods
Mice
Standard inbred strains A/J, C57BL/6J, and NOD/ShiLtJ;
and NOD/ShiLtJ-wly/J mutant mice were obtained from
The Jackson Laboratory (Bar Harbor, ME, USA). Mice
homozygous for the mutant wly allele were reliably identi-
fied by the matted appearance of their coats which is first
evident by 3–4 weeks of age and persists throughout life.
Both male and female wly/wly homozygotes appear to be
fully fertile, and we have maintained the NOD/ShiLtJ-wly/J
line since 2009 by crossing homozygotes. The treatment
l Ltd. This is an Open Access article distributed under the terms of the Creative
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Figure 1 Three-week old mice, homozygous for the wooly (wly)
mutation.
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and use of all mice in this study were compliant with pro-
tocols approved by the Institutional Animal Care and Use
Committee (IACUC) at Central Connecticut State Univer-
sity (New Britain, CT, USA).

DNA analysis
Genomic DNA was isolated from 2–4 mm tail-tip biop-
sies taken from two-week-old mice, using Nucleospin®
kits from BD Biosciences (Palo Alto, CA, USA), as di-
rected. DNA samples from standard inbred and mutant
strains that we do not routinely maintain in our colony
were purchased from The Jackson Laboratory’s Mouse
DNA Resource.
The polymerase chain reaction (PCR) was performed in

13 ul reactions using the Titanium® PCR kit from BD Bio-
sciences, as directed. Oligonucleotide primers for PCR
were designed and synthesized by Invitrogen (Carlsbad,
CA, USA), based on sequence information available online
[3,4]. In addition to standard microsatellite markers [5]
on Chr 11, six DNA markers based on single-nucleotide-
polymorphisms previously reported to differ between
strains A/J and NOD/ShiLtJ [3,4] were also scored. These
markers (herein designated SNP1-6) are described in de-
tail in Additional file 1 & Additional file 2. To visualize
PCR product sizes, reactions plus 2 ul loading buffer
(bromophenol blue in 20% Tris-buffered sucrose) were
electrophoresed through 3.5% NuSieve® agarose (Lonza,
Rockland, ME, USA) gels. Gels were stained with eth-
idium bromide (0.5ug/mL) and photographed under
ultraviolet light. For sequence analysis, about 1.5 ug of in-
dividual PCR amplimers were purified and concentrated
into a 30 ul volume using QIAquick® PCR Purification
kits (Qiagen, Valencia, CA, USA). Amplimers were shipped
to SeqWright, Inc. (Houston, TX, USA) for primer-
extension sequencing.

mRNA analysis
Total RNA was isolated from tail skin samples taken
from 3-month-old mice using the Nucleospin® RNA L
kit by Macherey-Nagel (Easton, PA, USA). cDNA was
generated using the SMARTer™ RACE cDNA amplifica-
tion kit (Clontech Laboratories). To amplify Slc5a10-
specific cDNA, primers 1F (5’ TGTTCCGGGACCC
TTCCACAGGAGACCT 3’), taken from Exon 9, and
1R (5’ ATGACCAGCCGTCCCACCAGCAGCAACT 3’),
taken from Exons12 and 13, were used in a “step-down”
PCR reaction. The products of this initial reaction were
diluted 1:10 in Tricine-KOH buffer (10 mM, pH 8.5)
plus 1 mM EDTA, and were amplified again in a standard
PCR reaction using a nested primer pair: 2F (5’ AGC
GGTCCCTGTCTGCCCGGAACTTGAA 3’), taken from
Exon 10, and 2R (5’ TGGGCATCAGCTCCATGACC
AGCTTCGGGT 3’), taken from Exon 11. To amplify
Fam83g-specific cDNA, primers 3F (5’ ACGGGCAGCC
GCACATCAAGGAAGTGGT 3’), taken from Exon 1, and
3R (5’ AGCACAATGGGCTCTGGCTCTGGCTCCT 3’),
taken from Exon 4, were used in a standard PCR reac-
tion. The products of this initial reaction were diluted
(as above), and were amplified again with a nested primer
pair: 4F (5’ TGCGCAAGATGGTCAGCCAGGCGCAG
AA 3’), taken from Exon 1, and 4R (5’ ATGGGCTCT
GGCTCTGGCTCCTTCTCCA 3’), taken from Exon 4.
Final (second-round) amplimers were purified (as de-
scribed above) and shipped to SeqWright, Inc., for primer-
extension sequencing.

Results
Meiotic fine-mapping of wly
To more precisely locate wly on proximal Chr 11, (A/J x
NOD/ShiLtJ-wly/J)F1, wly/+ females were bred back to
NOD/ShiLtJ-wly/wly males, producing a large family of
1,679 backcross progeny that segregated for wly (and
numerous other molecular markers). These progeny
were typed for wly and six, PCR-scorable, microsatellite
markers on Chr 11, as summarized in Figure 2. These
data are in agreement with the 1 wild type : 1 mutant ra-
tio expected for a testcross (χ2 < 0.05; P > 0.8),
suggesting that wly/wly mice are fully viable, at least
compared to heterozygous wly/+ littermates. Further-
more, this analysis indicated that wly is located between
D11Mit208 and D11Mit242, a region of about 4.8 Mb
and fully consistent with wly’s previously-defined map-
ping interval between D11Mit313 and D11Mit216 [1].
To further restrict the physical position of wly on Chr

11, mice with a meiotic crossover between D11Mit208 and
D11Mit242 were typed for six, single-nucleotide polymor-
phisms (herein designated SNP1-6) known to lie in this
“critical region”. This analysis identified two recombinants
that carried a crossover between SNP2 and wly, and one
with a crossover between wly and SNP6. (No crossovers
separated wly from D11Mit260, or from SNP3, 4, or 5.)
Thus, wly must be located between SNP2 and SNP6, an
interval that measures less than 0.8 Mb and includes fewer
than 20 genes or predicted genes (see Figure 3a).
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Figure 2 Segregation of wly and six DNA markers on mouse Chr 11 among 1,679 backcross progeny. Microsatellite markers typed are
shown to the left of the diagram. The haplotype depicted is that transmitted by the heterozygous F1 dam. Open boxes indicate A/J-derived
alleles; filled boxes indicate NOD/ShiLtJ-wly/J-derived alleles. The number of progeny that inherited each haplotype is shown below it. The
percentage recombination in each marker interval is shown to the right (± 1 standard error). Red crosses represent crossovers in the interval
between D11Mit208 and D11Mit242, a span that includes wly (since wly must lie telomeric to the 11 crossovers marked with an asterisk, and
centromeric of the 19 crossovers marked with a dagger). Marker D11Mit260 (shown in green) did not recombine with wly in the backcross panel.
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Sequence analysis of gene candidates from the
wly-critical interval
For some of the genes located in the SNP2 to SNP6
interval (including Slc47a1 [6], Epn2 [7], Grap [8], Ulk2
[9], Mapk7 [10], and Akap10 [11]) loss-of-function al-
leles have been engineered (by others), and null-allele
homozygotes have been reported to display no apparent
changes to hair development or coat texture, making
them unlikely candidates for the gene responsible for
the wly mutation. For several others (including four
predicted genes not shown in Figure 3a), available ex-
pression data [3,4] failed to suggest any obvious func-
tional role in skin. By contrast, two other genes in the
critical interval, the overlapping Slc5a10 [for solute car-
rier family 5 (sodium/glucose cotransporter), member
10] and Fam83g (for family with sequence similarity 83,
member G) genes, were isolated from cDNA libraries
derived from mouse skin [12]. To investigate these “pri-
mary” candidates as the possible basis of the mutant
wooly phenotype, the coding regions of both genes
were sequenced in genomic DNA from A/J, C57BL/6J,
NOD/ShiLtJ, and mutant NOD/ShiLtJ-wly/J mice.
While this analysis revealed several sites that are

polymorphic among these four strains—some new and
some previously reported (as summarized in Additional
file 3 and shown in detail in Additional file 4 & Additional
file 5)—the only sequence distinction found between
the coisogenic NOD/ShiLtJ and NOD/ShiLtJ-wly/J
strains was a 955 bp deletion in the mutant strain
(see Additional file 6a) that lies in Intron 10–11 of Slc5a10
and removes part of Intron 2–3 and Exon 3 of Fam83g
(see Figure 3b). Because none of 17 other inbred strains
tested (including nine strains of Swiss origin, and there-
fore related to or derived from the NOD strain) show
this sequence alteration, while wly mutants tested from
three distinct colonies do (Additional file 6b), we suggest
that this 955 bp deletion is specifically associated with
the wly mutation.

A Fam83g deletion is likely to be the molecular basis of
the mutant wooly phenotype
Because this deletion lies in Intron 10–11 of the Slc5a10
gene, we amplified sequences between Exons 9 and 13
from cDNA templates based on total RNA isolated from
wly/wly or wild type skin to determine if this mutation
could affect splicing of Slc5a10 transcripts. Amplimers
copied from wly/wly and wild type NOD/ShiLtJ cDNA
templates were identical in length, and sequencing veri-
fied that Exons 10 and 11 of Slc5a10 are spliced nor-
mally in wly/wly mutants (data not shown).
Because this deletion removes the splice acceptor site

at the 5’ end of Exon 3 in Fam83g, it was predicted that
the mutant transcript would likely be spliced such that
Exon 2 is joined with Exon 4, rather than Exon 3 (see
Figure 3b). This prediction was tested by PCR amplifica-
tion of sequences between Exon 1 and Exon 4 from
cDNA templates based on total RNA isolated from mu-
tant or wild type skin. Sequencing of the 359 bp, wly-
specific product and the 484 bp, wild type product (see
Additional file 6c) demonstrated that the predicted, ab-
errant Exon 2–4 splice does occur in wly/wly mutants;
while the expected Exon 1-2-3-4 joining occurs in wild
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Figure 3 Physical maps of the wly mutation on mouse Chr 11. (a) Molecular markers and genes on mouse Chr 11 that are linked with wly.
Markers in grey (D11Mit313 and D11Mit261) have been reported by others to flank the wlymutation [1]. Segregation data from the large, 1,679-member
backcross (shown in Figure 2) place wly between the markers shown in blue (D11Mit208 and D11Mit242). Single-nucleotide polymorphisms (SNP1-6, see
Additional file 1 & Additional file 2) were used to further localize crossovers among those backcross mice recombinant between D11Mit208 and
D11Mit242 (the numbers of crossovers located in each interval are shown below the chromosome). Three such recombinants located wly between SNP2
and SNP6 (shown in red). A 1-Mb scale bar is shown below the linear arrangement of these markers. An expanded physical map of the markers and
genes (represented by colored rectangles) located between SNP2 and SNP6 is shown below the chromosome and above a 0.1 Mb scale bar. Markers
shown in green were never separated from wly in the backcross panel. Mice homozygous for null-alleles of the genes shown in blue have normal furry
coats, making these genes poor candidates for being the genetic basis of wly. For genes shown in orange, available expression and functional data [3,4]
did not overtly implicate skin, but genes shown in yellow are known to be expressed in mouse skin. (b) The Fam83g gene has been expanded (note the
.01 Mb scale bar) to show the arrangement of its five exons. Taller green boxes represent coding regions, and shorter white boxes represent untranslated
regions. The portion of Intron 2–3 and Exon 3 boxed in red on the wild type allele is deleted in mutant mice (see also Figure 4a). This disruption is
predicted to alter mRNA splicing of the mutant Fam83g transcript, as indicated.
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type mice. Because the skipped Exon 3 contains 125 nu-
cleotides, the inappropriate junction of Exon 2 with 4
causes a frameshift after Codon 224 that is predicted to
introduce 24 novel amino acids in the mutant Fam83g
gene product before terminating translation quite early
in Exon 4 (see Figure 4). Such a severe truncation in the
Fam83g protein sequence (from an expected 812 a.a. for
the normal protein to only 524 a.a. in the mutant) is very
likely to negatively impact protein function, and suggests
further that this mutation could be the basis of the mu-
tant wooly phenotype.
Discussion
The eight members of the Fam83 family are mostly un-
characterized proteins, in both mouse and man. Fam83a,
also known as tumor antigen BJ-TSA-9 [13], is a novel,
tumor-specific protein highly expressed in human lung
adenocarcinoma cells. Fam83d, also referred to as spin-
dle protein CHICA [14], is a cell-cycle-regulated spindle
component which localizes to the mitotic spindle and is
both up regulated and phosphorylated during mitosis. De-
fects in the gene encoding Fam83h cause autosomal dom-
inant hypocalicified ameliogenesis imperfecta (ADHCAI)



Figure 4 The predicted amino acid sequence encoded by wild type and mutant alleles of Fam83g. The wild type amino acid sequence is
based on our DNA sequence analysis of the C57BL/6J, A/J, and NOD/ShiLtJ inbred strains of mice. The five coding sequence differences we found
among these three strains and the NOD/ShiLtJ-wly strain are highlighted in green (for three silent, third-position changes) or in yellow (for two
nonsynonymous substitutions). All of these polymorphisms are described in detail in Additional file 5. Vertical bars indicate boundaries between
odd numbered exons (shown in black) and even-numbered exons (shown in blue). The codon specifying Serine 272 (shown in red) spans Exons 2
and 3. In mutant Fam83g mRNA, Exon 3 is skipped (see Figures 3b & Additional file 6c), predicting that Exon 4 sequences will be translated out-of-
frame, yielding 24 novel amino acids (shown in green) before an out-of-frame stop codon (*) is encountered, yielding a severely truncated product
of only 524 amino acids (vs. the normal 812 amino acids). Conserved domains that have been predicted for the wild type Fam83g protein are
indicated by horizontal lines on the diagram: red is the domain of unknown function DUF1669, accession number PF07894 [20,21]; black is the
phospholipase D/nuclease superfamily domain, accession number SSF56024 [22,23]; green is the N-terminal phospholipase D-like domain,
accession number cd09187 [24,25]; purple is the proline rich function unknown, accession number PS50099 [28,29]; and are discussed in the text.
Horizontal lines drawn in orange indicate regions that display low complexity [3].
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[15-19]. Fam83b, c, f, and g are uncharacterized proteins
present across vertebrates, while Fam83e is an un-
characterized protein found only in mammals. Some pro-
teins with structural similarity to Fam83g’s N-terminal
domain of unknown function (Pfam domain DUF1669,
[20,21]; superfamily domain SSF5624, [22,23]; conserved
domain cd 09119, [24,25]; see Figure 4) are known to
be phospholipases, but this domain in Fam83g shows
only trace similarity to the phospholipase D catalytic
domain and lacks the functionally-important histidine
residue [26,27], so while Fam83g may share a similar
3-dimensional fold with some phospholipase D-like
enzymes, it is unlikely to display phospholipase D-like
activity. An additional proline-rich domain has been
identified from amino acid 470 to 511 (Prosite profiles,
PS5099, [28,29]; see Figure 4), but again no function has
yet been assigned. Whatever their functional significance,
both of these conserved protein domains would be partially
or entirely removed by the Fam83g mutation in wooly
mice (see Figure 4). We predict that this mutant Fam83g
protein is, therefore, likely to be non-functional, consistent
with our suggestion that the lack of normal Fam83g prod-
uct in wly/wly homozygotes may be responsible for the
mutant wooly phenotype.
More direct evidence for a causal link between this dele-

tion and the wooly phenotype would require, for example,
transgenic rescue of mutant homozygotes, or recreation of
the wooly phenotype in engineered Fam83g “knock-out”
homozygotes. While such single-addition and single-
subtraction experiments are beyond our laboratory’s ability
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to perform, we anticipate testing for complementation
between NOD/ShiLtJ- wly/J and a recessive, Fam83g
knock-out variant (as soon as one becomes available).
Non-complementation (i.e., production of phenotypically
mutant wly/Fam83gk.o. offspring) would provide definitive
proof that homozygousity for Fam83g defects, alone, is
the molecular basis of the mutant wooly phenotype.
No other similar mutations affecting skin or hair have

been described in this region on mouse Chr 11 [3], nor are
we aware of any human conditions involving skin or hair
in the orthologous region of human Chr 17p11-12 [30]. In
man, the term “woolly hair” (WH) is used to describe a
group of inherited hair shaft disorders characterized by fine
and tightly curled hair [31], but—based on their distinct
phenotypes, chromosomal locations, and, in some cases,
known molecular bases [see [32,33]—none of these de-
scribed disorders appears related to mouse wooly. We
therefore suggest that the NOD/ShiLtJ- wly/J mouse strain
may provide a unique animal resource, the study of which
will be crucial to any future investigation of Fam83g and
its functional role in the normal or disrupted development
of the mammalian integument. For example, it will be in-
teresting to learn where Fam83g is expressed in normal
and mutant hair follicles (e.g., in the dermal papilla, the epi-
thelial lineage, or other hair-follicle-associated structures),
and whether its expression varies during the anagen,
catagen and telogen phases of the hair follicle growth cycle.
While one previous histological evaluation failed to un-
cover a microscopic manifestation of the wooly phenotype
[1], we hope—especially with molecular probes made pos-
sible by the likely genetic assignment of wly to Fam83g—
that in situ-based expression or immunohistological ana-
lyses can now be approached to finally reveal the cellular
basis of the wooly phenotype.
Conclusion
The 955 bp deletion we describe appears to be specific-
ally associated with the wly mutation; it alters the spli-
cing of mutant Fam83g transcripts; and is predicted to
generate a severely truncated, mutant Fam83g protein.
We therefore suggest that this defect is likely to be the
molecular basis of the mutant wooly phenotype.
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