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Influenza B virus has global ordered RNA
structure in (+) and (-) strands but relatively less
stable predicted RNA folding free energy than
allowed by the encoded protein sequence
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Abstract

Background: Influenza A virus contributes to seasonal epidemics and pandemics and contains Global Ordered RNA
structure (GORS) in the nucleoprotein (NP), non-structural (NS), PB2, and M segments. A related virus, influenza B, is
also a major annual public health threat, but unlike influenza A is very selective to human hosts. This study extends

the search for GORS to influenza B.

vaccines by altering RNA folding stability.

Findings: A survey of all available influenza B sequences reveals GORS in the (+) and (—)RNAs of the NP, NS, PB2,
and PB1 gene segments. The results are similar to influenza A, except GORS is observed for the M1 segment of
influenza A but not for PB1. In general, the folding free energies of human-specific influenza B RNA segments are
less stable than allowable by the encoded amino acid sequence. This is consistent with findings in influenza A,
where human-specific influenza RNA folds are less stable than avian and swine strains.

Conclusions: These results reveal fundamental molecular similarities and differences between Influenza A and B
and suggest a rational basis for choosing segments to target with therapeutics and for viral attenuation for live
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Findings

Introduction

In contrast to influenza A, a zoonotic pathogen that in-
fects multiple host species, influenza B primarily infects
humans and, rarely, seals [1,2]. Influenza B also differs
from influenza A by having a lower mutation rate and
fewer antigenic serotypes [3]. Though its lack of anti-
genic diversity bars pandemic outbreaks, influenza B
contributes to seasonal occurrences of influenza, which
can result in serious infections costing thousands of lives
and billions of dollars [4,5]. Influenza B has been of in-
creasing concern lately, due to the rise in circulation of
two distinct lineages of the virus: Victoria and Yamagata,
which stimulated the recent switch from a trivalent
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vaccine (against one influenza B and two influenza A se-
rotypes) to a quadrivalent vaccine including both influ-
enza B serotypes [6,7]. The viral genome is comprised of
eight negative sense, or (—-)RNA, segments. Segments
NS, M1/BM2, and NA encode multiple protein products
via alternative initiation, termination-reinitiation, and
splicing, respectively [8].

RNA secondary structure plays important roles in the
biology of many viruses: for example, in gene expression
[9], splicing [10], molecular stability/life-time [11], and
control of host gene expression [12]. Some RNAs, such
as compact viral genomes, can encode both protein
information and functional RNA secondary structures
[13]. The importance of RNA structure in influenza
virus protein coding regions, or (+)RNA, is now being
revealed. For influenza A, structures have been described
towards the 5" end [14] and at the 3" splice site [15,16]
of segment NS (+)RNA. Both structures may have a role
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in the regulation of splicing. When many sequences are
available, predicted folding stabilities can identify RNA
regions likely to have structure [17]. A survey of all in-
fluenza A coding sequences found evidence for multiple
sites with probable locally conserved RNA structure in
the (+)RNA [18]. Similar to segment NS, structures were
discovered in the 5’ region and 3" splice site of segment
M. The structure at the 3" splice site can switch between
pseudoknot and hairpin conformations, respectively,
burying or revealing the splice site and other splicing
signals [19]. Thus, this structure may have a role in
regulation of segment M splicing.

In addition to locally conserved RNA structure, a sur-
vey of all influenza A sequences revealed global ordered
RNA structure (GORS) that extends throughout (+) and
(-) RNA for the NP, NS, PB2, and M1 genes (an error in
our previous calculations of GORS in influenza A (-)
RNA [20] gave the incorrect result that this orientation
lacked conserved structure. Correction of this mistake
revealed that genes with GORS in the (+)RNA also pos-
sessed GORS in the (-)RNA. GORS is revealed by
predicting “excess” thermodynamic stability of wild-type
RNA sequences versus random RNA of the same com-
position, as represented by a z-score [21]:

(A G(()37,wld—type) —ﬂ)

- — 1
z-score . (1)

Here AG’s7, wild-type is the predicted folding free energy
of the wild-type sequence, p is the average predicted
folding free energy of the dinucleotide randomizations,
and o is the standard deviation of the randomized popu-
lation. GORS is defined as a significant negative shift in
the median z-score away from an ideal non-structured
RNA population (i.e. a normal distribution centered at
zero). Thus, segments with a median z-score below
-0.67 are considered to have GORS.

While free energy minimization has limited accuracy
and, in most algorithms, forbids pseudoknots [22], it can
on average correctly predict roughly 73% of base pairs
[23]. Estimating free energies is an easier problem. For
example, structures with greater than 86% of correctly
predicted base pairs typically differ from the minimum
free energy structure by an average of only 5% in their
AG°3; values [24]. Thus, good estimations of the relative
thermodynamic stability within the same segment and
between wild-type and matched randomized controls is
achievable.

Many RNA viruses have negative shifts in z-scores for
(+)RNAs relative to unstructured sequences [25,26], im-
plying widespread RNA structure. Studies in bacterial
mRNAs found similar patterns [27]. Influenza A has
GORS in both orientations of the NP, NS, PB2, and M
gene segments. Generally in influenza A, avian strains
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are the most stable, followed by swine and then human
[20]. A similar trend was found for the z-scores of NP,
NS, and PB2 gene segments. The exact role of GORS is
unclear, but may be a mechanism for evasion of the host
innate immune system [25] or for controlling mRNA
life-time/stability [28]. Identification of segments with
and without GORS could help guide discovery of targets
for small molecules and oligonucleotide therapeutics
against influenza virus, since these approaches require
structured and unstructured RNA targets, respectively.

This study extends to influenza B the search for global
trends in RNA structure. Because only human influenza B
strains are available, the folding free energies and z-scores
of influenza B sequences are compared to folding free
energies and z-scores of synonymous codon mutations
(i.e. sequences that code for the same protein as wild-
type influenza B sequences) generated in silico. Additional
comparisons are made between results for influenza A
and B. Similarities and differences are observed, which
imply that influenza B has a distinctly different biology
from influenza A.

Materials and methods

The research in our lab, including the content of this
manuscript, has been performed with the approval of
the University of Rochester’s research ethics committee.

Coding regions for all unique influenza B mRNAs
were downloaded from the NCBI Influenza Virus Re-
source Page [29]. Truncated sequences or those with
ambiguous nucleotides were removed, leaving 4110 se-
quences: 370 in NP, 519 in NS, 363 in PB2, 339 in PBI,
350 in M1, 832 in HA, 354 in PA, and 983 in NA. RNA
folding free energies for the entire coding regions were
predicted by minimizing the AG°3; with the program
RNA fold [30]. Z-scores [21] were calculated for all se-
quences by comparing the free energy of wild-type
sequences to sets of ten randomized sequences, which
preserved dinucleotide content using the Simmonics Se-
quence Editor [31,32]. A negative z-score implies GORS
[20]. In this work, a population of single sequences with
a median z-score below -0.67 is considered to possess
GORS. We will apply the same definition to a reanalysis
of our previous results for influenza A [20].

To generate sets of synonymous codon mutants for
comparison with folding free energies and z-scores of
wild-type sequences, one coding region for each of the
eight segments was mutated in silico to produce eight
sets of 500 synonymous mutant sequences. Five hundred
randomizations of one sequence from each segment was
considered sufficient because the protein sequences
are ~100% conserved in the available influenza B
sequences. Synonymous codon mutations were made
with a PERL script that randomly selected codons and
made synonymous substitution at those sites, including
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substituting the same codon (no change). Folding free
energy and z-scores were calculated as described above
for wild-type. Specifically, ten dinucleotide randomiza-
tions of each of the 500 synonymous codon mutants
were used for calculating 500 z-scores for each influ-
enza B segment.

Box plots were constructed for each population of pre-
dicted free energies and z-scores. The box on each plot
represents the interquartile range (IQR) which is defined
as the difference between the 75th percentile (Q3) and
25th percentile (Q1) of each population. Upper and
lower bounds for each plot (bars extending from the
box) represent the largest and smallest data values
within 1.5 x IQR of the Q3 and Q1, respectively. Values
outside of this area are considered anomalous for that
population.

Results

Clear evidence for influenza B GORS is found in the
(+) and (-) strands of segments NP, NS, PB2, and PB1,
with NP having the most favorable median z-score
(Table 1). Distributions of z-scores for these sequences
were almost entirely in the negative region (Figure 1
and Additional file 1: Figure S1). The remaining cod-
ing regions have average z-scores close to zero or posi-
tive (Table 1). The z-score distributions for the
sequences that did not show GORS generally centered
near zero or trended towards the positive (Figure 2
and Additional file 2: Figure S2).

With the exception of HA, distributions of predicted
free energies for influenza B are shifted towards more
stability in the (+)RNA versus the (-)RNA (Figure 3), so
(+)RNAs have more favorable predicted average folding
free energies than (-)RNAs (Table 1). Free energy of
folding also favored the (+)RNA for all segments in
influenza A [20].

Unlike influenza A, there are no avian or swine se-
quences available to compare the relative predicted
stabilities of folding in other species for each segment
of influenza B. To simulate this comparison, sets of
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synonymous codon mutants were generated. The in
silico synonymous codon mutant sets provide distribu-
tions of free energies for each influenza B coding
region where the only constraint is to maintain the
encoded protein product. They thus represent the
potential RNA folding free energy landscape allowed
by the encoded amino acid sequence. Predicted AG°3;
indicates that wild-type sequences in the (+)RNA sense
generally have less stable secondary structure than
sequences with codon mutants (Table 1). Only NP
breaks this trend, where the in silico (+)RNA mutants
are on average less stable by 1.0 kcal/mol at 37°C. Distri-
butions of free energies for the mutant sequences have
greater spread than wild-type sequences and are also gen-
erally shifted towards more favorable thermodynamic sta-
bility versus the wild-type sequences (Figure 3). Evidently,
the average thermodynamic stability of wild-type se-
quences is less favorable than allowed by protein coding
constraints, even though global RNA structure is present
in at least four coding regions. The wild-type sequences
occupy a small part of the range of free energies allowed
by the amino acid sequence and are distributed towards
less favorable stability (Figure 3). An examination of nu-
cleotide frequencies reveals that synonymous codon mu-
tants have at least 2% higher GC content than wild-type
sequences (Table 2).

Z-scores were also calculated for the synonymous
codon mutant sets. Compared to distributions of the
four wild-type sequences with evidence of GORS, all but
the NS segment mutants still possess GORS. In the
three cases, however, the median z-scores for mutants
were more positive than for wild-type sequences (Table 1,
Figures 1 and 2).

Discussion

Predictions of GORS can partition RNA sequences into
regions with or without strong secondary structure. Such
partitioning should be helpful in identifying regions eas-
ier to target with therapeutics. For example, small mole-
cules will bind specifically to structured regions, whereas

Table 1 Median z-scores and average predicted folding free energy for influenza B (+)RNA, (-)RNA and synonymous

codon mutant (mut (+)RNAs)

Segment Z-score (+)RNA Z-score Mut (+)RNA Z-score (—)RNA AG°37 (+)RNA AG°37; Mut (+)RNA AG’3; (-)RNA
5 NP =20 -0.7 =12 —494.5 —493.5 —485.7
8 NS -1.6 -06 =10 —2794 —283.1 —264.5
2 PB1 -16 -08 -18 -601.7 —624.1 -580.9
1 PB2 -13 -0.7 =12 -600.6 —638.2 —538.2
7 M1/BM2 -0.3 -0.2 1.1 —276.6 -290.8 —2456
4 HA 0.0 -03 0.0 —485.1 -5114 -506.7
3 PA 0.2 -0.1 -06 -552.0 -593.0 -501.3
6 NA 1.1 0.6 12 —384.2 —409.5 -374.8

Negative z-scores below —0.67 reveal GORS.
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Figure 1 Box plots of z-scores for influenza B wild-type coding regions with evidence of global ordered RNA structure and mutant
sequences coding for the same protein: Boxes represent the interquartile region (IQR = Q3 - Q,) for each distribution. The left edge of
the box is the 25th percentile (Q;) and the right edge is the 75th percentile (Qs). The bar inside the box indicates the median and the red cross
indicates the mean. Bars extending from the right and left of the box indicate the upper and lower bounds, respectively (See Materials and
methods). GORS is considered present when the median for influenza sequences lies outside the IQR expected for an unstructured control
population (i.e. a normal distribution centered at zero) shown at the bottom of each plot.

M1/BM2 HA
Mut (+)RNA Mut (+)RNA
—L I —L 1
(+)RNA (+)RNA
(-)RNA %FI{;}
Normal Normal

— L .

Z-Score Z-Score
PA NA
Mut (+)RNA Mut (+)RNA
—L F —7”"
(+)RNA (+)RNA
(-)RNA (-)RNA

¢

3 2 4 0 1 2 s 3 2 4
Z-Score Z-Score
Figure 2 Box plots of z-scores for influenza B wild-type coding regions and mutant sequences coding for the same protein with no
evidence of global ordered RNA structure: see Figure 1 for annotations and details.
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oligonucleotide based therapeutics will bind more tightly
to unstructured regions. Prediction of regions with
GORS may also facilitate genome-wide probing of sec-
ondary structure [33-35] by focusing searches to regions
likely to have conserved structure.

For influenza B, three of the four gene segments with
GORS have homologs in influenza A that also show
GORS [20]: NP, NS, and PB2. Unlike influenza A, there
is no evidence for GORS in the influenza B M1/BM2
gene. A possible explanation for this lack of GORS is
that in influenza A, segment M encodes both the M1
(matrix protein) and M2 (ion channel) proteins, which
are alternatively spliced, whereas in influenza B the BM2
open reading frame directly follows M1 and is translated
via termination-reinitiation [36,37]. In influenza A, local
RNA structures have been described that have implica-
tions for splicing [15,18,19]. Perhaps GORS is absent in

Table 2 Average GC content of wild-type (+)RNA
influenza B sequences and synonymous codon mutant
sequences

Segment Avg. % GC wild-type (+)RNA Avg. % GC Mut (+) RNA
5 NP 43 45
8 NS 41 43
2 PB1 39 42
1 PB2 39 42
7 M1/BM2 40 42
4 HA 43 45
3 PA 39 44
6 NA 45 47
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influenza B M1/BM2 because there is no need for RNA
structures important for splicing.

In influenza B, the PB1 coding region shows strong
evidence of GORS (median z-score of —1.5), in contrast
to influenza A where the average z-scores are equal to
or more positive than -0.5 [20]. This suggests PB1 of in-
fluenza B must maintain structure to stabilize mRNA for
some yet unknown reason that is not present for influ-
enza A PBIl. Interestingly, the (-)RNA z-score for this
region is more favorable than the (+)RNA. This suggests
an important role for structure in the genomic RNA for
this segment, with structure in the (+)RNA representing
a structural “echo”.

The result of less favorable relative thermodynamic sta-
bility of influenza B sequences when compared with a set
of randomly generated synonymous codon sequences is
consistent with the human host species specificity of influ-
enza B. For influenza A, sequences specific to humans
have less favorable thermodynamic stability than swine
and avian species, even though protein sequence is largely
conserved [20]. However, any changes in thermodynamic
stability in synonymous codon mutants for all segments
appears to be independent of GORS because the average
z-score for the mutants was close to zero. A decrease of
CpG dinucleotide frequencies in human influenza viruses
has been established [38]. As seen in Table 2, synonymous
codon mutants acquired increased GC content, which
increased their predicted thermodynamic stability,
compared to wild-type sequences. This is consistent
with the increased GC content of avian influenza A
strains compared to human influenza A strains [39].
It appears that evolution, acting to reduce CpG fre-
quency or other factors related to the human host,
restricts the thermodynamic stability of influenza B
sequences to a small portion of the available folding
landscape. Thus, this thermodynamic difference may
distinguish human-adapted influenza strains from
strains that replicate in other host species.

This work elucidates some of the thermodynamic and
structural constraints that may be acting on influenza B
RNA sequences and human influenza viruses in general.
Some characteristics are shared between influenza B and
A: GORS is seen in NS, NP, and PB2 RNAs of both viral
species. With the exception of influenza B HA, AG°3;
favors folding in the (+)RNA over the (-)RNA, and the
human-specific wild-type influenza B sequences have
less favorable thermodynamic stability than allowed by
the amino acid sequence. This latter trend was also seen
in human influenza A viruses when compared to swine
and avian strains [20]. Differences with influenza A are
also apparent: For influenza B, the PB1 RNA shows
GORS, while influenza A has GORS in the M gene seg-
ment. These results imply differences in the role of RNA
folding in the two viral groups. A better understanding
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of the constraints acting on influenza B sequences may
aid in the rational attenuation of viral strains for use in
vaccines, as has been recently shown with the influenza
B NP segment [40].
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RNA structure: top, middle, and bottom rows are for the (+)RNA,
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Additional file 2: Figure S2. Frequency distributions (in percent) of
z-scores for influenza coding regions with no evidence of global ordered
RNA structure: top, middle, and bottom rows are for the (+)RNA, (=)RNA,
and synonymous codon mutant (+)RNA, respectively.
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