
Torstenson et al. BMC Research Notes 2013, 6:5
http://www.biomedcentral.com/1756-0500/6/5
TECHNICAL NOTE Open Access
ASAP: an environment for automated
preprocessing of sequencing data
Eric S Torstenson1, Bingshan Li1,2 and Chun Li1,3,4*
Abstract

Background: Next-generation sequencing (NGS) has yielded an unprecedented amount of data for genetics
research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing
this data can significantly delay downstream analysis and increase the possibility for human error. The research
community has produced tools to properly prepare sequence data for analysis and established guidelines on how
to apply those tools to achieve the best results, however, existing pipeline programs to automate the process
through its entirety are either inaccessible to investigators, or web-based and require a certain amount of
administrative expertise to set up.

Findings: Advanced Sequence Automated Pipeline (ASAP) was developed to provide a framework for automating
the translation of sequencing data into annotated variant calls with the goal of minimizing user involvement
without the need for dedicated hardware or administrative rights. ASAP works both on computer clusters and on
standalone machines with minimal human involvement and maintains high data integrity, while allowing complete
control over the configuration of its component programs. It offers an easy-to-use interface for submitting and
tracking jobs as well as resuming failed jobs. It also provides tools for quality checking and for dividing jobs into
pieces for maximum throughput.

Conclusions: ASAP provides an environment for building an automated pipeline for NGS data preprocessing. This
environment is flexible for use and future development. It is freely available at http://biostat.mc.vanderbilt.edu/ASAP.

Keywords: Next-generation sequencing, Data processing, Automation, Computer cluster
Background
Modern sequencing technologies have greatly improved
our capability of acquiring deep sequencing data on a
large scale and in a timely fashion. However, the large
amount of data presents many new challenges to
researchers, including a significant amount of time and
effort on preprocessing raw sequencing reads into va-
riant calls that are ready for statistical analyses. This
process involves multiple steps and several independent
programs. For example, for species with a reference ge-
nome available, sequence reads are often initially aligned
to the reference genome using a mapping program such
as BWA (Li & Durbin [1]). Additionally, reads aligned to
insertion-deletion regions may require local realignment
to minimize false variant calls, and base quality scores
* Correspondence: chun.li@vanderbilt.Edu
1Center for Human Genetics Research, Vanderbilt University, Nashville, USA
3Department of Biostatistics, Vanderbilt University, Nashville, USA
Full list of author information is available at the end of the article

© 2013 Torstenson et al.; licensee BioMed Cen
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
may require recalibration to reflect empirical error rates;
these can be achieved with GATK (McKenna et al. [2]).
Moreover, variant calls may require filtering for false call
removal and annotation for downstream analyses. The
various steps require different programs and there may
be multiple programs available for some steps; for
example, variants can be called using GATK, samtools
(Li et al. [3]), or UMAKE (Kang et al. [4]). In some of
the steps (e.g., local realignment and variant calling), it
may be desirable to process multiple samples together to
borrow information across samples. Most steps can also
benefit from distribution of jobs on multiple computer
nodes. Managing these tasks manually on hundreds of
samples is a daunting process and is error prone. It is
therefore desirable to have a pipeline to automate these
tasks, and it is even better to have a flexible environment
for building an automated pipeline to allow adding or
removing steps and using alternative programs.
tral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

http://biostat.mc.vanderbilt.edu/ASAP
mailto:chun.li@vanderbilt.Edu
http://creativecommons.org/licenses/by/2.0

Torstenson et al. BMC Research Notes 2013, 6:5 Page 2 of 5
http://www.biomedcentral.com/1756-0500/6/5
Computer clusters have become available in recent
years, granting researchers access to hundreds and some-
times thousands of processors at affordable prices, yet few
if any of the applications required for sequence data pre-
processing currently support distribution of tasks over a
computer cluster. In addition, few researchers have ad-
ministrative access to their clusters. Galaxy (Goecks et al.
[5]), a general purpose bioinformatics tool, can be used to
help resolve some of these issues. However, it requires a
certain amount of administrative expertise to get started
as well as a significant amount of resources dedicated to
host and maintain the Galaxy server. Some sequencing fa-
cilities may have pipelines for internal use; however, these
internal pipelines may not be accessible to investigators
who wish to have a full control over data preprocessing.
We designed Advanced Sequence Automated Pipeline

(ASAP), an object-oriented application framework, to
resolve the issues above while minimizing human in-
volvement associated with processing a large volume of
sequencing data so that researchers can quickly start
their statistical analyses as well as incrementally add new
data as is often necessary for large-scale research pro-
jects. ASAP maximizes local cluster usage with minimal
user experience and no administrative access. It offers
an easy-to-use command interface for submitting and
tracking jobs as well as resuming failed jobs. It also pro-
vides tools for checking data quality. The current version
contains some of the component programs most com-
monly used for preprocessing human sequence data,
which can be replaced with alternative tools as needed.
ASAP processing scripts can also be run in serial for
those who want a pipeline for processing their data but
have no access to a computer cluster.

Implementation
We developed ASAP as an environment to streamline
preprocessing of next-generation sequencing data from
raw sequence reads to annotated variant calls. It was
designed to do the following: 1) produce scripts for data
processing according to the user’s pipeline configuration,
2) maximize hardware usage, 3) manage jobs, 4) ensure
data integrity, and 5) minimize user involvement while
maximizing flexibility for use and future development.

Processing capabilities and configuration
ASAP can currently execute five major steps using estab-
lished tools in sequence data preprocessing (Figure 1):
1) alignment of sequence reads to a reference gen-
ome, 2) local realignment around insertion-deletion
regions, 3) quality score recalibration, 4) variant call-
ing (for SNPs and insertions/deletions), and 5) anno-
tation of variants. Users define their preprocessing
pipeline by selecting appropriate steps and import
data either as fastq for alignment, or as bam files at
any point within the pipeline. By importing bam files,
users can integrate external data with data processed by
ASAP without having to tweak scripts to merge the data.
ASAP currently provides alignment to a reference se-
quence with BWA, variant calling using GATK, samtools,
and UMAKE, and annotation using ANNOVAR (Wang
et al. [6]). A user can customize ASAP to use other pro-
grams and even add new processing steps to allow the
construction of highly customized pipelines. In some of
the steps (e.g., local realignment and variant calling), it
may be desirable to process multiple samples together to
borrow information across samples. ASAP provides various
sample grouping schemes during these steps (Figure 1) to
give researchers maximum flexibility on how the sample
are pooled at different steps.
ASAP uses a single configuration file for the whole

process. It allows users to easily create baseline config-
urations and can incorporate parameters from multiple
sources. This can help minimize setup time and take
advantage of template configurations shared as “best
practices” by the research community. These template
configuration files can be partial, stripped of any sensi-
tive or study-specific parameters, and ASAP will use its
default values for all unspecified parameters. To achieve
reproducibility, all settings are stored in this one file,
which can be edited with any text editor and all proces-
sing scripts are retained for future inspection.
Users can also specify directory paths for permanent

and temporary data. The permanent directory contains
output and error logs, the job scripts, and the final bam
and variant calls. The temporary directory contains
intermediate files that are required by subsequent steps
and may ultimately be discarded by users.

Hardware maximization
Next-generation sequencing can generate a large amount
of data. For example, human exome sequencing data can
consume over 5 gigabytes (GB) at ≥30x depth of cover-
age after file compression, and whole-genome sequen-
cing at the same depth can exceed 200 GB in size.
Processing files of this size in a serial fashion is time
consuming and is unnecessary. ASAP can improve the
speed of data processing by providing tools for dividing
tasks to allow parallel processing and by using threads
when they are supported by component programs, such
as BWA and GATK. There are three ways for dividing
tasks: 1) split fastq files for parallel alignment, as illu-
strated in Figure 1, 2) execute jobs by chromosome
whenever possible, and 3) optionally split chromosomes
into smaller segments for variant calling. As chromo-
somes have different sizes, ASAP also allows flexible
grouping of chromosomes to balance the time spent on
the jobs. By splitting the data up in this manner and dis-
tributing the jobs to multiple nodes, these optimizations

Figure 1 Diagram of the major steps of ASAP. All the steps are optional and the grouping of samples is flexible.

Torstenson et al. BMC Research Notes 2013, 6:5 Page 3 of 5
http://www.biomedcentral.com/1756-0500/6/5
can provide a significant boost in throughput with no
negative impact on the results.
When processing large files, input and output band-

width becomes vital for execution speed. Network traffic
can be heavy even for a dedicated storage space of a
computer cluster. To minimize network traffic and
further improve processing, ASAP makes extensive
use of Unix pipes eliminating the overhead associated
with writing and reading temporary files. When
ASAP must use intermediate files, it offers users the
ability to prioritize alternate storage for these files,
allowing them to take advantage of local storage
when it is available.

Job management
ASAP doesn’t process data directly. Instead, based on
the user’s pipeline configuration, it produces short Ruby
scripts and can submit them to a computer cluster.
These scripts are straightforward, contain explicit calls
to component programs, and are readable by anyone
with basic knowledge of programming syntax. By default
new scripts do not overwrite previous scripts, thus lea-
ving a complete record of what was done. When used
on a computer cluster, ASAP correctly manages job sub-
missions and dependencies, eliminating delays between
the steps of a user’s pipeline.
A job can fail due to various reasons, and having many

jobs running increases the difficulty of job tracking. The
scripts generated by ASAP use tokens to identify their exe-
cution status while running under ASAP job management.
This built-in tracking functionality helps reduce delays in
processing by allowing the user to rerun ASAP to generate
only those jobs that have failed along with their dependen-
cies and resubmit them even while the other jobs are still
properly queued or actively running. ASAP also provides
simple commands to display job status and log contents.
When adding new samples to a preexisting project, ASAP
will correctly process the new data independent of the
data already processed, rerunning previously completed
steps only when necessary based on the pipeline defined
by the user.

Data integrity and quality control
Data integrity is very important in scientific research.
ASAP provides two mechanisms to ensure the jobs are
complete. The scripts intercept error codes passed from
component programs and halt execution upon receiving
an error. They also stop with an error if there is insuffi-
cient disk space when moving and copying data.
ASAP also provides summaries that are useful for

quality checking. For example, it calculates transition-
transversion ratio and het/hom ratio (defined as the
number of mutations detected as heterozygous divided
by the number of homozygous mutations). These num-
bers allow the investigator to quickly recognize problems
such as contamination or processing errors. Other sum-
maries such as those from “samtools flagstat” will be
generated as well. To further assist in the preparation
for analysis, ASAP also provides the option of annota-
ting the variant calls using ANNOVAR.

Table 1 Number of jobs, average run time (in minutes),
and maximum memory used (in GB) for the major steps
of preprocessing

5 exomes 2 whole genomes

#
jobs

Average
time

Maximum
memory

#
jobs

Average
time

Maximum
memory

Alignment 38 43.6 4.3 82 277.5 4.5

Realignment 18 29.0 3.5 36 181.7 4.8

Recalibration 80 7.0 3.3 32 109.3 2.9

SNP calling 136 1.6 3.2 136 9.8 3.1

Annotation 24 28.6 2.7 24 29.7 2.7

Total 311 316

Torstenson et al. BMC Research Notes 2013, 6:5 Page 4 of 5
http://www.biomedcentral.com/1756-0500/6/5
Flexible design for use and development
Because the current state of sequence data processing is
rapidly changing, ASAP was designed to be flexible for
use and development. One design element that allows
such flexibility is its extensive reliance on a plug-in
architecture. Plug-ins are found by performing “live
searches” for ASAP components such as steps, tem-
plates, and configuration classes. This allows developers
to follow simple naming conventions and class inherit-
ance to add new functionality to ASAP without having
to modify any of the preexisting code. Users can add
new components, for example, to use an alternative
aligner or variant caller, and they can add entirely new
steps to extend a pipeline in different ways. Users can
also add a new execution mechanism to modify the
manner in which scripts are launched, for example, to
adapt ASAP to another cluster platform. Development
of new functionalities requires only a moderate amount
of object-oriented programming technique and know-
ledge of Embedded Ruby (ERB).

Minimize user involvement
ASAP can be installed without administrative rights and
requires only Ruby 1.9.3 and its SQLite3 gem, which are
often available on Linux distributions or can easily be
installed with or without administrative rights. For users
who haven’t already downloaded the necessary compo-
nent programs, ASAP can be used to download and
install those tools automatically, and will record the
newly installed software for use in all future runs. Once
system preparation is complete, starting the whole data
preprocessing pipeline can require as few as three
commands, depending on the organization of the data
to be processed. During the processing, ASAP offers
a simple interface for checking status and restarting
failed jobs.

Results
We ran ASAP on 5 human exome and 2 whole-genome
sequencing data on the computer cluster at Vanderbilt
University, which runs 64-bit Linux on around 4,000
processor cores each with 3–16 GB of memory and uses
Portable Batch System (PBS) for resource management.
All data were paired-end 100nt reads with >30x cover-
age. No user intervention was needed after the initial
setup. We used 2 threads for the steps wherever thread-
ing was supported. It took <1 day to finish the exomes
and <2 days for the whole genomes, running through
initial alignment, local realignment, quality score recali-
bration, variant calling, and annotation.
Table 1 contains the number of jobs, average time, and

maximum memory usage for jobs of each of the major
steps. The run time was much shorter than running the
tasks in serial. For example, the initial alignment finished
in less than 44 minutes for all 5 exomes and less than
5 hours for the whole genomes. The maximum memory
usage varied across the steps, but all were less than 5 GB
per job. For all the steps except initial alignment, the
memory requirement may grow as the number of
samples increases but it can also be reduced by either
increasing the number of jobs or lowering the number
of threads.

Discussion
We have developed an environment for building a pipe-
line to preprocess NGS data and for managing its jobs.
The pipeline scripts will automate the steps in sequence
data preprocessing from raw sequence reads to anno-
tated variant calls as defined by the user. Such a pipeline
not only provides automated processing, but also
ensures consistency, reproducibility, maximization of
hardware usage, use of “best practice” procedures and
settings, and job traceability. Failing to properly cover
any of these issues can result in significant delay in start-
ing statistical analyses. ASAP is not intended to be a
replacement of existing component programs. The com-
ponent programs in the current version are commonly
used in practice today, and can be replaced with alterna-
tives if necessary.
Sequencing data processing involves several steps,

each having multiple parameters to set. Even if a sequen-
cing facility offers data processing and variant calling, it
may still be desirable to reprocess the data. For example,
the settings used by a sequencing facility may not be
appropriate for the purpose of a study; a study may have
data generated at multiple facilities with different pro-
cessing settings. ASAP is a timely tool for automatic
processing of sequencing data while giving investigators
full control of parameters. It can also be used by sequen-
cing facilities.
ASAP is an open-ended framework, which can be

extended to do many things. The current version pro-
vides features that are useful for processing DNA se-
quencing data for species with a reference genome

Torstenson et al. BMC Research Notes 2013, 6:5 Page 5 of 5
http://www.biomedcentral.com/1756-0500/6/5
available. RNA sequencing data often require different
steps and programs, such as TopHat (Trapnell et al. [7])
for alignment and Cufflinks (Trapnell et al. [8]) for
extracting expression information and performing statis-
tical analyses. For species without a reference genome,
NGS data often require de novo assembly and thus a
different set of tools. These capabilities can be added
to ASAP as plug-ins, and we plan to add these features
in the future.
ASAP is also designed to take advantage of local clus-

ters such as those available at many research institutions
today. Specifically, the current version provides compati-
bility with Torque/PBS and Sun Grid Engine (SGE)
based clusters. Support for other systems can be added if
there is sufficient interest. For users who lack access to a
computer cluster, ASAP can generate a collection of
Ruby scripts and assist in running those scripts in a ser-
ial fashion. In addition, ASAP provides easy installation
of component programs and a primer with an example
dataset to help the user to get started quickly.
As cloud computing becomes common, there will be

an interest in moving large-scale computation onto
cloud clusters. At this point, it is still more expensive
than using local clusters readily available to many inves-
tigators. ASAP can be modified to run under cloud plat-
forms and we plan to work on that.

Findings
ASAP is a user-friendly tool that can be used to auto-
mate script generation and job management for prepro-
cessing sequencing data from raw reads to annotated
variant calls. It also is highly configurable and extendable
to fit a user’s need. The resulting output provides the
user with the consistency and reliability required for
sound analysis downstream. ASAP gives investigators
full control of settings in all the processing steps with
complete reproducibility. It maximizes hardware usage
on a computer cluster while minimizing user involve-
ment, and provides a flexible framework for use and fu-
ture development.
Availability and requirements
Project name: Advanced Sequence Automated Pipeline
(ASAP)
Project home page: http://biostat.mc.vanderbilt.edu/ASAP
Operating systems: Linux/Unix, MacOS
Programming language: Ruby 1.9.3 or above
Other requirements: Ruby gem for SQLite3
License: GNU GPL
Any restrictions to use by non-academics: None
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
CL designed the study. EST implemented the program. BL provided
guidance on program design and implementation. EST and CL drafted the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank Drs. Mingyao Li and Jason Moore for allowing us to test ASAP on
their clusters.

Funding
This research was partly supported by the NIH grant R01HG004517.

Author details
1Center for Human Genetics Research, Vanderbilt University, Nashville, USA.
2Department of Molecular Physiology and Biophysics, Vanderbilt University,
Nashville, USA. 3Department of Biostatistics, Vanderbilt University, Nashville,
USA. 4Center for Human Genetics Research, Vanderbilt University Medical
Center, 519 Light Hall, Nashville, TN 37212-0700, USA.

Received: 16 July 2012 Accepted: 21 December 2012
Published: 4 January 2013

References
1. Li H, Durbin R: Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 2009, 25:1754–1760.
2. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,

Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The genome
analysis toolkit: a MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Res 2010, 20:1297–1303.

3. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R, 1000 Genome Project Data Processing Subgroup: The sequence
alignment/map format and SAMtools. Bioinformatics 2009, 25:2078–2079.

4. Kang HM, Jun G, Sidore C, Li Y, Anderson P, Trost MK, Chen W, Blackwell T,
Abecasis G: UMAKE; 2012. http://genome.sph.umich.edu/wiki/UMAKE.

5. Goecks J, Nekrutenko A, Taylor J, Galaxy Team: Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 2010, 11:R86.

6. Wang K, Li M, Hakonarson H: ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res 2010,
38:e164.

7. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics 2009, 25:1105–1111.

8. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ,
Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by
RNA-Seq reveals unannotated transcripts and isoform switching during
cell differentiation. Nat Biotechnol 2010, 28:511–515.

doi:10.1186/1756-0500-6-5
Cite this article as: Torstenson et al.: ASAP: an environment for
automated preprocessing of sequencing data. BMC Research Notes 2013
6:5.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://biostat.mc.vanderbilt.edu/ASAP
http://genome.sph.umich.edu/wiki/UMAKE

	Abstract
	Background
	Findings
	Conclusions

	Background
	Implementation
	Processing capabilities and configuration
	Hardware maximization
	Job management
	Data integrity and quality control
	Flexible design for use and development
	Minimize user involvement

	Results
	Discussion
	Findings
	Availability and requirements
	Competing interests
	Authors’ contributions
	Acknowledgements
	Funding
	Author details
	References

