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Abstract

Background: Next Generation Sequencing (NGS) machines extract from a biological sample a large number of short
DNA fragments (reads). These reads are then used for several applications, e.g., sequence reconstruction, DNA
assembly, gene expression profiling, mutation analysis.

Methods: We propose a method to evaluate the similarity between reads. This method does not rely on the
alignment of the reads and it is based on the distance between the frequencies of their substrings of fixed
dimensions (k-mers). We compare this alignment-free distance with the similarity measures derived from two
alignment methods: Needleman-Wunsch and Blast. The comparison is based on a simple assumption: the most
correct distance is obtained by knowing in advance the reference sequence. Therefore, we first align the reads on
the original DNA sequence, compute the overlap between the aligned reads, and use this overlap as an ideal
distance. We then verify how the alignment-free and the alignment-based distances reproduce this ideal distance.
The ability of correctly reproducing the ideal distance is evaluated over samples of read pairs from Saccharomyces

cross-validated over different samples.

cerevisiae, Escherichia coli, and Homo sapiens. The comparison is based on the correctness of threshold predictors

Results: We exhibit experimental evidence that the proposed alignment-free distance is a potentially useful
read-to-read distance measure and performs better than the more time consuming distances based on alignment.

Conclusions: Alignment-free distances may be used effectively for reads comparison, and may provide a significant
speed-up in several processes based on NGS sequencing (e.g., DNA assembly, reads classification).

Keywords: Sequence analysis, Next generation sequencing, Alignment-free

Background

The development of Next Generation Sequencing (NGS)
machines allows the extraction of an extremely large
amount of reads (i.e., short fragments of an organism’s
genome) at low cost. The length of such reads is very small
when compared to the length of a genome: it may range
from 40 to 300 base pairs (bp) (i.e., characters), while the
length of a simple genome (e.g., bacteria) is in the order of
millions base pairs (Mbp). Three main NGS technologies
are currently used [1]: Roche 454, Illumina, and Ion
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Torrent. At present, Illumina technology performances
are 40 gigabase pairs (Gbp) per day at a low cost per bp
[illumina.com] with reads average length of 70 bp; Roche
454 performances are 1 Gbp per day at a higher cost with
reads average length of 250 bp [454.com]; Ion Torrent
machines produce reads of 200 bp with a throughput of
5 Gbp per day at a low cost per bp [2].

DNA assembly can be defined as the reconstruction of a
genome, starting from a large number of short overlapped
fragments (reads) obtained by a sequencing operation.
The length of each read and the number of reads are
determined by the type of sequencer. The complexity of
the assembly process stems from the length and num-
ber of the reads: longer reads are easier to be assembled,
while a larger number of short reads requires a higher

© 2014 Weitschek et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.


http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Weitschek et al. BVIC Research Notes 2014, 7:869
http://www.biomedcentral.com/1756-0500/7/869

computational effort, although providing more informa-
tion. Typically, the number of reads produced by NGS
experiments reaches several millions or more, depending
on the sequencing coverage and on its depth. The use of
NGS machines results in much larger sets of reads to be
assembled, posing new problems for computer scientists
and bioinformaticians, whose task is to design algorithms
that align and merge the reads for an effective reconstruc-
tion of the genome (or large portions of it) with sufficient
precision and speed [3].

Many competing algorithms have been developed for
DNA assembly: a comprehensive comparison of recent
and well-established ones can be found in [4] and [5],
where these methods are tested on common bench-
marks. The assembly problem is proven to be NP-hard
[6] and several heuristic algorithms have been proposed.
Algorithms for DNA assembly are based on two main
approaches: overlap graphs (e.g., [7]) and De Bruijn
Graphs [4]. In an overlap graph each read corresponds
to a node, and the overlaps between read pairs - that
define the weights of the arcs - are usually computed
by means of alignment methods; an assembly is derived
from an Hamiltonian path in this graph. In the De Bruijn
Graphs approach, reads are represented on a graph whose
nodes and edges are nucleotide subsequences of length
k (called k-mers) [8]; an edge corresponds to an over-
lap between two nodes. The assembly is found searching
for an Eulerian cycle in this graph and it is represented
by a sequence of edges. Several assembly software tools
(e.g., ABySS [9], Velvet [10], and SoapDeNovo [11]) use
subsequences of fixed dimensions (k-mers) for building
the De Bruijn graph. These and other well-established
assembly algorithms (e.g., Ssake, Sharcgs, Vcake, Newbler,
Celera Assembler, Euler, and AllPaths) are described and
compared in [12]. We note that the role of k-mers in
the assembly approaches based on De Bruijn graph is
substantially different from the role they play in the the
definition of the alignment-free distance described later.
In fact, the De Bruijn graph uses k-mers as nodes of the
graph and does not consider their frequency, while our
approach is based on the frequency of k-mers to assess
reads similarity.

A large number of these algorithms - in particular, those
using the overlap graphs - are based on the similarity
between reads. Such a similarity is the main way to assess
whether two reads may be overlapped in the reconstruc-
tion process or not. In these approaches, such a measure
is hence required to compare each read pair, generating a
number of comparisons that is potentially quadratic in the
number of reads. Therefore, it is extremely important to
develop methods that can quickly establish whether two
reads are similar or not.

In this paper, we focus on alignment-free techniques
that have been proven to be effective in sequence analysis
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[13,14]. These techniques can be classified into two main
groups: methods based on sequence compression and
methods that rely on subsequence (oligomers) frequencies
[13]. The aim of the methods belonging to the first group
is to find the shortest possible description of the sequence.
They compute the similarity of the sequences by ana-
lyzing their compressed representations. Currently avail-
able methods are based on the Kolmogorov complexity
[15] and on Universal Sequence Maps [16]. An exten-
sive review can be found in [17]. The methods based
on oligomers frequencies rely on the computation of the
substring frequencies of a given length k in the origi-
nal sequences, called k-mers. Here, the similarity of two
sequences is based only on the dictionary of subsequences
that appear in the strings, irrespective of their relative
position [17].

The alignment-free distance adopted in this study is
inspired to the k-mer frequency analysis [18], where the
frequencies of the k-mers are represented in a real vec-
tor, and hence they are easily tractable in a mathematical
space: the distance between two reads is obtained by the
distance between their frequency vector representations.
A simple and easy way to compute a distance measure
is the Euclidean distance, although others may be used
(e.g., the d2 distance of [19]). The goal of this paper is to
evaluate the reliability of an alignment-free distance for
read pairs similarity and to compare it with respect to
other read-to-read distances that are based on global or
local alignment of the two reads.

The paper is organized as follows.

In section Methods, we provide sufficient background
for the main methods and techniques used in the paper:
the different adopted read pairs distances are described
(subsections Bowtie distance, Needleman-Wunsch edit
distance, The Blast alignment distance and Alignment-free
distance on tetramer frequencies). Following, we outline
the rationale of threshold predictors and the way they
are computed from data. Section Results and discussion
describes the experimental design and its results. First,
we delineate the data sets extraction and the experimen-
tal procedure (subsection Data sets and experimental set-
tings). Then, we consider the computational performances
of the different distances (subsection Computational time
analysis of the threshold predictors), how they correlate
among each other (subsection Pearson correlation among
distances), their prediction performances over the train-
ing sets with the support of ROC curves and AUC indi-
cators (subsection Performance analysis of the threshold
predictors), and their predictive results for a cross val-
idation evaluation scheme (subsection Cross Validation
Performances of the AF threshold predictor). Finally, we
provide discussion of the results (subsection Final discus-
sion). In section Conclusions we delineate the conclusions
and the perspectives of the work.
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Methods

We consider a straightforward implementation of the
alignment-free distance, based on the euclidean distance
of the frequency distribution of k-mers (i.e., substrings
composed of k consecutive bases) in the two reads. Such
a distance, referred to as AF in the following, is very
simple to compute and requires linear time in the dimen-
sion of the reads. As far as the choice of the length of
the oligomers, we adopt k = 4 (tetramers) as in
many references this value has been confirmed to pro-
vide an ideal balance between the length of the oligomers
and their number, when the sequences are expressed in
the (A, C, G, T) alphabet [20-22]. AF is compared with
respect to two methods to measure DNA string similarity
that are based on sequence alignment: the Needleman-
Waunsch edit distance (NW) and the Blast alignment
algorithm (BL).

Both methods require quadratic time in the length of
the reads. Their choice is motivated by the fact that the
first is a global alignment method, i.e., it searches for the
best alignment of the complete reads, while the second is
a local alignment, i.e,, it searches for the longest possible
portion that is aligned well within the two reads. There-
fore, their choice covers the two main approaches used in
computing alignment-based distances.

To perform a proper comparison among AF, NW, and
BL we adopt the following test. First, we assume the exis-
tence of an ideal distance, i.e., the distance that is given by
the degree of overlapping of reads that have been aligned
on their known reference genome. Second, we verify the
ability of the three distances in approximating this ideal
(target) distance. Given a pair of reads, such an approxi-
mation is measured by the ability of predicting the value
of the target distance using the value of the predicting
one. This assumption is based on the fact that an assem-
bly method that uses the target distance to evaluate the
opportunity of overlapping two reads would result in a
extremely satisfactory assembly.

To align the reads over the original sequence, we use
the well-established Bowtie algorithm [23,24]; two reads
receive a maximum distance value if they do not overlap
over the reference sequence; otherwise, they receive a dis-
tance inversely proportional to their degree of overlapping
over the sequence (e.g., they would have minimum dis-
tance if they are aligned in the same position by the Bowtie
algorithm). Given two reads, we define such a value their
Bowtie distance (BT in the following). We refer to BT as the
target distance and either to AF, or NW or BL as the predic-
tor distance. A threshold predictor is a mapping between
the values of the target distance and the values of the pre-
dictor distance; in other words, it assigns to each value of
the target distance, say «, a value of the predictor distance,
say B. Informally, we may define the threshold predictor
as a mapping m such that m(a¢) = B. Then, the target
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distance between two given reads is predicted to be below
a when the predictor distance between the same two reads
is below 8.

According to the above definition, for each value of the
target distance the threshold predictor may incur in errors
in terms of false positive and false negative predictions.
The quality of the threshold predictor is given by the
error distribution over the predicted values of the target
distance.

To test our method, we consider DNA sequences of
three different organisms: Saccharomyces cerevisiae,
Escherichia coli, and Homo sapiens. Publicly available sets
of NGS reads for the three reference sequences are used.
Each experiment is based on a large sample of read pairs,
from which the best possible threshold predictor (among
AF, NW, or BL) of the BT distance value is computed.
The precision of the predictors is evaluated building ROC
curves both on the samples of read pairs used to identify
the best predictors (training data), and on other samples
from the same set of read pairs not used for training (test-
ing data). The results show how AF performs very well as
a threshold predictor for BT; its performances are indeed
better than those of NW and comparable to those exhib-
ited by BL. Furthermore, both NW and BL are much more
demanding in terms of computing time when compared
with respect to AF.

Bowtie distance

The Bowtie distance (BT) is obtained after computing the
alignments of the reads to the reference genome with the
Bowtie algorithm [23,24]. Bowtie is able to align reads to
the reference genome at a very high speed (25 million
reads of 35 bp length per hour).

Prior to the computation of the alignments, Bowtie
builds an index of the reference genome with a Burrows-
Wheeler approach. Two versions of Bowtie are available:
Bowtie 1 [23] and Bowtie 2 [24]. The first one is opti-
mized for short genomes, the latter for longer ones and
supports gapped, local, and paired-end alignment modes.
For each read, the alignment position in the reference
genome is obtained after running the Bowtie algorithm.
Given two reads r1, ro we define the Bowtie distance as
follows:

2 % V(Vl, }”2)
A1+ A

BT =

where V(r1,rp) is the number of overlapped positions of
r1 and ry, A1 is the length of r1, and A, is the length of ry.
If multiple alignments of the same reads are present, their
average is used.

Needleman-Wunsch edit distance
The Needleman and Wunsch algorithm (NW) [25], based
on dynamic programming, is commonly used to perform
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a global alignment of two sequences. The algorithm time
complexity is quadratic with respect to the lengths of the
two sequences (N and M) to be aligned (O(n * m), where
n and m are the number of bases in the two reads). The
NeoBio [26] Java implementation of the NW algorithm is
adopted for performing the distance evaluation experi-
ments. We adopt following parameter settings for the NW
algorithm:

e 1 for the reward of a match (i.e., a substitution of
equal characters);

e —1 for the penalty of a mismatch (i.e., a substitution
of different characters);

e —1 for the cost of a gap (i.e., an insertion or deletion
of a character).

We use the above-mentioned configuration in order to
assign an equally balanced score for a match (+1), a mis-
match (—1), and a gap (—1). For further details we point
the reader to the NeoBio documentation [26]. The NW dis-
tance is obtained from the Needleman-Wunsch score in
two steps. First, the score is subtracted to its maximum
possible value (perfect alignment) in order to obtain null
distance in case of equal sequences and large distance for
different ones; then, it is normalized between 0 and 1 to
ease the comparisons with the other measures.

The Blast alignment distance

The Basic Local Alignment Search Tool (Blast) [27] is
used to compare a query sequence with respect to a
library or database of sequences. Blast adopts an heuris-
tic approach that is less accurate than other methods, but
much faster. The Blast time complexity is also quadratic
(O(n x m) where n and m are the lengths of the two
reads to be aligned). It is worth noting that this is the
same time complexity as other algorithms, including the
NW global alignment. However, given the heuristic nature
of the algorithm, the statistically significant elimination of
High-scoring Segment Pairs (HSPs) and words is used. In
this way, Blast significantly reduces the amount of com-
putation, running much faster than its worst case time
complexity. In this work, we use Blast2 that is the Blast
version to simply align two sequences. The Blast imple-
mentation available in [28] was adopted for computing
the Blast scores and the Blast expected values between
the considered read pairs. The parameters adopted for
the runs are described in Table 1: we turn off the mask-
ing parameter, which filters out low complexity and high
frequency regions (e.g., repetitive parts) of the genomic
sequence. The final Blast distance (BL) is obtained by
subtracting the Blast score to its maximum value and nor-
malizing it between 0 and 1 (given the fixed and equal size
of the sequences, the Blast expected values resulted to be
perfectly log-correlated with the Blast scores).
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Table 1 Blast parameters setting

Parameter Value Description

-p blastn Blast program for nucleotide sequences
-F F Masking and filtering off

-w 4 Windows size

-i r1fas First input filename

- r2 fas Second input filename

-m 8 Alignment view set to tabular output

Alignment-free distance on tetramer frequencies

We provide a simple sketch of the alignment-free dis-
tance computation used in this paper, mainly based on
[13]. The frequencies of each substring of length 4 (also
called tetramers) are computed by counting the occur-
rences of the substrings in the read with a sliding window
of length 4, starting at position 1 and ending at position
n — 4 + 1, where n is the length of the read. For the
alphabet composed of the four symbols (&, C,G,T) we
have a total of 4* = 256 different tetramers and thus
each read is represented by a vector of 256 real numbers
between 0 and 1. The choice of tetramers is motivated by
[20-22], which confirm the ideal balance between the
length of the oligomers and their number. Given two
reads, the Euclidean distance between their associated fre-
quency vectors is an inverse measure of the similarity
of the two reads, and we refer to it as the AF distance
between the two reads. An efficient Java implementa-
tion of the alignment-free frequency vector computation
and representation was developed for computing the AF
distance between the available read pairs. The related
algorithm is linear with respect to the length of the reads
and is available at dmb.iasi.cnr.it/ngs_distances.php.

Threshold distance predictors

Our goal is to show how the AF distance between two
DNA reads can approximate the BT distance, taking
into account a tolerable degree of accuracy. In greater
details, we aim to show that AF approximates BT as
well as NW or BL distances, although less computationally
demanding.

For a formal definition of threshold predictor, we need
some additional notation. Let r; and r, be two generic
reads coming from a DNA sequencing operation, and
di(r1, 1), dy(r1, ) be two alternative read-to-read dis-
tance functions. Given a vector « of dimension m, « =
(a1,09,...,ay), a threshold predictor of dy(-,-) by da(-,-)
is determined by a vector 8 = (81, B2, - - ., Bm)- Given two
reads r1,rp, the prediction on dj(-,-) is obtained by the
following rule:

if dy(ry,r) < Bithendi(r,m) <ai,i=1,...m.
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The threshold predictor depends on the choice of the
value of di (-, -) in the vector «. We are indeed interested
in the prediction only if d; (1, 72) is below a certain value
based on the value of dy(r1,13), and would like this pre-
diction to be precise for small reference values (i.e., those
contained in the vector «).

As anticipated, we have BT as target distance (i.e.,
di(+,+)) and the other distances as predictors (i.e., da (-, -)).
Since the original sequence is unknown, it is not always
possible to compute the BT distance. Hence, we focused
on predicting the BT distance by means of NW, BL or AF.
In this context, a threshold predictor which is precise for
small values in « turns out to be very useful. Thereby, we
are not interested in predicting whether two reads are far
from each other: we only want to know if they are close to
each other or not.

A proper way to evaluate the quality of a threshold pre-
dictor is to measure its errors over one or more samples of
read pairs where all distances are known. For each value «;
we measure the true positive (i.e., read pairs that are below
a; according to the target distance and are predicted to
be below «; by the threshold predictor) and true negative
(i.e., read pairs that are above «; according to the target
distance and are predicted to be above «; by the threshold
predictor) rates associated with the above rule, and from
this derive standard performance indicators such as ROC
curves and AUC values [29].

Read pair samples are used also to identify and
test good threshold predictors. Given the value o =
(a1,2,...,am,), we compute for a sufficiently large set
of candidate values B = (f1,B2,...) the true positive
and the true negative rates, construct the associated ROC
curve for each value «;, and derive the corresponding AUC
value. If the AUC value is good enough, we identify the
value B; that provides the largest combination of true pos-
itive and true negative rates, and adopt that for «;. Then, a
complete threshold predictor is obtained by repeating this
operation for each «;,i = 1, m.

The measure of a distinct precision value for each level
of the target function enables to evaluate the reliability of
the predictors there where it is needed. Clearly, the valid-
ity of a threshold predictor depends on the quality and the
representativeness of the samples used to train (e.g., to
derive the predicting vector ) and test the method. For
the latter we adopt a standard cross-validation approach:
first, the read pairs are sampled in disjoint sets; then some
of these sets are used for training (e.g., derive the best val-
ues of B for the given values of «) and others are used
for testing (measure the error of the so obtained thresh-
old predictor). In several iterations, the role of training
and testing samples is exchanged in order to mitigate the
potential bias associated with the sampling.

The set of reference values « (for the target distance)
and B (for the predictors) that have been used for the
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experiments are the values that separate the percentiles of
the read pair distance distribution. In this way, we have
that the first component of the « vector is larger than 1%
of the sampled read pairs, the second is larger than 2%,
and so on (similarly for the B vector). This allows to sam-
ple the whole variation range of the normalized distances,
obtaining a finer granularity in the portions where the
density is higher. According to this choice, both « and g
are vectors composed of 100 real values between 0 and 1 in
non-decreasing order. Clearly, this choice may be changed
with equally spaced intervals without a significant effect
on the results, once the proper granularity of the intervals
has been identified.

Data sets and experimental settings
In this subsection, we describe the adopted NGS data
sets and the experimental setting. Three different organ-
isms are taken into account, Saccharomyces cerevisiae
(commonly known as yeast), Escherichia coli, and Homo
sapiens (commonly known as human).

We design and apply the following experimental procedure:

e N reads are downloaded from the NCBI Sequence
Read Archive (SRA) database [30], or Chang Gung
University, Department of Parasitology, College of
Medicine (CGU) [31], and different NGS platforms;

e By using the Bowtie algorithm [23,24] the reads are
aligned to the corresponding reference genome
(132,33]);

e From the resulting alignments a random selection of
rs reads is computed and a reverse complemented
representation is calculated, obtaining a total of rtot
reads;

e Out of all the possible pairs of different reads from
this set, six subsets are selected, each with rp read
pairs. In order to have half of the set with non
overlapping reads (e.g., maximum Bowtie distance)
and the other half with a variable degree of overlap,
the random selection of these six subsets is
controlled;

e The four distances are then computed for each pair
in the set: the Bowtie Distance BT, the Needleman
and Wunsch edit distance NW, the Blast score BL,
and the alignment-free distance AF over the
tetramers (ie., substrings of length 4);

e These measures are all turned into proper distances
(see section Methods) ranging from 0 to 1 with 0
corresponding to equal reads and 1 corresponding
to maximally different reads.

In the following the six datasets are referred as YA, YB,
..., YF (Y as in yeast), EA, EB, ..., EF (E as in E. coli), HA,
HB, ..., HF (H as in human).

A compact summarized overview and description of the
data sets is given in Table 2.
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Table 2 Compact overview of the datasets

Datasets

Yeast E. coli Human
Genome length 12.1 Mb 4.6 Mb 32Gb
Sequencing lllumina HiSeq Roche 454 lllumina GA Il
machine
Database NCBI SRA cGgu NCBI SRA
Accession number ERX191563 - SRX013970
Run id ERR216898 - SRR0O31057
Number of 3,551,079 436,142 14,267,012
downloaded
reads (N)
Avg.reads 100+6 23544 75+5
length + st.dev
Total base pairs 3550 M 1025 M 1.1G
Random selection 54,860 100,000 183,672
of aligned reads (rs)
Total number of 109,720 200,000 367,344
selected reads (rtot)
Read pairs in each Y 200,000 ™™
subset rp
Source chri - chrl
chromosome

It is worth noting that the choice from different plat-
forms (Roche 454, lllumina GA II, and [lumina HiSeq)
stems from three main reasons: first, we want to test
our methods on different read lengths; second we aim
to show that the performances of our distance are inde-
pendent from the selected sequencing technology; lastly,
these platforms are the most common ones.

Results and discussion

The main goal of this work is to provide evidence that
the AF distance is a suitable approach to approximate
BT distance. We apply AF to the three different data sets
described in subsection Data sets and experimental set-
tings, showing the performances with respect to other two
alignment based algorithms (NW, BL). As a first step, we
compute the Pearson correlation coefficients among the
distances in the read pairs samples; then, we compute the
ability of each measure to predict BT distance at given BT
thresholds, by ROC curves and the corresponding AUC

Table 3 Computational time analysis
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values. We verify the consistency of the predictions by a
cross validation scheme detailed in the following sections.

Computational time analysis of the threshold predictors
All software implementations of BT, NW, BL, and AF are
run under a 64 bit linux environment (kernel 2.6.26-2-
amd64) with a 64 bit Oracle Java Virtual Machine (version
1.7.0_09) on an Intel Core i7 920 2.67 GHz processor with
24 GB RAM memory, 1 TB sata 7200rpm hard disk, and a
Debian GNU Linux 5.0.10 operating system.

In Table 3 we show the computational time of the differ-
ent threshold predictors on 1.00 E+4, 1.00 E+6, and 1.00
E+8 read pairs. The time was recorded by means of the
time linux utility, which provides user (i.e., the actual cpu
time spent for computation), system (i.e., time spent for
system calls, e.g., input/output), and elapsed (i.e., real time
between invocation and termination) times.

The results highlight the much lower running time
requirements of the AF distance. From our experimental
results we see that the running time of AF is approximately
10 times smaller than NW, that is in turn 10 times smaller
than BL.

Regarding memory requirements and consumption, we
note that if the algorithms compute the distance measures
by loading all nx# read pairs of average length / into mem-
ory, then they will require / * # bytes (online implementa-
tion); else if they perform the computation separately for
each read pair, then the memory consumption is 2/ bytes
(offline implementation).

Pearson correlation among distances

An initial comparison among the four distances is based
on the analysis of the correlation coefficients of one dis-
tance with the others, over a sufficiently large sample of
read pairs. The matrices in Tables 4, 5 and 6 report the
Pearson correlation values between the four read-to-read
distances for the three organisms.

For each organism, the correlations are computed in one
of the six available samples. Similar results are obtained
on the other samples (not shown). It is of interest to ana-
lyze the correlation of the predictor distances (NW, BL, AF)
with the target distance BT. First, we note that the cor-
relations measures are significantly different in the three
organisms; in yeast the NW distance is extremely poorly
correlated with BT, while such a correlation improves

Reads pairs 1.00 E+4 1.00 E+6 1.00 E+8

Time [sec] User System Elapsed User System Elapsed User System Elapsed
AF 2.09 044 1.95 9142 36.89 126.96 1023033 3530.08 13541.00
NW 11.98 042 11.74 1466.49 34.03 1501.03 362794.34 3686.95 365785.00
Blast 122.21 81.14 199.80 10203.07 7434.90 18747.00 1418254.45 946049.60 2365124.00
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Table 4 Pearson correlation matrix between the four
read-to-read distances for Yeast - YA
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Table 6 Pearson correlation matrix between the four
read-to-read distances for E. coli -EA

BT NW BL AF BT NW BL AF
BT 1.00 045 0.81 0.63 BT 1.00 0.76 1.00 0.95
NwW 045 1.00 048 0.52 Nw 0.76 1.00 0.76 0.82
BL 0.81 048 1.00 061 BL 1.00 0.76 1.00 0.95
AF 0.63 0.52 0.61 1.00 AF 0.95 0.82 0.95 1.00

for E. coli and human; the correlation between AF and
BT is also weaker in yeast than in the other two organ-
isms. The BL correlation with BT appears to be the higher
among the three predictors. Moreover, it is evident that
BT distance is almost perfectly reproduced from the pre-
dictors BL and AF in E. coli, then followed by yeast
and human.

We could not found our conclusions only on the corre-
lations values. Indeed, the requirement of a linear depen-
dence between target and prediction distances may be
a biased condition for the existence of the BT thresh-
old predictor. Correlation represents an average similarity
over the whole scale of the target, whereas some (small)
reference values of the target distance need to be pre-
dicted with higher accuracy. Hence, more appropriate
evaluations reported on the following sections are used.

Performance analysis of the threshold predictors

In this section, we analyze the performances of the three
predictors on the target distance. As above-mentioned,
we consider 100 intervals of the target BT distance corre-
sponding to the percentiles of its distribution, and identify
by exhaustive inspection the percentiles of the predictor
distance that minimize the prediction error. Such an anal-
ysis is performed by means of ROC curves, where we
plot the true positive rate against the false positive rate
for a given percentile of the target distance, with the per-
centiles of the predictor distance varying from 1 to 100.
We recall that an ideal ROC curve contains the point
(0,1) and therefore the area under the ROC curve (AUC)
has value 1. Smaller values of AUC represent poorer
prediction performances, and, in general, an AUC value
is usually considered very good when in the proximity
of 0.9.

Table 5 Pearson correlation matrix between the four
read-to-read distances for Human - HA

BT NwW BL AF
BT 1.00 0.68 0.72 0.67
NwW 0.68 1.00 0.73 0.72
BL 0.72 0.73 1.00 0.63
AF 0.67 0.72 0.63 1.00

We start presenting the ROC curves for the four values
0.10, 0.15, 0.20, and 0.25 of the target distance percentiles
that correspond to determined values of BT. In Figures 1,
2 and 3 the ROC curves for predictors NW, BL, and AF are
reported for the four reference values and for the three
organisms. As one can observe, both AF (green, solid)
and BL (blue, dotted) curves perform much better than
NW (red, dashed). Figure 1 depicts the ROC curves related
to yeast and shows how both AF and BL perform much
better than NW with AUC values higher than 0.9, while
NW curves have AUC much smaller values (close to 0.7).
Figure 2 is related to E. coli and shows a very stable sce-
nario: all the three measures are able to precisely predict
BT for all the thresholds reaching values of AUC close to
1. Figure 3 is related to human and shows that AF per-
forms slightly better than NW that in turn performs slightly
better than BL. AUC values of AF are close to 0.95, while
those of NW are around 0.91, and those of BL range from
0.9 to 0.88. A more comprehensive outlook of the perfor-
mances of the three predictors can be glanced from the
three panels in Figure 4. Here we report the AUC val-
ues for all the 100 percentiles of the target distance, for
three samples coming from yeast, E. coli, and human. Sim-
ilar results are obtained when the other five samples from
each organism are used (see Additional file 1). The charts
clearly show that for all three predictors the precision
decreases for higher percentiles (i.e., larger values of the
target distance). Lower percentiles (i.e., lower BT) corre-
spond to higher level of overlapping, and we conclude that
for these percentiles BT is easily predicted by the three
measures.

The higher the percentiles (i.e., the smaller the overlap-
ping), the higher the noise in the prediction will be. AUC
values are indeed very high for smaller percentiles with
the exception of NW in human. In Figure 4 panel A (yeast),
there is evidence that BL: and AF have both good perfor-
mances for all the percentiles in terms of AUC, showing
values higher than 0.9, until percentile 30, and anyway val-
ues higher than 0.8 for the last percentiles. BL: performs
slightly better than AF until the percentile 20, then AF
is better until the percentile 60 and again BL is better
until the last percentiles. NW AUC values range from 0.72
until 0.68 showing again a light decreasing slope. Figure 4
panel B (E. coli) shows - as previously highlighted - that
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Figure 1 ROC curves obtained for threshold predictors of yeast
samples. ROC curves obtained from threshold predictors of four
different reference values of the target BT distance (0.10, 0.15,0.20, 0.25).
The charts report the ROC curves for the three predictor distances
(NW, BL, AF). Results are provided on samples for yeast (YA).
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Figure 2 ROC curves obtained for threshold predictors of E. coli
samples. ROC curves obtained from threshold predictors of four
different reference values of the target BT distance (0.10, 0.15, 0.20, 0.25).
The charts report the ROC curves for the three predictor distances
(NW, BL, AF). Results are provided on samples for E. coli (EA).
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Figure 3 ROC curves from threshold predictors of human samples.
ROC curves obtained from threshold predictors of four different
reference values of the target BT distance (0.10,0.15, 0.20, 0.25).
The charts report the ROC curves for the three predictor distances
(NW, BL, AF). Results are provided on samples for human (HA).
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the three measures have very good performances for this
organism, with AUC values close to 1 until percentile
33. This means that all the three measures are able to
correctly predict BT. From the percentile 33 AUC val-
ues of NW significantly decrease, while those of AF and
BL are still close to 1 until the percentile 80, when they
slowly decrease keeping anyway values higher than 0.9. In
Figure 4 panel C (human) it can be observed that the three
curves start from an almost common AUC value, around
0.95, but diverge with increasing percentiles. AF has the
best performance keeping its AUC values higher than 0.9,
then NW decreasing until 0.85, and finally BL falling down
to 0.55.

Cross validation performances of the AF threshold
predictor

The results discussed above show that the BL and AF
predictors perform well when they are evaluated on the
same sample that has been used to train the predictors
reference values. It is more interesting to verify if the
relation between the predictor and the target distance,
derived from a read pairs sample, maintains its validity
also on other samples that were not used to train the
method.

We restrict this analysis to the AF predictor and test the
threshold predictor rules derived from one sample on the
other five samples of the same organism, in a cross vali-
dation scheme. The results are summarized in Tables 7, 8
and 9 for yeast, E. coli, and human samples, respectively.
The positive and negative precision rates are reported for
the four reference values of the target distance already
used in Figures 1, 2 and 3 (0.10, 0.15, 0.20, and 0.25), for
all the combinations of the cross validation scheme. In
Figure 5 we plot the same positive, negative, and total pre-
cision rates for all the 100 reference values over a single
sample (Panel A for yeast, Panel B for E. coli, and Panel
C for human). Similar results have been obtained also for
the other five samples of the three organisms.

Figure 5 shows that in yeast (panel A) positive precision
rate ranges from a percentage of 88.28 (BT = 0.25) until
90.58 (BT = 0.105) while the negative precision rate ranges
from 82.60 (BT = 0.105) until 85.18 (BT = 0.25). In E. coli
(panel B) both positive and negative precision rates show
values always higher than 96.34. In human (panel C) posi-
tive precision rate always is around a percentage of 90 and
negative precision rate ranges from 83.07 (BT = 0.105)
and 85.98 (BT = 0.25).

Tables 7, 8 and 9 show positive, negative, and total pre-
cision rates for all the percentiles in the three organisms,
revealing, as expected, that for E. coli (Table 8) AF has
very good performances also in the cross validation (total
precision rate is always higher than 0.9), with a slight
decreasing slope for the higher percentiles. In human and
yeast (Table 9 and Table 7, respectively), we have globally
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Figure 4 AUC values for target percentile values. AUC values for each percentile value of the target BT distance. The three panels report AUC
values for the three predictor distances (NW, BL, AF). Results are provided on samples for yeast (panel A, Ya), E. coli (panel B, EA), and human
(panel C, HA).

Table 7 True positive (TP) and true negative (TN) rates for reference values of target distance BT when predicted by AF,
for yeast

Set used for 0.105 0.15 0.205 0.25

training the predictor TP [%] TN [%] TP [%] TN [%] TP [%] TN [%] TP [%] TN [%]
YA 90.26 85.05 90.00 85.80 89.13 86.76 87.96 87.57
YB 90.03 8523 89.75 86.01 89.69 86.20 87.94 87.61

YC 90.01 85.28 89.72 86.06 8844 87.34 87.39 88.09
YD 90.23 85.03 89.74 86.03 89.12 86.76 88.58 86.94
YE 90.73 84.52 90.64 85.11 89.05 86.77 87.87 87.57
YF 9222 70.50 91.41 70.48 91.38 71.96 89.95 73.30
Average 90.58 82.60 90.21 83.25 8947 84.30 88.28 85.18

Predictor is trained on one set and tested over the other 5 sets.
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Table 8 True positive (TP) and true negative (TN) rates for reference values of target distance BT when predicted by AF,

for E. coli

Set used for 0.105 0.15 0.205 0.25

training the predictor TP [%] TN [%] TP [%] TN [%] TP [%] TN [%] TP [%] TN [%]
EA 97.00 99.09 96.38 98.78 9543 98.66 9461 98.60

EB 99.08 98.14 98.90 9743 98.54 96.92 9797 96.78

EC 100.00 96.11 99.98 94.75 99.98 9348 99.96 92.56

ED 98.67 9847 98.30 97.93 97.95 97.49 97.49 97.21

EE 98.31 98.69 9742 98.39 97.15 9797 96.57 97.84

EF 95.46 99.45 94.15 99.35 93.46 99.19 9143 99.35

Average 98.09 98.32 97.52 97.77 97.09 97.29 96.34 97.06

Predictor is trained on one set and tested over the other 5 sets.

good performances, with a total precision rate ranging
from 0.8 to 0.9.

The results described in Tables 7, 8 and 9 and Figure 5
confirm indeed that the AF predictor performs very well
also in the cross validation scheme and exhibits good gen-
eralization capabilities. The parallel analysis conducted
on the other two candidate predictors shows similar per-
formances of BL and much poorer performances of NW
(results shown in Additional file 1).

Final discussion

The results clearly show the efficacy of the alignment-
free distance in estimating a good read-to-read dis-
tance measure. The performances of AF in predicting
BT are better than NW and at least comparable to
BL, but the advantage of using AF is clear: it is linear
in the size of the input and has a lower compu-
tational time. Indeed, as already discussed in sub-
section Computational time analysis of the
threshold predictors, AF is much faster than NW
and BL. As reported above, the prediction power of the
three measures depends on the organism we consider, and

we believe that this issue deserves further analysis and
discussion.

We analyze two eukariotic genomes (yeast and human)
and one bacterial one (E. coli); there is evidence that
the performances of all the three predictors are globally
much better in E. coli. This may be due to the nature of
bacterial genomes, which are mostly composed of cod-
ing sequences, making easier to recognize overlapping
regions and reducing the noise due to low complexity
regions present in the intergenic eukariotic portions of
genome.

An additional fact that deserves attention is that the
distance-based on global alignment (NW), generally per-
forms poorly with respect to the one based on local
alignment (BL); the alignment-free distance (AF) seems
to compare well with the local alignment one, despite it
is based on the evaluation of the whole sequence, over-
coming the bias that may derive from requiring the global
alignment of the two reads.

Such a consideration is somehow strengthened by the
different performances obtained on reads of different
sizes; we recall that reads from human are smaller (average

Table 9 True positive (TP) and True negative (TN) rates for reference values of target distance BT when predicted by AF,

for human

Set used for 0.105 0.15 0.205 0.25

training the predictor TP [%] TN [%] TP [%] TN [%] TP [%] TN [%] TP [%] TN [%]
HA 91.05 82.53 9124 8324 90.96 84.74 90.19 86.25
HB 94.34 78.82 94.34 79.58 93.67 81.78 9441 81.35
HC 89.27 84.35 90.15 8432 88.92 86.24 89.77 86.63
HD 89.32 84.28 90.17 84.27 89.36 86.24 88.99 87.24
HE 89.12 84.22 89.57 84.53 89.02 86.37 87.99 87.82
HF 84.11 85.02 85.47 83.32 84.19 84.04 82.04 85.48
Average 89.53 83.20 90.16 83.21 89.36 84.90 88.90 85.80

Predictor is trained on one set and tested over the other 5 sets.
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C) Precision Rates for BT percentile predictions on Human,
training on HA and testing on other sets
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Figure 5 Cross validation of threshold predictors. Cross Validation
precision rates of threshold predictors for each percentile value of
the target BT distance; the panels report precision rates on positive,
negative, and total. Results are provided on samples for yeast (panel
A, YA used for training), E. coli (panel B, EA used for training), and

human (panel €, HA used for training).

size 75 bases) than yeast and E. coli (100 and 235 bases,
respectively); such a difference may explain the improved
performances of the NW distance in human, as with shorter
reads the advantage of local versus global alignment is
reduced.

Conclusions

In this paper, we described and tested a method to com-
pare NGS DNA reads based on an alignment-free dis-
tance. We compared our method with respect to Blast
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and Needleman-Wunsch algorithms, which rely on an
alignment-based approach. We designed our experiments
in order to measure the potential contribution of the
method in filtering DNA reads and speed up an assembly
process.

We showed that the alignment-free distance outper-
formed the two aligned-based ones both in terms of
computational time and of prediction performance, and
conclude that an alignment-free distance may be used
effectively for read pairs comparison.

In future, we plan to extend the reads comparison with
other competitive methods and also with other alignment-
free distances. The results shown in this paper are consid-
ered as a starting point to derive more efficient sequence
similarity assessments methods for DNA reads obtained
from NGS sequencing.

Finally, read pairs comparison based on alignment-free
distances may be conveniently used in future for DNA
assembly [34] given its considerable speed, as well as for
reads classification [35], e.g., in metagenomics.

Additional file

Additional file 1: Microsoft Excel 2010 spreadsheet that contains
additional charts and data that are not shown in the paper. It is
divided into 6 sheets:

e Sheet SP1 AUC for yeast samples containsthe AUC plots
for the different percentiles of the target distance and the different
predictors for the six different samples of read pairs from yeast
(YA-YF).

® SheetSP2 AUC for E. coli samples contains the AUC
plots for the different percentiles of the target distance and the
different predictors for the six different samples of read pairs from
E. coli (EA-EF).

® Sheet SP3 AUC for human samples contains the AUC plots
for the different percentiles of the target distance and the different
predictors for the six different samples of read pairs from human
(HA-HF).

® Sheet SP4 NW-BL-AF test precision containsthe
precision of the three predictors for the different percentiles of the
target distance, expressed in terms of true positive, true negative
and total precision rates, for the HA read pairs sample of human.

e Sheet SP5 test-human contains the detailed test results of the
cross validation on the six samples of human.

e Sheet SP6 test-ecoli contains the detailed test results of the
cross validation on the six samples of E. coli.
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